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Abstract: This paper considers the problem of formulating the non-linear optimization model for determining the 
optimal parameters of planetary gearbox, which is solved using a metaheuristic optimization algorithm. To determine 
the optimal parameters of the planetary gearbox it is necessary to formulate complex objective functions and minimize 
them, which is often a conflicting problem. To solve this complex optimization problem, in this paper we propose to 
employ metaheuristic algorithms, which characterize pseudo-randomness and the ability to find the global optimal 
solution to the multimodal optimization problems. The proposed metaheuristic method is based on the Genetic 
Algorithm (GA) which is hybridized with the local-search Nelder-Mead method. For the considered optimization 
problem, the appropriate software is implemented in the MATLAB software package, to verify the results. Inside the 
considered optimization module, we have defined the appropriate objective functions and constraints which determine 
the construction of the planetary gearbox. The optimal parameters of the planetary gearbox obtained using the 
proposed metaheuristic algorithm are compared with the results obtained using several well-known algorithms in the 
literature. The simulation results of the proposed optimization method indicate a significant improvement in planetary 
gearbox performance compared to the parameters obtained with well-known algorithms. 
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1. INTRODUCTION 

Planetary gearboxes find widespread use in a variety of 
mechanical systems, including industrial drives, 
rotorcraft, automobiles, wind turbines, and other similar 
applications [1,2]. In these types of mechanical systems, 
planetary gearboxes can offer more compact dimensions 
and higher power densities with less noise and higher 
torque-to-weight ratios, in particular when compared to 
standard parallel axis gear trains. However, the design of 
such gearboxes necessarily involves several planetary 
branches, which also affects efficiency [1]. This is 
because the total efficiency of planetary gear sets is 
determined by the various gear mesh areas in planetary 
gear sets. The primary objective is to increase the service 
life of the components while simultaneously decreasing 
the weight and power loss associated with the design of 
the gearbox. 

Nowadays, it is necessary to accurately forecast power 
losses during the design stage of the gearbox. This 
enables the designer to make appropriate design 
adjustments prior to the gear box being manufactured and 
put through its tests. There are a great number of articles 
that concentrate on gear efficiency and power loss, both 
of which are connected to concerns about the efficiency 
of parallel axis gear systems [3, 4]. The bulk of research 
focuses on mechanical power loss. Few papers have been 
written on the power losses of planetary systems, and the 
majority of those that have concentrated on the power 
losses that occur in planetary gear sets, which are often 
the result of experiments. In most cases, such models 

investigate efficiency via the analysis of gear train 
kinematics. More specifically, they use speed and torque 
equations to evaluate the effectiveness of planetary 
gearboxes [3]. These studies do not take into account the 
power loss that occurs as a result of lubricant interactions 
when non-uniform gear normal loads are being applied. 
However, these studies fail to simultaneously consider the 
minimization of mass and the maximization of gearbox 
efficiency. 

Many engineering optimization problems have recently 
been approached using natural-world-inspired 
metaheuristic algorithms, such as the Genetic Algorithm 
(GA) [5], particle swarm optimization (PSO), differential 
evolution (DE), ant colony optimization (ACO), firefly 
algorithm (FA), grey wolf optimization (GWO) [6], and 
others. Weight minimization, power loss reduction, and 
other gearbox optimization problems are only a few of the 
many for which the GA has been actively used as a 
promising optimization strategy from the group of EAs 
[5]. 

The use of evolutionary algorithms (EAs) to address 
optimization issues in the multiobjective optimization 
(MOO) of gearbox parameters has proven fruitful [6, 7]. 
Although evolutionary algorithms (EAs) were first 
developed for use in tackling unconstrained single 
objective optimization problems, researchers have 
recently found ways to include constraint management 
approaches into these algorithms and adjust the 
algorithms to be capable to tackle multiobjective 
problems. Limits on the choice of number of objectives, 
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variables, different kinds of constraints, conflict between 
different kinds of constraints, and a close link between the 
constraints and the objective function all contribute to the 
difficulty of constrained multiobjective optimization 
problems [8]. 

