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Abstract: The main element of bearingless rotor of a helicopter is elastic beam, which replaces all three hinges 
(flapping hinge, lead-lag hinge, and feathering hinge), and it has to be well designed in order to provide necessary 
movements of the rotor blade, without exceeding the permitted stresses in the material. The goal of this study is to find 
optimal size of cross-section of the head of the bearingless rotor of an unmanned helicopter in respect to feathering 
function. The study considers the influence of the size of the cross-section to feathering properties, by analyzing the 
results obtained by finite elements metod. The optimal size of cross-section is found by approximating feathering 
function with corresponding polynominal with divided differences and using the least squared error and the mean 
squared error to find the size of cross-section that leads to minimal error. The optimal values for the cross-section 
obtained by using the the least squared error the mean squared error were compared and it was concluded that both 
approaches can be applied for optimizing the size of the cross-section. 
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1. INTRODUCTION 

Constant strive of helicopter manufacturers to simplify 
main rotor construction, has been obtained by 
implementing compliant elements - elastic beams in the 
construction [1]. Elastic beam has, in its shape, size, and 
composition material, replaced three hinges (pitch, flap, 
and lead-lag hinge), which were used earlier as blades‘ 
connection to the main rotor hub. In attempts to achieve 
the best possible rotor characteristics, similar to, or even 
exceeding those of hinged rotor systems, there are 
different types of beams proposed in the practice, 
differing in cross sections and lengths [2]. In order to get 
improved pitch, flap and lead-lag properties, adequate 
design of the elastic beam is crucial, as it is practically the 
only part of the bearingless system that affects control 
characteristics. Due to highly connected dynamic and 
structural demands, put in front of the elastic beam, 
regarding geometrical properties as length, cross-sectional 
area, different spacing between multiple beams in root 
and end segment, etc. it is necessary to use mathematical 
optimisation methods to obtain suitable  geometrical 
values that provide required dynamical properties. 
Although all of the required parameters are in direct 
connection, it is difficult to simultaneously observe and 
analize all of them, having in mind that each of these 
parameters is very complex by itself. For all above 
mentioned reasons, this analysis will aim effects of cross-
sectional area on the blade pitch change characteristics 
(elastic beam torsion). 

2. TECHNICAL ISSUE 

 

Figure 1. Elastic element and rotor blade: a) elastic 
element, b) elastic beams, c) rotor blade, d) beam cross-

sectional height, h) beam cross-sectional width  

The main technical issue in bearingless rotor systems is 
achieving required fredom of movement by deforming of 
the elastic element (Figure 1), connecting the rotor blade 
with the hub. Elastic element consists of two elastic 
beams, placed one above the other at a certain distance. 
Beams have composite structure, made of laminated steel 
bonded by rubber. The steel ensures necessary strength 
and toughness, while the rubber provides non-linear 
deformation characteristics. In difference to the present 
examples of the main rotor elastic elements, consisted 
mostly of single elastic beam per element, with different 
cross-section forms like „+“ or „I“ beams or other open or 
closed shapes, analised beam will have rectangular cross 
section shape. Sellection of the rectangular cross-section 
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provides great load-bearing capabilities combined with 
simplified design and manufacture process, intending to 
lower the overal cost. To obtain required movement 
properties, pitch and flap [3] characteristics in particular, 
it is necessary to define the cross-sectional area of the 
elastic beam [4].  

3. OPTIMISATION DEMANDS AND 
INITIAL INPUT DATA 

The primary goal in determining optimal dimension of the 
elastic beam of the helicopter rotor is to achieve the 
necessary movement dynamics without exceeding the 
permitted stresses in the material. The realization of this 
goal was carried out by optimization [5] of the cross-
sectional area of the elastic element, and therefore, of the 
elastic beam. When determining the optimal size of the 
cross-section of the elastic beam, the height of the 
element (d) was varied, while the width (h) was fixed.  

Bearing in mind that relatively thin beams may allow for 
significant or eve exessive deflections, namely torsion and 
bending, and thus lead to increased vibrations level on 
rotor blades and hub (which would further demand 
installation of a dampening mechanism) minimal beam 
thickness in this analise will be d=7mm. 

