
 

314 

DRONE CLASSIFICATION BASED ON RADIO FREQUENCY: 
TECHNIQUES, DATASETS, AND CHALLENGES 

BOBAN SAZDIĆ-JOTIĆ 
Military Academy, University of Defence, Belgrade, boban.sazdic.jotic@vs.rs 

BOBAN BONDŽULIĆ 
Military Academy, University of Defence, Belgrade, bondzulici@yahoo.com  

IVAN POKRAJAC 
Military Technical Institute, Belgrade, ivan.pokrajac@vs.rs 

JOVAN BAJČETIĆ 
Military Academy, University of Defence, Belgrade, bajce05@gmail.com  

MOHAMMED MOKHTARI 
Military Academy, University of Defence, Belgrade, mokhtari.med91@gmail.com   

 

Abstract: This research article presents a comprehensive review of current literature on drone classification (detection 
and identification) in the radio-frequency domain. The usage of unmanned aerial systems or drones, both for 
commercial (amateur or civilian) and functional (military or industrial) purposes, has multiplied numerous times over 
in the last decade. Drones have undergone great improvement, and at the same time, they have become low-priced and 
easier to manipulate, but on the contrary, they come to be more adaptable to illegal actions. Due to the scope of the 
subject matter, the review included only the classification of drones via passive, radio-frequency sensors with a 
description of the classification techniques (set of algorithms, methods, and procedures) and the datasets used for 
performance testing. Moreover, the challenges of drone classification based on radio-frequency were presented in this 
work. The general outcome of this study shows that deep learning techniques are currently the best solution for solving 
the issue of drone classification. However, it should be noted that most modern research is experimental and that there 
are only limited practical implementations. A particular problem is the lack of a general specification for radio-
frequency drone classification that must be based on requirements defined from everyday experience. 
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1. INTRODUCTION 

Unmanned aerial systems (UAS), especially commercial 
off-the-shelf (COTS) ones, become less expensive, 
equipped with better optoelectronic sensors (daily and 
night cameras), easier to fly, and have attracted increasing 
attention due to their boundless applications. However, 
such imminent technological improvements contribute 
that UAS being more adaptable for crime, terrorism, or 
military purposes. Moreover, this caused security forces 
to be increasingly challenged by the need to quickly 
detect and identify UAS, especially in security-sensitive 
areas. With such a huge expansion of UAS applications, 
which can be harmful, there is a prerequisite to protect 
sensitive areas and critical points of the vital 
infrastructure by using specific means, i.e. anti-drone 
(ADRO) systems. Various ADRO systems can be found 
on the market presently, and all of them have one 
important characteristic in common: the usage of several 
different (optoelectronic, acoustic, radar, and radio-
frequency) sensors. Additionally, it can be noted that 
every ADRO system consists of the following core 

subsystems: monitoring (sensing), mitigation, and 
command and control (C2) subsystem [1]. Based on this, 
the modern ADRO system needs to incorporate different 
procedures against UAS: detection, spoofing, jamming, 
and mitigation procedures [2], [3]. 

Detection or warning procedures are based on various 
detection devices (sensors) to perform early warning on 
the presence of any UAS (set of drones with their ground 
controller and equipment). The additional function of 
these procedures is the identification and localization 
(optionally, tracking) of detected drones in order to 
provide inputs for the next stage of the ADRO system. 
The spoofing procedure is involved in the next phase but 
it is not compulsory. With this procedure, the ADRO 
system deceives drones by sending false radio signals 
(GPS spoofing is a typical example of an emergency 
landing). If the spoofing procedure fails, the ADRO 
system can engage the jamming procedures, where the 
drone’s control and navigation signals are disturbed by 
posing strong artificial interference. Finally, the ADRO 
system can use the mitigation procedure, to destroy or 
capture malicious drones. Although ADRO systems 
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comprise diverse procedures and sensors, practical 
implementations mainly rely on radar and radio-frequency 
(RF) sensors, rather than optoelectronic or audio sensors 
for primary drone detection. 