    There have been several EAs developed for 
multiobjective optimization, and as a result, in recent 
years there have been numerous publications in academic 
journals that discuss multiobjective optimization of 
gearboxes. The majority of the papers [6, 7] depend on 
the well-known non-dominant genetic algorithm (NSGA) 
and other enhanced forms of this algorithm to tackle the 
multiobjective optimization issues in the field of gearbox 
design. However, a number of works have recently been 
published in the literature that address MOO issues 
utilizing hybrid versions of well-known EAs [6]. 

As a consequence of this, the multiobjective planetary 
gearbox optimization problem that is being discussed in 
this study is tackled with the help of a hybrid strategy that 
is presented in this paper. The GA algorithm's capacity 
for global search is combined with the NM algorithm's 
superior ability to perform local search, resulting in the 
hybrid algorithm's capabilities. The outcomes of the 
computational simulation provide further evidence that 
the strategy that was suggested is preferable. 

This paper is organized as follows. Firstly, in Section 2 the 
considered optimization problem is formulated and the 
appropriate penalty method for dealing with constraints is 
introduced. Next, in Section 3 the procedure of the GA and 
NM methods of the hybrid algorithm are outlined. In Section 
the corresponding simulation results are presented. Finally, 
the conclusions are drawn in Section 5. 

2. OPTIMIZATION PROBLEM 
FORMULATION 

Many researchers have been drawn to the problem of 
minimum mass design and boosting the efficiency of 
planetary gearboxes, due mostly to the necessity for low 
mass design in aerospace engineering. In this study, we 
will look at how to optimize the mass and efficiency of a 
single stage planetary gearbox, as shown in Fig. 1. 

 
Figure 1. Illustration of a single-stage planetary gearbox 

considered in the optimization model  

Here, (a) represents the sun gear, (b) represents the ring 
gear, and (g) represents the planet gear. Because weight 
and efficiency are mutually incompatible objectives, the 
described optimization problem transforms into a 
multiobjective optimization problem, denoted as 
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The first objective is the mass of the single stage 
planetary gearbox, which under the assumption of the 
homogenous material can be defined as  

  
1

i

i

W V


 x , (3) 

where  is the density and iV  is the volume of the i th 

structural element. Therefore, the mass of the considered 
planetary gearbox is given as follows: 
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where  ad  is the pitch circle of the sun gear,  a bd  is tip 

diameter of the ring gear, sd is outside bearing diameter, 

 gd is the pitch circle of the planet gear, 3wn  is the 

number of planet gears, D  denotes outside diameter of a 
ring gear and b is the width of a gearbox. 

The second objective of the considered optimization 
problem deals with the efficiency of the planetary gear 
box and can be described according to the expression 
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where H
ag  and H

gb  denote relative efficiency of the sun-

planet gears and relative efficiency of planet-ring gears, 
respectively. These efficiencies can be determined 
according to the numerical procedure given in [1]. 

Furthermore, H
abu  denotes the relative gear ratio.  

The corresponding constraints of the considered 
optimization problem, take into considerations the 
strength of the gear, through the factor of safety, and 
achievable size constraints. Functional constraints in the 
form of inequality are given as 

    
0F

F
F

g S

  x  (6) 

where F  is the working bending stress,  F  is the 

allowable bending stress and FS  is bending stress factor 
of safety. Moreover, to prevent any interference of teeth 
during the meshing process, the assembly requirement 
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that must be met would be that the central sun gear and 
planet gears must always mesh simultaneously. Regarding 
this, the equality requirement is described as 

  1 0
,

a b

w g b

z z
h i

n D z z
    (7) 

Finally, taking into consideration the given optimization 
problem in Eq. (1) and corresponding constraints in Eqs. 
(6) and (7) the nonempty feasible domain is defined as 
follows 

     00nR hg    xx x  (8) 

2.1. Penalty method for multiobjective 
optimization 

Because the proposed evolutionary algorithm is incapable 
of dealing directly with constrained situations, a method 
for dealing with the constraints must be devised. This 
work considers the penalty approach to be a popular and 
straightforward constraint-handling strategy that 
effectively approximates the constrained optimization 
problem with the unconstrained optimization problem 
using the penalty function [8]. For each objective 