Figure 2. Rotor blade pitch angle value change (torsion 
angle value) in correlation with lifting force 

The initial input data were obtained by finite element 
analysis [6,7]. That method simulated behavior of elastic 
beams,  l=240mm in length, and of thickness 
d=7mm/9mm/11mm. Analysis included following 
conditions: 

Root end of elastic beams were fixed (simulating 
connection to rotor hub), so as to achieve zero movement 
at their contact surfaces; Centrifugal force, with 
magnitude of Fc=3000daN, loading the elastic element, 
acts at blade‘s center of mass, while aerodynamical force 
acts at the blade‘s center of thrust, located  at 0,75R 
(measured from the axis of rotation). Analysis included 
blade pitch angle changes at different aerodynamic lift 
values: Rz=67daN, Rz=142daN and Rz=320daN, 
representng  thrust at blade‘s angular position of 0o in 
autorotation and forward level flight at 120km/h and 
180km/h, respectively. Aquired blade‘s pitch angle values 
are drawn on Figure 2. 

4. INTERPOLATION OF FUNCTIONS 
WITH MULTIPLE VARIABLES 

The blade pitch angle (torsion angle) change function, 
denoted as θ, is considered as a function of two variables: 
beam cross-section thickness d and magnitude of 
aerodynamic force Rz, i.e., θ(d,Rz). The apporximation of 
the function θ(d,Rz) has been made by using interpolating  
polynominal of two vatiables with divided differences [8] 
based on given values θ(di,Rzj), i=0,...,n, j=0,...,n. The 
following section will briefly present the interpolation of 
a function of two variables by using a polinominal with 
divided differences. 

Interpolation is a type of approximation of a function, in 
which it is required that the values of approximant 
coincide with the values of function in the given set of 
points. If the approximant is polynomial, it is named as 
interpolation polynomial. The construction of 
interpolation polynomial of two variables is performed as 
the extension of interpolation of function of one variable. 
In this study, we will construct interpolation polynomial 
of two variables with divided differences of the function 
θ(d, Rz). 

Let us assume that the function θ(d, Rz) is given by its 
values in (n +1)2 points θij= θ(di,Rzj), i = 0,...,n, j = 0,...,n, 
which are presented in the table 1: 

Table 1. The torsion angle change in relation to 
aerodynamical force and the elastic beam thickness 

θij Rz0 Rz1 ... Rzn 

d0 θ(d0, Rz0) θ(d0, Rz1) ... θ(d0, Rzn) 

d1 θ(d1, Rz0) θ(d1, Rz1) ... θ(d1, Rzn) 

... ... ... ... ... 

dn θ(dn, Rz0) θ(dn, Rz1) ... θ(dn, Rzn) 

The divided differences for function θ(d,Rz) are defined 
in itterative manner [9]. More precisely, divided 
differences of order i+j (order i regarding the first variable 
d, and order j regarding the second variable Rz) are 
defined via two divided differences of order (i-1)+j or via 
two divided differences of order i+(j-1). 

The divided difference of order 0+0 are defined as the 
value of the function in the given point:  

    0 0 0 0; ,d Rz d Rz   (1) 

The divided difference of order 1+0 is defined via two 
divided differences of order 0+0: 

      1 0 0 0
0 1 0

1 0

; ;
, ;

d Rz d Rz
d d Rz

d d
 







 (2) 

Similarly, the divided difference of order 0+1 is defined 
as: 

      0 1 0 0
0 0 1

1 0

; ;
; ,

d Rz d Rz
d Rz Rz

Rz Rz
 







 (3) 
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The divided difference of order 1+1 is calculated as: 

 

 
   

   

0 1 0 1

1 0 1 0 0 1

1 0

0 1 1 0 1 0

1 0

, ; ,
; , ; ,

, ; , ;

d d Rz Rz
d Rz Rz d Rz Rz

d d
d d Rz d d Rz

Rz Rz


 

 




 






 (4) 

Note that divided difference is symmetric operator. As it 
can be seen from (4), divided difference of order 1+1 can 
be calculated by using either two divided differences of 
order 1+0 or two divided differences of order 0+1, as it is 
shown in (2) and (3), respectively. 

The divided difference of order 2+0 is defined as the 
difference of two divided differences of order 1+0: 

      1 2 0 0 1 0
0 1 2 0

2 0

, ; , ;
, , ;

d d Rz d d Rz
d d d Rz

d d
 







 (5) 

Each of the two divided differences of order 1+0 is 
calculated by using two divided differences of order 0+0, 
as it is shown in (2).  

