
 

8 

PREDICTION OF QUASI-STEADY FLUTTER VELOCITIES OF TAPERED 
COMPOSITE PLATES AT LOW MACH NUMBERS: ANALYSIS AND 

EXPERIMENT 

MIRKO DINULOVIĆ 
University of Belgrade, Faculty of Mechanical Engineering, mdinulovic@mas.bg.ac.rs 

ALEKSA MALJEVIĆ 
University of Belgrade, Faculty of Mechanical Engineering, aleksa.maljevic1999@gmail.com 

BRANIMIR KRSTIĆ 
University of Defense, Military Academy, Belgrade, branimir.krstic@va.mod.gov.rs 

 

Abstract: In the present work, based on existing quasi-steady aerodynamics theories, equations of motion for tapered 
composite plates are derived for a subsonic flow field. The required tapered plate frequencies of oscillation in bending 
and torsion are computed using the Rayleigh-Ritz principle. The material model for orthotropic materials is adopted for 
composites based on Ackerman and Tsai and Hanh theories for QI composite lay-ups., and initial composite material 
elastic coefficients are obtained based on composite micromechanics theories. The combination of these sets of 
equations rendered the possibility to solve the equations of motion for the lifting surface characteristic section in the 
closed-form and give an estimate of stability loss, and flutter velocity for tapered composite plates in the subsonic flow 
field. 
Using the proposed approach, calculated flutter velocities are experimentally verified by performing the tests in a 
subsonic wind tunnel in the flow field from 5 m/s to 30 m/s. Furthermore, the results are compared to numerical results 
obtained using commercial software NASTRAN/Flight Loads. Good agreement between the proposed model, numerical 
results, and experiment is obtained, and based on this analysis it can be concluded that the proposed model can be used 
with acceptable accuracy for flutter velocity estimation for tapered composite plates in a low Mach number flow fields. 

Keywords: flutter, quasi-isotropic laminates, stability loss. 

 

1. INTRODUCTION 

The flexibility of modern aircraft structures requires the 
analysis of the interaction between elastic, inertial, and 
aerodynamic forces even in the early design stages. 
Aeroelastic instability, known as flutter is a dynamic 
instability characterized by sustained structural 
oscillations. It directly arises from the interaction between 
the inertial, elastic, and aerodynamic forces acting on the 
lifting surfaces and potentially may lead to complete 
structural failure. The flutter instability (coupled-mode 
flutter) arises when two eigenmodes of fluid-structure 
interaction coincide, leading to high-amplitude structure 
oscillations, hence, dynamic instability. High amplitudes 
induce large strains, followed by high stresses in the 
structure, which may lead to failure. 

With the objective to determine flight conditions (flight 
speed, primarily), close to 80% of flutter analyses in the 
industry is based on a numerical approach, relying on 
well-established K, P, and P-k algorithms (CFA). This 
approach leads to very good results, confirmed by 
experiments and flight tests, however, it requires tedious 
modeling and very often relatively expensive software 
modules not readily available.  

In the present work quasi-steady flutter theory, expressed 
through the NACA flutter boundary equation [1], is used 
to estimate the flutter velocities of tapered composite fins 
exposed to low Mach number axial flow. The original 
theory is adapted for the orthotropic materials in the form 
of quasi-isotropic composite laminates and is based on the 
Ackerman, Tsai, and Hanh theory [2], since nowadays, 
composites are being extensively used in airframe design. 

Results obtained, for the flutter boundary velocity for the 
quasi-isotropic material structures (very often used 
nowadays in airframe construction) are compared to 
numerical (CFA) results and experimental results from 
subsonic wind tunnel testing at low Mach and small 
Reynolds numbers (Re). 

2. NACA FLUTTER MODEL  

National advisory committee for aeronautics in technical 
note No 4197 has defined the flutter boundary velocity, 
for the preliminary design of lifting surfaces on missiles 
in the following form. (eq.1): 
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In the previous equation (eq. 1) Vf represents flutter 
boundary speed, a is the speed of sound, Ge is the shear 
modulus of elasticity, t is the lifting surface average 
thickness, p/p0 is the ratio of the fluid pressure to standard 
pressure and A and λ are aspect and taper ratio 
respectively.  