The main advantage of RF sensors is zero irradiated 
power, a longer detection range, an association with 
procedures against UAS (especially jamming), and usage 
of various techniques for exploiting the intercepted RF 
signal. RF sensor is a passive device that only receives RF 
signals from UAS (both drone and ground controller) 
which are present in almost every situation. Contrary to 
that, radar is an active device that irradiates 
electromagnetic energy, thus it can be a constraint 
because it can not be used in every possible scenario. The 
detection range of RF sensors depends on the 
surroundings and transmitter power of UAS but usually is 
comparable with the radar range. Another interesting fact 
in favor of the RF sensors is a possible connection 
between the receiver and jammer. Parameters obtained 
from the UAS detection stage can be used for spoofing 
and jamming if this is requested. Additionally, an RF 
receiver is a very resourceful sensor in contrast to the 
others. The received RF signals can be used for different 
purposes such as communication protocol detection, 
drone MAC address detection, feature extraction, or for 
direct use with some classification algorithms. 

The ADRO systems can extract useful information from 
intercepted RF signals between the drone and the ground 
controller to resolve communication protocol or the MAC 
address. Drones use specific protocols for communication 
which can be used for detection and identification 
purposes. Additionally, the IEEE 802.11 (Wi-Fi) standard 
can be exploited to trace the MAC addresses of the 
specific drone model. However, a major drawback of such 
ADRO systems is the a priori knowledge of 
communication protocols and MAC addresses, which in 
some situations may not be the case (hand-made drones 
can also have custom-made protocols). Furthermore, the 
ADRO system can extract some features from intercepted 
RF signals for detection purposes. In addition, the ADRO 
system exploits frequency or joint time-frequency signal 
representation (TFSR) of I/Q data (raw RF signal), to 
prepare inputs to some classification algorithm.  

The disadvantage of RF-based drone detection is ambient 
RF noise, multipath, and the fact that customized UAS 
can operate autonomously, without an active 
communication link between drone and ground controller. 
Additionally, real-time RF monitoring is a cumbersome 
process, due to the very specific conditions of the RF 
domain. It is important to note that all drone RF 
communication can be organized into three main 
categories of communications: command and control 
(uplink), telemetry and video (downlink), and guidance 
communications. The first two groups are using a wide 
range of frequencies (between 400 MHz and 6 GHz), 
while guidance communications use global navigation 
signals (GPS L1/L2/L2c/L5, Glonass, Beidou, or 
Galileo). In such a complex environment, RF sensors 
must be very agile with high-speed scanning performance, 
highly sensitive, and with a high dynamic range across the 
whole frequency range. 

The rest of the paper is organized as follows: section 2 is 
a categorization and overview of relevant studies, section 
3 describes the comparison of classification techniques, 
the results of comparative analysis of the most relevant 
papers are presented in section 4, and finally, the 
conclusion is given in section 5. 

2. CATEGORIZATION AND REVIEW OF 
LITERATURE 

To the best of our knowledge, available studies 
introduced different classification techniques 
(approaches) based on the RF sensors. We created a new 
categorization of these classification techniques according 
to: 

 the method of processing input data: 

 classic engineering techniques that require prior 
feature extraction in combination with a simple 
decision threshold mechanism, 

 advanced engineering techniques that do not 
require prior feature extraction with complex 
learning procedures for classification purposes 
(feature extraction is implemented in deep learning 
algorithms together with the learning process), and  

 hybrid engineering techniques that present a 
combination of previous ones. 

 the type of input data: 

 techniques with classification algorithms that use 
the MAC address information as input data, 

 techniques with classification algorithms that use 
the protocol information as input data,  

 techniques with classification algorithms that use 
features of RF signals as input data, and  

 techniques with classification algorithms that use 
the entire received I/Q RF signal as input data. 

It is important to note that one technique can be 
categorized by both rules, i.e. some approach is a classic 
engineering technique that uses protocol information as 
input data. The categorization presented in this research 
paper is based on the most relevant research papers that 
are available in the literature in the last five years. A total 
of 96 research papers, that are dealing with RF 
classification (detection and identification) of drones, 
were incorporated into this research. 