Similarly, the divided difference of order 0+2 is 
calculated as: 

      0 1 2 0 0 1
0 0 1 2

2 0

; , ; ,
; , ,

d Rz Rz d Rz Rz
d Rz Rz Rz

Rz Rz
 







(6) 

Each of the two divided differences of order 0+1 is 
calculated by using two divided differences of order 0+0, 
as it was shown in (3). 

:
:
 

In general, the divided difference of order  i+j is defined 
as: 

 

 
   

   

0 1 0 1

1,..., 0,... 0 1 0

0

0,..., 1,... 0 0 1

0

, ,..., ; , ,...

; , ,..., ; ,...

; , ,..., ; ,...

i j

i j i j

i

i j i j

j

d d d Rz Rz Rz

d d Rz Rz d d Rz Rz

d d
d d Rz Rz d d Rz Rz

Rz Rz


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 








 







 (7) 

The symmetric property of divided differences can be also 
be observed from (7) . More precisely, divided differences 
of order i+j are defined via two divided differences of 
order (i-1)+j or via two divided differences of order i+(j-
1). The divided difference of order (i-1)+j is calculated 
via two divided differences of order (i-2)+j or two divided 
differences of order (i-1)+(j-1), etc. 

If we have the values  ,i jd Rz ,
 

, 0,1,..,i j n , 

0 i j n   , then we can calculate all divided differences 

of order
 

i j , where , 0,1,..,i j n  and nji 0 . 

From the definition of the divided differences, it is 
obvious that each divided difference can be represented 
via the values of function in the given set of points. 

 

Let us introduce the notation  jiij RzRzdda ,...,;,..., 00  

for divided difference of order  i+j. Then the polinominal 
with divided differences [6] that approximates function 
θ(d,Rz) is as follows: 

       0 1 0 1

0

( , )

... ...
n

ij i j

k i j k

P d Rz

a d d d d Rz Rz Rz Rz



 
  



      (8) 

 
 
   

   

0 0

0 1

0
0 1

,..., ; ,...,

( , ) ...
...

n i j

i

k i j k
j

d d Rz Rz

P d Rz d d d d
Rz Rz Rz Rz






   


    

  
  (9) 

In this particular case, we have n=2 and the data given in 
table 2: 

Table 2. Pitch angle value in relation to aerodynamic 
force and elastic beam thickness 

Rz0 Rz1 Rz2 θij 
67dN 142dN 320dN 

d0 7mm 13.37 15.8 20.25 

d1 9mm 6.88 8.07 10.7 

d2 11mm 5.39 6.26 8.11 

Using the values given in table 2, we can construct 
polinominal with divided differences Pθ(d,Rz) that 
approximates the function θ(d,Rz). This polynomal of two 
variables is constucted using (8) and (9), having the 
following form: 

 

 , 3.37-3.245 (d-7)+0.0324 (Rz-67)+
0.0083 (d-7) (Rz-67)-

-2.92 0.0000 (Rz-67) (Rz-142)
0.626 (d-7) (d-9)

P d Rz   
  

   
  

 (10) 

As the mathematical form of the curve θ(Rz) is known (it 
is derived theoreticaly), the error function can be defined 
as the sum of the squared deviations [10,11] of the 
polynomial Pθ(d,Rz) to θ(d,Rz) for Rz0,....,Rzn (in our 
case n=2). The error function defined in this way allows 
us to determine the optimal value of d in function of pitch 
angle change. The error function will be a function of the 
variable d. More precisely, it is obtained as: 

     



n

i
iii RzRzddG

0

2,)(   (11) 

     
         222

2
11

2
00

,,

,)(

RzRzdPRzRzdP

RzRzdPdG











  (12) 

As the mathematical form of the curve θ(Rz) is known, 
we can easily obtain the values in the required points, 
More precisely, we have 

    57.4670  Rz ,     29.91421  Rz , 

    35.193202  Rz ,  

as the values for the curve θ(Rz). It also applies: 
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  0,
(0.626 d -4.382) (d - 9) -3.245 d 36.085
d Rz 

    
 (13) 

  1,
(0.626 d - 4.382) (d - 9) - 2.623 d 34.158

P d Rz 
    

 (14) 

  2,
(0.626 d - 4.382) (d - 9) - 1.145 d 29.58

P d Rz 
    

 (15) 

After performing mathematical calculus, we obtain: 

    
    
    

2

2

2

( ) 0.626 4.382 9 3.245 31.515

0.626 4.382 9 2.62 24.87

0.626 4.382 9 1.145 10.233

G d d d

d d

d d

     

     

     

 (16) 

Our goal is to find the value for d for which the minimum 
of the function error G(d) is achieved, i.e., the optimal 
pitch angle for which the deviation from the pitch angle 
function is the smallest. Since it is a quadratic non-
negative function, G(d) has a unique global minimum, 
which is obtained as the zero of the first derivative, as a 
solution to the nonlinear equation G'(d)=0. 