1 2, ,i if   a pseudo-objective function iF is defined in 

the following form 
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where  jP x  is the penalty function corresponding to the 

j th constraint. The penalty function is used to remove 

any solution that violates the constraint. As a result, the 
limited optimization problem may be transformed into an 
unconstrained minimization problem that has the 
following form  
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The penalty function can be defined as 
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where iR  is the penalty factor that measures the 

importance of the i th  penalty function and  is x  is a 

continuous function that considers the equality and 
inequality constrains, defined as 

    2 , ,1,i i ms g i  x x . (12) 

According to the formulation of the penalty function in 
Eq. (11), the penalty method directly analyses every 
viable option based on their objective function values, 
while the penalty function is applied to the infeasible 
alternatives, lowering their fitness value. A significant 
drawback of the penalty technique is the insufficient 

selection of the punishment factor, which has a significant 
impact on the efficiency of the search process. The 
severity of the penalty is determined mostly by the degree 
of infraction and varies appropriately. 

3. GENETIC ALGORITHM 

As a member of the class of metaheuristic optimization 
algorithms, the genetic algorithm may be used to find 
optimum solutions to multimodal optimization problems 
at the global level. GA processes are inspired by natural 
genetics and natural selection mechanisms [5]. 

The process of utilizing GA to identify the global 
optimum solution begins with the generation of a 
population of initial solutions. There are two types of GA 
in the literature: binary GA and real-valued GA. Each 
solution in the Binary GA is represented by a 
chromosome, which is a fixed-length vector of binary 
variables. Binary vectors are used to encode each 
potential solution. The number of optimization parameters 
used and the desired encoding accuracy define the length 
of this vector. The GA consists of three evolutionary 
operators, selection, crossover, and mutation, which are 
applied to the population of solutions in each generation 
with the goal of guiding the population towards the global 
optimum. 

During the selection phase, the GA uses the associated 
objective function value of each individual to choose 
chromosomes from the population that have favorable 
mating qualities. In this method, the chromosomes that 
lack the qualities required to solve the optimization 
problem are removed from the population. The selection 
method employs chromosome fitness values to decide 
which individuals are selected for mating and removes 
chromosomes that lack critical features for the effective 
solution of the optimization issue. The chromosomes are 
chosen using a roulette wheel, with individuals with lower 
objective function values, which is advantageous for 
minimization problems, being more likely to be chosen. 
The ith individual's selection probability is calculated as 
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where iF  is denoting an objective function value of the 

chromosome. The cumulative probability iC  of the i-th 
individual is determined according to the following 
expression 
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After assigning a cumulative probability to each 
individual in the population, they are subjected to a 
selection method in which a suitable individual is chosen 
based on a random number r  that must meet the 
following equation 

  1 1, 2, , ,,i i pCC r i N      (15) 
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where r  denotes the random number generated between 0 
and 1. 

One of the most essential aspects of GA is the crossover 
operator, which integrates and utilizes the available 
information stored in chromosomes to impact the search 
direction throughout the optimization process. The 
crossover operator combines the information of two 
previously picked individuals in the selection process to 
produce offspring that share both individuals' important 
advantages. Such offspring may have the abilities 
required to solve the optimization issue successfully. As 
seen in Fig. 2, two-point crossover is carried out by 
picking two random crossing spots along the 
chromosomal length, indicated as 1c  and 2c . As a 
consequence, the encoded binary values encompassed by 
these points may be exchanged between individuals. 

 

Figure 2. The illustration of two-point crossover operator  

Mutation is a GA operator that adds previously unknown 
solutions into the GA population. To avoid damaging 
valuable information, just a tiny fraction of the population 
gets altered. Mutation occurs when random binary 
changes occur on a chromosome. To reflect the 
unpredictability of the alterations, each digit of the gene 
being mutated is changed to either 0 or 1. The mutation 
rate must be low, since if it is high, a good chromosome 
may accidently mutate into a poor one. 

The selection, crossover, and mutation operators are 
repeated, and the population evolves through consecutive 
iterations toward the global optimal solution of the 
considered optimization problem until the termination 
condition is fulfilled. Although most evolutionary 
algorithms employ the maximum number of iterations as 
a termination criterion, the relative error of the average 
objective function value of the population between two 
successive iterations is also used. As a result, the 
algorithm may be stopped by comparing the objective 
function value of population in successive iterations when 
it falls below a specific threshold, which is stated in the 
following 
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where   is a small positive real number, in which 
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represents the average objective function value of the 

entire population in kth iteration.  