2.1. RF techniques according to the method of 
processing input data 

When it comes to input data preparation and processing 
method, classical engineering techniques require a 
mandatory step to extract features from intercepted RF 
signals. This is an important step because only extracted 
features with a decision threshold mechanism can be used 
for classification. The main disadvantage of the classic 
engineering techniques is the complex process of feature 
extraction which must be adopted according to the nature 
of input data. This implies that feature extraction is a very 
demanding and time-consuming process that requires 
profound engineering skills. Authors in [4] used the 
standard deviation analysis, maximum slope analysis, and 
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accumulation in azimuth direction as statistical features 
for drone detection and direction finding. Moreover, the 
principal component analysis and the empirical mode 
decomposition (EMD) based wavelet transform (WT) 
methods were engaged to cope with additive Gaussian 
white noise. Furthermore, the cyclostationarity signature 
of the drone RF signal and pseudo-Doppler principle was 
presented in [5] for the classification issue with a single-
channel universal software radio peripheral (USRP) 
receiver. In [6], the authors described an innovative 
passive drone detection system (Matthan), based on two 
key physical signatures of the drones (body shifting and 
vibration). However, the Matthan approach is challenged 
with the range constraint, so did not find any practical 
implementation up till nowadays. 

Alternatively, artificial intelligence (AI) algorithms, 
especially deep learning (DL), approach the problem of 
classification without prior extraction of features. 
Advanced engineering techniques use the entire received 
I/Q RF signal, perform some preprocessing steps and send 
all data to the learning process. The advantage, compared 
to the classical engineering techniques is the more robust 
and scalable approach. However, a huge amount of input 
data is required for the training process which can be a 
disadvantage in some cases. Fully connected deep neural 
networks (FC-DNN) were engaged in [7]–[9] to classify 
drones. Similarly, convolutional neural networks (CNN) 
as one of the prominent DL algorithms were used in [10]–
[14] for the same purpose.  

The quantitative comparison of the techniques that exploit 
RF sensors according to the method of processing input 
data is presented in Figure 1. 

 

Figure 1. Quantitative comparison of RF techniques 
according to the method of processing input data. 

It should be noted that 50.7% of all research papers rely 
on advanced techniques compared to 46.6% of classic 
engineering techniques. This result is not surprising 
because the analysis included only works in the last five 
years when advanced techniques began to be widely 
applied. This also means that classical engineering 
techniques are being given up in favor of advanced ones. 
Furthermore, DL and ML algorithms participate with 
32.9% and 17.8%, respectively, in advanced engineering 
techniques. 

It is also worth mentioning that the authors in [15]–[20] 
present classical and advanced engineering techniques in 
combination with direction-finding (DF) methods. 
However, the specific hardware and software 
implementation of the RF-based DF of UAS is presented 
in [20] because the authors used a single-channel RF 

sensor and a four-element antenna array, in combination 
with a sparse denoising autoencoder that is based on a 
deep neural network (SDAE-DNN). Although, it is 
important to notice that some authors in [21]–[24] use a 
hybrid engineering technique or a combination of 
classical and advanced techniques. In [21] authors used 
extracted features (the slope, kurtosis, and skewness) of 
the drone RF signal as input for an FC-DNN. Moreover, 
in [23], the authors performed feature extraction and used 
ML algorithms (Logistic Regression). On contrary, 
authors in [25] used deep learning algorithms (ResNet50) 
for feature extraction together with ML classifier Logistic 
Regression. An interesting approach was presented in [24] 
where authors extracted fifteen statistical features from 
the UAS RF signal and engaged them with five different 
machine learning (ML) classifiers at different SNR levels. 