     
 

   
     

'( ) 2.5 22.32 ( 0.626 4.38 9
1.15 10.23) 2 1.252 13.26

( 0.626 4.38 9 3.25 31.52)
2 1.252 12.64 ( 0.626 4.38 9
2.62 24.87)

G d d d d
d d

d d d
d d d

d

       
       
        
        
  

 (17) 

The next step is to solve the nonlinear equation G'(d)=0. 
By applying some of the numerical methods for finding 
zeros of a nonlinear function (for example Newton's 
method [10,11]), we obtain that the optimal value is 
approximately 9.97mmoptd . 

Let us now use different approach to find the optimal 
value for d. More precisely, we define the error in the 
mean square sense over the observed interval for Rz: 

      dRzRzRzdPdG
nRz

Rz
 

0

2
1 ,)( 

 (18) 

Here, Pθ(d,Rz) is a polynomial with divided differences 
(10) that approximates the step change function obtained 
from Table 1. Note the use of mathematical curve θ(Rz) 
leads to integral that is difficult to calculate. For this 
reason, in (18) we will use an approximant of θ(Rz), i.e., 
P2(Rz) that is interpolation polynomial of the second 
degree that approximates the mathematical curve θ(Rz). 
The polynomial P2(Rz) is constructed from the known 
values of the mathematical curve θ(Rz) in the 
points 670 Rz , 1421 Rz , and 3202 Rz :  

  67 4.57  ,  142 9.29  ,  320 19.35    

In particular, the constructed interpolation polynomial 
P2(Rz) is:  

  112177,0068234,0000026,0 2
2  RzRzRzP  (19) 

The error function to be minimized is defined as the 
deviation error Pθ(d,Rz) from P2(Rz) in the mean square 
sense on the interval [Rz0, Rz2]: 

     dRzRzPRzdPdG
nRz

Rz
 

0

2
21 ,)( 

             

(20) 

 
  

    
     

   

1
2

320

67

2

( )

3,37 3, 245 7
0,0324 67
0,0083 7 67
2.92 0.00001 67 142
0.626 7 9

( 0.000026 0.068234
0.112177)

G d

d
Rz
d Rz

Rz Rz dRz
d d

Rz Rz


    
     
     
        
      

           

  (21) 

As G1(d) is a non-negative quadratic function, it has a 
unique global minimum which is obtained as the zero of 
its first derivative G1' (d). 

 
' 3 2
1( ) 396.58 d  + 11603.77 d  - 

-106435 d + 302614.7
G d   


  (22) 

By solving the equation G1' (d) = 0 by using Newton's 
method, we obtain the value 69.9optd . 

5. CONCLUSION 

This study shows possibility of elastic beam cross-section 
optimisation in relation to pitch angle change function, by 
applying combination of  interpolated functions of two 
variables with divided differences, approximating function 
with corresponding polynominal with divided differences 
and using the least squared error and the mean squared error. 
Input data was obtained by analysis of the behavior of the 
elastic beam with thickness d=7mm, 9mm and 11mm, using 
the finite elements method. While the thickness varied for 
this analysis, the width of the beam was kept unchanged. The 
goal of this study is to determine the optimal size of the 
cross-sectional area of the bearingless main rotor hub to 
satisfy required dynamical characteristics of the rotor. The 
pitch angle change function was aproximated by 
polynominal with divided differences. When the magnitude 
of the deviation from designated curve was calculated by 
least squared error method, resulting optimal value was 
9.97mm, but when mean squared error method was applied, 
the resulting optimal value was 9.69mm. As resulting 
optimal values in both cases are close, that leads to 
conclusion that both of these methods can be used in 
determining of the optimal thickness of the elastic beam 
cross-section. 
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