4. NELDER-MEAD METHOD 

The Nelder-Mead is a direct local search method that 
doesn’t require the knowledge of the first derivative of the 
objective function, which is widely applied in solving 
different convex optimization problem n s [9]. The 
process of NM method is based on transforming 1n+  
points during the iterations at the vertices of a simplex, 
for   dimensional optimization problem. The main 
operations on a simplex, which consists of three points 

 1 2 3S : , , x x x , applied in order to transform simplex 

and converge to optimal solution and produce new points 
are displayed on Fig. 3, and include: reflection rx , 

expansion ex , contraction cx  and shrinkage.  

 
Figure 3. The illustration of four main transformations 
performed on simplex in Nelder-Mead method for two-

dimensional optimization problem 

The initial untransformed simplex is bounded by vertices 
ordered by the objective function value, e.g. 1x , 2x  and 

3x , where the last point denotes the worst point. To 
transform the initial simplex and provide a new point 
trough applying the abovementioned operations firstly we 
determine a centroid point x  which halves the line 
segment between points 1x  and 2x . During each iteration 
one of the transformations is applied and a new point is 
generated which replaces the point 3x  in the current 
simplex. In this way the points on the simplex are 
improved until it converges towards the optimum point. 

Therefore, to apply the NM method the following 
operations are performed. 

Initialization. Firstly, to start with the optimization 
process, the initial simplex is generated around the 
provided initial solution by adding to this point the scaled 
value of unit vector in each direction, e.g. 

 1 1: , ,, 1x x ei i ,i n     (18) 

where R   is represents the unit vector scale factor, 
usually set as 1  , and ie  denotes the unit vector of the 
ith axis. To form the initial simplex, the generated point 
are sorted in ascending order based on the objective 
function value, such that the following is true 

      2 11 .nf f f  xx x  (19) 

Simplex generation. To transform the initial simplex the 
four transformations are applied. Firstly, we determine the 
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centroid x  is the centroid of the n  best vertices which 
can be calculated as 

  1

1
: .x x

n

i
in 

 
 (20) 

Reflection. Then, the reflection point is the first one that is 
created, by reflecting the worst point 1nx around the axis 

which contains the points nx  and 1nx , as follows 

  1 ,: nr    x xx x  (21) 

The newly generated point lies on the line that contains 
points 1nx  and x . In order to check if the point rx  is 

kept in the simplex the expression    1rf fx x  must 

be satisfied. Then, we try to further explore the solution 
space with expansion. Otherwise, is 
     1 ,r nf f f x x x  the worst point is replaced with 

generated point rx  and no additional transformations are 
performed.  

Expansion. This operation is performed in order to further 
extend the search area if the reflection vertex points to the 
right direction. The expansion point is generated along the 
line which contains the points x  and rx  according to the 
expression: 

  .e r  x xx x  (22) 

If     ,e rf fx x  the new expansion point is pointing to 

the optimal solution and vertex 1nx  is replaced by ex  

and iteration terminated. Otherwise, replace 1nx  with rx  
and terminate iteration. 

Contraction. After the reflection point is generated, and 
expansion is not the desired direction in the movement of 
the simplex, the contraction is applied. Depending on 
whether contraction point lies inside or outside of the 
current simplex we recognize two types of contraction 
which can be performed, outside and inside contraction. 
Outside contraction is performed when 
     1 ,n r nf f f  x xx and the point cx  is 

determined as follows: 

  .:c r  x x xx  (23) 

On the other hand, if      1 ,n r nf f f  x xx inside 

contraction is performed to generate a point ccx as follows 

  1 .:cc n  x xx x  (24) 

If    1 ,cc nf f x x  replace 1nx  by ccx  and terminate 

the iteration; otherwise, perform shrinkage. 

Shrinkage. The last transformation which is applied on 
the simplex is aimed to reduce the size of a simplex as it 
converges towards the global optimal solution. In this 
regard, shrinkage is performed on all vertices except 1x , 
according to the expression 

  11 .:i i  xx xv  (25) 

In Eqs. (21) – (25) the following real valued parameters 
are provided ,  ,    and  which control each 

respecting operation. For 2D optimization problem these 
parameters can be set as 1,   2,   0.5,   

and 0.5   [6]. 