2.2. RF techniques according to the type of input 
data 

RF sensors receive an RF signal from a UAS, which can 
be exploited for different purposes. There are four 
different techniques for detecting and identifying drones 
according to the type of input data. The first group 
includes techniques that use classification algorithms for 
the detection and identification of the MAC address of the 
transceiver device in a drone. The second group includes 
techniques that exploit classification algorithms for the 
detection and identification of the protocol of 
communication between drones and ground control 
devices. These two techniques are the least represented in 
the available literature because they have major 
limitations and shortcomings. The main characteristic of 
both approaches is the use of received and demodulated 
RF signals for finding information about the MAC 
address of the RF transceiver installed in the drone and 
about the type of communication protocol that is unique 
for certain types of drones. Such obtained information is 
afterward used for the detection and identification of 
drones. However, to the best of our knowledge, the 
technique with classification algorithms based on protocol 
recognition is more efficient than the previous. 
Furthermore, there are more practical hardware 
implementations of ADRO systems based on this 
technique. Authors in [26] performed device and protocol 
identification throughout the data format analysis. In [27], 
features such as packet inter-arrival time and size were 
analyzed, while in [28] authors studied eight protocols to 
classify UAS. 

Moreover, techniques with classification algorithms that 
use features of RF signals as input data are more present 
in the literature. We have mentioned some important 
studies that exploited features because this is a mandatory 
step for classical engineering techniques. Nevertheless, 
more and more research papers are appearing in the 
literature dealing with the entire intercepted I/Q RF 
signal. The faster hardware and improved computing 
power are the reason and the possibility to exploit the full 
power of DL algorithms which are created for a huge 
amount of data. Because of that, the techniques with 
algorithms that perform classification with the entire 
received I/Q RF signal as input data are becoming widely 
present solutions providing excellent results. The main 
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characteristic of this approach is the use of RF sensors to 
record the raw RF signal, followed by different pre-
processing steps in order to prepare input data for the 
classifier. Some authors in [7]–[9] performed magnitude 
or phase spectrum calculations to obtain 1-D (vector) data 
with corresponding labels. Others in [12]–[14] used more 
complex TFSRs such as spectrograms or scalograms to 
obtain 2-D (image) representations of intercepted I/Q RF 
signals with corresponding labels for classification 
purposes. The illustration of one 2-D TFSR obtained from 
RF activities in the 2.4 GHz is presented in Figure 1. This 
TFSR is a spectrogram of RF signal when two drones 
operate simultaneously at 2.4 GHz. It is important to note 
that two emissions are visually distinctive in Figure 2: the 
command and control (fixed frequency) and telemetry and 
video (frequency hopping) emission.  

 

Figure 2. Spectrogram of two RF drone signals. 

Depending on the method of preparation of input data, 
different DL models are used. In [8], [29] authors used an 
FC-DNN and CNN for single drone classification 
(detection and type identification) and multiple drone 
detection. Moreover, in [12] authors examined CNN 
accuracy with SNR dependency showing that 
classification is feasible. The quantitative comparison of 
the techniques that exploit RF sensors according to the 
type of input data is presented in Figure 3. 

 

Figure 3. Quantitative comparison of RF techniques 
according to the type of input data. 

It is important to note that techniques with classification 
algorithms that use features of RF signals as input data are 
the most exploited with 42.9%, followed by the 
techniques with classification algorithms that use the 
entire received I/Q RF signal as input data with 29.8%. 
More interesting is the fact that 95.9% of all papers that 
use the entire received I/Q RF signal as input data are 
used advanced engineering techniques. 

3. COMPARISON OF DETECTION 
TECHNOLOGIES 

An extensive comparative analysis of all literature was 
performed in order to support the proposed categorization 
and to emphasize the best RF-based drone detection 
technique. The most relevant research papers were used 
for this purpose. The comparison was done according to 
the used dataset and engineering techniques. The publicly 
available studies whose results were verified on the 
“DroneRF dataset” and the “VTI_RF_Dataset” was 
presented. Additionally, these studies were classified 
according to our categorization, together with results from 
three different experiments. This was done intentionally 
as it is the only way to compare different approaches 
according to the detection or identification of the same 
number of classes. 