Based on Akkerman, Tsai, and Hanh’s quasi-isotropic 
(QI) theory [2], the previous relation (eq.1) is modified 
for the composite materials, that are manufactured in the 
laminate form with QI stack-up. This stack-up is of 
particular interest, especially in the initial phases of the 
design, and is often used with composite materials during 
design phases that include the initial sizing of the 
laminates [3-4]. Any stack-up that satisfies the following 
relation (eq. 2) is considered to be quasi-isotropic [3]: 
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In equation 2, m represents the number of different 
orientations in the laminate (m ≥ 3) and is the number of 
repetition sequences. This lamination type excludes 
unfavorable coupling effects and composite (in-plane) 
stiffness is independent of composite orientation, which 
may be the main reason why this type of stack-up is often 
used as the starting point in the early stages of the design 
[4]. 

The objective is to express the elastic coefficient Ge 
(shear modulus) given in equation 1 in terms of principal 
lamina properties (Young’s moduli E1 and E2, in-plane 
lamina shear modulus G12, and major Poisson’s ratio ν12) 
and further by means of equivalent laminate properties 
based on above-mentioned theory [2]. 

Using the laws of composite lamina micromechanics, 
composite lamina elastic coefficient required (principal 
lamina props.), and based on constituent (fiber and 
matrix) properties, moduli can be obtained from the 
following system of equations (eq. 3) [3, 5]: 
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Composite constituent properties (Ef, Em, and Gm) are 
usually obtained from material OEM, data found in the 
literature [5], or by experiment. Phases volume fractions 
(VF and Vm) are determined by the composite design and 

are usually within the 55 – 65 [%] range for Vf, for fly-
worthy aerospace structural components. 

Based on these data the effective in-plane shear modulus 
required by the NACA flutter boundary equation (eq.1), 
in terms of principal lamina elastic coefficients, for QI 
stack-up can be expressed in the following form [2]. 
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Substituting equations 3 – 4 in the initial flutter equation 
(eq.1), for QI laminates reads: 
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In equation 5 fin chord (denoted with c in equation 5) is 
taken as the mean aerodynamic chord, for tapered plates, 
and is calculated using the known relation, given here for 
completeness. 
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In the previous equation (eq.6), S is fin planform area, b is 
fin’s total span, and c(y) chord length at y span coordinate 

3. NUMERICAL ANALYSIS 

Using Commercial software MSC Nastran/Flight Loads, 
flutter speed, for the e-glass composite fin, of QI stack up 
[00/450/-450/900]s, thickness 0.65 [mm] is calculated. 
Geometric dimensions of the fin analyzed are as follows: 
Root chord, Cr=180 [mm], tip chord Ct=90 and span b/2 
= 262 [mm]. The numerical model is presented in the 
following figure (Figure 1):  

 
Figure 1. Flutter numerical model  
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The complete fin flutter model consists of a structural 
model and the aerodynamic model. The structural model 
consists of 172 laminate finite type finite elements 
(Classic Lamination Theory), that discretize the complete 
missile fin domain. The aerodynamic model computes the 
aerodynamic forces, based on the vortex panel method. 
To ensure the transfer of aerodynamic loading onto fin 
structure both models are mutually interconnected with 
beam-type splines. This kind of flutter model, enables 
analysts to obtain the flutter velocities, hence the fin 
dynamic stability loss. The algorithm used for this 
coupled flutter numerical model was a very well-known 
P-k algorithm [6]. 

For the geometry given, composite material 
characteristics, and subsonic flow conditions, the result 
obtained is that flutter occurs at 18.5 m/s. 

Using the same geometry and material characteristics, 
using the analytic NACA model, described in previous 
sections (eq.6 at flight altitude corresponding to p/p0 =1 [-
]), obtained value for the flutter speed is 16.7 m/s. 

Fin mode shapes in bending and twisting (bending 
frequency f1=7.98 [Hz], twisting frequency f2=28.68 
[Hz]) are presented in Figure 2. These frequencies are of 
great importance for the problem analyzed (composite fin 
bending-torsion flutter). The algorithm for modal 
extraction used in this example was the complex Lancosz 
algorithm since it was found that this algorithm for 
problems of similar size does not miss any modes, it is 
fairly fast and does not require fine mesh, which can be of 
importance when several case scenarios have to be 
analyzed. This was concluded based on the sensitivity 
analysis performed and results obtained from the 
experimental modal analysis. 