The iterative process of applying the above 
transformations is repeated until the points of the simplex 
become close to the optimal solution, i.e. 
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where  k
ix  and  1k

i
x  are the vertices in iteration k  and 

1k + , respectively and   is an arbitrarily small positive 
number. 

5. SIMULATION RESULTS 

The numerical simulation results are shown in this chapter 
to validate the improvements in the optimum design 
solution utilizing the proposed GA-NM technique. 

The optimization procedure that takes into considerations 
the minimization of gearbox mass and maximization of 
efficiency is applied to an example planetary gear set. The 
planetary gear set in this example is made up of a floating 
sun gear and three evenly spaced planetary gears, with the 
internal gear permanently attached to the housing. Table 1 
shows the essential design characteristics of the planetary 
gearbox under consideration. 

Table 1. Parameters of the planetary gear set used in this 
paper  

Parameters Symbol Value 

Input Power [kW] aP  200 

Input speed [rpm] an  2750 

Pressure angle [degree] n  20 

Gear material 18CrNi8 

Gear surface Roughness [ m ] aR  0.8 

Factor of safety against bending minFS  1.2 

Factor of safety against pitting minHS  1.25 

Number of planet gears pgn  3 

Due to conflicting objectives, the solution to the MOO 
problem is a Pareto set. To compare a single solution to 
the reference values, the ideal solution must be identified. 
Ideal solutions are best for each unique objective, 
independent of other objective functions. Because the 
ideal solution doesn't exist in the Pareto set, it's estimated 
from the Pareto frontier's objective values. Compromise 
solutions to the MOO issue are found as the Pareto curve 
cossets to the ideal solution, where Euclidian distance is 
used to measure proximity. 

Furthermore, in aircraft applications, the minimizing of 
the planetary gearbox's volume, and hence its mass, is 
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critical. The mentioned MOO issue has been carried out 
in this respect, with the objectives being the volume of the 
gears in the gearbox and the power loss of the planetary 
gear set. The obtained Pareto curves for this scenario are 
shown in Figure 4. 

 

Figure 4. 2D illustration of the Pareto frontier for 
planetary gearbox volume and efficiency 

From the results depicted in Fig. 4 it can be observed that 
the considered objective functions are conflicting. 
Analyzing the obtained Pareto set, starting from the left to 
right and moving along the Pareto set it can be observed 
that with the increase in the value of gearbox volume, 
leads to simultaneous decrease in the value of the 
planetary gearbox efficiency, and vice versa. Therefore, 

the ideal solution is determined as 10[5.1 ]10 0.75 9924  

while the compromise solution is 10[5.3 ]10 0.14 9892 . 

Compared to the industrial gearbox reference [10] it leads 
to the 10% reduction in gearbox weight and improvement 
of  0,25% in efficiency. The observations made on the 
numerical simulations show that the proposed gear 
optimization procedure based on hybrid GA-NM 
algorithm can achieve better design solutions, compared 
to the traditional algorithms, however with the cost of 
higher number of iterations. 

6. CONCLUSION 

This paper considers the topic of developing a non-linear 
optimization model for determining the optimal 
parameters of a planetary gearbox, which is solved using 
a metaheuristic optimization technique. To identify 
appropriate planetary gearbox parameters, complex 
multimodal objective functions are minimized, which are 
conflicting problems. In the paper, a hybrid metaheuristic 
algorithm is proposed to address this challenging 
optimization problem. The proposed metaheuristic 
method combines the GA with local-search Nelder-Mead. 
In the considered multiobjective optimization problem, 
the appropriate objectives are developed, such as weight 
minimization of the gearbox and maximization of gearbox 
efficiency. The ideal planetary gearbox settings obtained 
using the proposed metaheuristic method are compared 

with results from well-known algorithms. The proposed 
optimization method improves planetary gearbox 
performance compared to well-known algorithms. 
In the future, work can be done on making more objective 
functions and putting them into more complicated multi-
objective models to add to the optimization problem and 
make the solution more accurate.  
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