It is important to notice that there are very few publicly 
available datasets that contain RF signals from drones. It 
should be emphasized that only two datasets have records 
of RF signals from both industrial, scientific, and medical 
(ISM) radio bands, but just one has multiple drones. 
Additionally, some authors in [30] and [31] used ground 
controllers for classification which can be valuable in 
various researches. Moreover, RF receivers generate a 
vast amount of data during the recording process, which 
leads to huge datasets. This can be a disadvantage in some 
situations because of the prerequisite for superb 
computers, storage, and GPUs. The list of publicly open 
datasets that contains RF signals from UAS is presented 
in Table 1. 

Table 1. The RF drone publicly available datasets. 

Reference
Number of 

UAS 
Multiple 
drones 

2.4 GHz 5.8 GHz

[32] 3 - +  
[33] 3 + + + 
[30] 17 - +  
[34] NaN - +  
[35] 7 - +  
[31] 10 - + + 

Authors in [32] presented a “DroneRF” dataset that 
incorporated three different drones, recorded in four 
different operating modes in only one ISM band (2.4 
GHz). This dataset was used in over 60% of reviewed 
literature which is an impressive result. Analogous, 
authors in [33] introduced a similar dataset with three 
drones, recorded in four different operating modes in two 
ISM bands (2.4 and 5.8 GHz). Moreover, this dataset 
contains records of multiple (two and three) drones 
operating at the same time simultaneously. This makes 
“VTI_RF_Dataset” unique because to the best of our 
knowledge there is no such dataset in the available 
literature.  

4. RESULTS 

The main goal of this research was to review and 
categorize all available RF-based drone classification 
research papers and datasets. The studies whose results 
were verified on the “DroneRF dataset” are presented in 
Table 2. 
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Table 2. Comparative analysis of publicly available 
studies verified on the “DroneRF dataset”. 

Reference 1st 2nd 
Drone 

detection 
Type 

dentification 
Flight mode 
dentification

[7] A R 99.7 84.5 46.8 
[10] A R 100.0 94.6 87.4 
[25] H F - - 91.0 
[11] A R 99.8 85.8 59.2 
[36] A R 100.0 99.6 99.3 
[37] A F 100.0 98.6 95.1 
[38] H F - - 99.2 
[39] A R 99.8 98.5 95.3 

The notation “H” stands for hybrid and “A” for advanced 
engineering techniques. The notation “F” stands for 
features and “R” for raw I/Q RF signal. It is important to 
note that the best results were achieved in [36] with 
multistage DNN and CNN algorithms. More important, 
there are no classic engineering techniques employed on 
the “DroneRF dataset”. Additionally, some of the studies 
whose results were verified on the “VTI_RF_Dataset” are 
presented in Table 3. 

Table 3. Comparative analysis of publicly available 
studies verified on the “VTI_RF_Dataset”. 

Reference 1st 2nd 
Drone 

detection 
Type 

dentification 

Multiple 
drone 

detection 
[8] A R 99.8 96.1 97.2 
[29] A R - 100.0 - 
[40] A F  99.9  

It is worthy of mention that “VTI_RF_Dataset” provides 
multiple drone detection on real RF signals, rather than 
simulated RF signals.  

5. CONCLUSION 

This study set out to establish the new categorization and 
provided a deeper insight into the publicly available drone 
classification techniques in the radio-frequency domain. 
Overall, the following conclusions can be pointed out: the 
proposed categorization provides a useful tool for a 
literature review, the comparative analysis shows that 
deep learning techniques are currently the best solution 
for solving the issue of drone classification, and there is a 
little number of publicly available datasets with radio 
signals from drones. The main strength of this study is 
that it represents the first comprehensive review of 
publicly available datasets with RF signals from drones. 

Further research should focus on determining an approach 
to merge two or three datasets or to test the classification 
techniques on different datasets. Additionally, it is 
important to examine the new multimodal deep learning 
algorithm which will incorporate different features and 
raw radio signals for solving the classification issue.  
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