 

Figure 2. Mode shapes in bending and twisting 

Frequency values obtained by Lanczo's method are 
compared to results obtained by the Rayleigh-Ritz method 
for natural frequencies calculations for cantilevered 
beams. The natural frequency of the cantilever beam is: 
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In equation 7 ρ is material density and D is plate flexural 

rigidity computed from the following relation: 
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Using the same theory as for the shear modulus of QI 
laminates [2], Young's modulus of elasticity for quasi-
isotropic laminates is obtained using the following 
equation: 

  2 1eq xy xyE G     (9) 

Poisson ratio (νxy) in this analysis for e-glass laminates is 
set to 0.3. Coefficients λn in equation 7  are the function 
of boundary condition, material type, and analyzed plate 
taper ratio. Coefficients λn for isotropic materials as a 
function of taper ratio (tip chord/root chord) are given in 
the following table (Table 1): 

Table 1. Coefficients λn for isotropic materials (frequency 
parameters Ritz Method) [7] 

Ctip / Croot Mode 1 λ Mode 2 λ 

2 3.51 5.37 

1 3.49 8.55 

0.5 3.47 14.90 

Ritz coefficients presented in table 1are further modified 
for quasi-isotropic materials and plate aspect ratio. For the 
first three modes of vibrations of cantilevered, tapered 
thin plates λn  coefficients are presented in the following 
figure (Figure 3.) 

 

Figure 3. Mode shapes coefficients 

4. WIND TUNNEL EXPERIMENT 

To ensure and verify the validity of the proposed 
methodology, for the aeroelastic stability of the QI 
tapered e-glass plates, tests in a subsonic wind tunnel are 
performed at relatively low Mach number flows (up to 30 
m/s). A specially designed support structure is used to 
support the test samples (e-glass tapered fins) and is 
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placed in the test section of the tunnel. Test samples are 
presented in figure 4. and the complete test setup (wind 
tunnel working section) in figure 5. The wind tunnel used 
for this experiment is a subsonic wind tunnel at the 
University of Belgrade, faculty of mechanical 
engineering. 

   

Figure 4 E-glass tapered plate for wind tunnel flutter test 

 

Figure 5 Wind tunnel flutter test setup 

The support structure with a clamped sample at the root 
chord, positioned in the test section of the wind tunnel, is 
presented in figure 4. In order to monitor the magnitude 
of the amplitudes during an oscillation cycle, 
accelerometers connected to the DAQ system were 
mounted on the test plate at the location of the root chord. 
The PCE PFM2 micro manometer with pitot tube is used 
to determine airflow velocity. The system can increase or 
decrease air-flow velocities in the wind tunnel by 0.5 m/s 
increments, with acceptable air-flow stabilization times. 

Table 2. Samples Geometric and material data  

Charact.  

Root chord 180 [mm] 

Tip chord 90 [mm] 

Span 262 [mm] 

thickness 0.65 [mm] 

QI [00/ 450/ -450/ 900]s 

E1 41 000 [MPa] / ref [5] 

E2 10 400 [MPa] / ref [5] 

G12 4300 [MPa] / ref [5] 

GE 7962.59 [MPa] / equation 4 

The experimental results for flutter velocities versus 
calculated values based on equation 5 and the numerical 
model (section 3) for the fin geometry (Table 1) are 
presented in table 2 Experimental velocity data is 
obtained based on 5 fin samples, with 10 runs in the wind 
tunnel. The flow velocity was gradually increased until 
the flutter was observed. The flow speed was then 
reduced to 10 m/s and ramped close to the flow speed 
where the flutter occurred in the previous run. The loss of 
stability of the test sample is presented in figure 5. 

Table 3. Flutter velocity comparative results  

Model Flutter velocity [m/s] 

NACA 16.7 

Experiment 19.6 – 21.5 / (5 test samples / 10 runs) 

Numerical P-K 18.2 

 

Figure 6 wind tunnel flutter test 

5. CONCLUSION 

In the present work, the NACA boundary flutter equation 
was adopted for tapered composite thin plates, based on 
Akkerman, Tsai, and Hanh’s quasi-isotropic (QI) theory. 
Flutter velocities for the e-glass tapered fin are calculated 
and results obtained compared with numerical analysis 
(CFA) based on the P-k algorithm and experimentally 
obtained results in the wind tunnel at subsonic flow 
speeds in the range of 10 – 30 m/s. Based on the results 
obtained and the analysis performed the following can be 
concluded: 

1. Modified NACA boundary equation tends to 
underestimate flutter speeds by 15 -25 % when 
compared to experimentally obtained data 

2. Bearing in mind that flutter is a very complex 
phenomenon, this approach is advisable 
especially in the early stages of the design 
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(preliminary sizing) since it leads to 
conservative, hence safe designs. 

3. CFA approach based on the P-k algorithm 
renders results very close to experimentally 
obtained velocities, however, it requires tedious 
modeling and very often expensive software 
modules as well as extensive CPU resources and 
long computing time. 
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