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Contribution to Determining the Limits of the Efficiency of Target 
Tracking 

Zvonko Radosavljević 1) 
Dejan Ivković 1) 

The track quality measuring by the track probability existence in order to determine the limits of the possibility of effective 
target tracking is present in this paper. The most known algorithms for radar target tracking do not have tools to measure 
track quality. There is no valid procedure that guarantees the verification of the optimal algorithm for a specific application in 
targets tracking. Standard Integrated Track Splitting (ITS) is the efficient, fully automatic multi target tracking algorithm 
with initialization, maintenance and deletion tracks and is well-known single and multi target tracking algorithm, also 
proposed for the purpose of testing the limits of successful tracking. The paper allows the user to choose optimal parameter by 
the proposed parameters - thresholds of confirmed and false tracks in order to achieve better false track discrimination 
(FTD). In particular, a diagram of RMSE position errors is also given in the comparison of the proposed algorithm. 
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Introduction 
HE radar sensor provides measurements that can come 
from both the target and the background (surroundings) of 

the target. Target tracking algorithm must update a track 
quality measure in order to reject false track. Target 
measurements are present with some probability of detection 
PD<1 [1]. The recursive Bayesian techniques like Joint 
Probabilistic Data Association (JPDA) [2], Joint Integrated 
Probabilistic Data Association (JIPDA) [3], and Linear Joint 
Probabilistic Data Association (LJIPDA) [4] techniques are 
proposed as solutions for this problem. In general, the 
automatic tracking methodology performs three main 
procedures: 

- track initiation,  
- track maintenance and  
- track termination (or deletions). 

The later techniques address automatic tracking initiation 
and maintenance, along with the issues of multi target data 
association in clutter. Also, the discrimination process, when 
true tracks discriminate from false, termed the false track 
discrimination (FTD). The automatic track initiation and 
maintenance for a single maneuvering target in clutter was 
considered and an IPDA-IMM filter was proposed in [5]. 
Here we extend this approach to automatic track initiation and 
maintenance of multiple maneuvering targets in clutter. By 
consistently combining LMIPDA with an IMM filter, a 
linearly scalable LMIPDA-IMM algorithm (the number of 
operations linear in the number of tracks and measurements) 
is derived. Also, all target measurements often come from 
different targets. The total number of targets in the radar 
surveillance area is unknown. An event in which the track 
follows the target is called a “true” track, while an event in 
which the trace does not follow the target is called a ‘false’ 
track. In order to perform the track quality measures, the 

probability of the tracks are calculated by the use of the 
arrival measurements from the previous time interval, thus 
both true tracks and false tracks simultaneously exist. 

The multiple hypothesis tracking (MHT) [6] is one of the 
first used algorithms for multi and single target tracking in 
clutter. At the same time, the measurement-oriented MHT [7] 
forms new tracks and measurement allocation hypotheses 
centered on global origin of measurements. The MHT uses 
track score methods to discriminate between false and true 
tracks. The most known algorithms for radar target tracking 
do not have tools to measure track quality. Thus, there is no 
valid procedure that guarantees the user the verification of the 
optimal algorithm for a specific application in targets 
tracking. 

The probability of target existence obtained by utilizing the 
Markov chain propagation models and Bayes update is used as 
the track quality measure in Integrated Probabilistic Data 
Association (IPDA) of [8] and Integrated Track Splitting (ITS).  

The incorporation of target existence into a track while 
scan (TWS) radar target tracking where the resulting filter 
was termed the integrated mixture reduction data association 
(IMRDA) filter. Joint integrated probabilistic data association 
filter (JIPDAF) has the possible presence of multiple targets 
in a joint PDAF (JPDAF) [9] manner. The JPDAF algorithm 
allows for the event that a measurement may have originated 
from one of a number of many tracks or from clutter. In each 
time interval, JPDAF partitions tracks into clusters, where 
tracks in each cluster have common measurements. 

The single target Integrated Track Splitting (ITS) [10] and 
multitarget Joint ITS (JITS) and Linear Multitarget ITS 
(LMITS) [11] are generalizations of IPDA [11], JIPDA and 
LMIPDA respectively [12, 13]. They more precisely 
approximate the trajectory state by the Gaussian Mixture. The 
MHT, IPDA and ITS based algorithms are derived assuming 
linear trajectory propagation and linear measurement model. 

T 
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Some nonlinearity may be accommodated by measurement 
conversion [14] and by replacing the Kalman filter with the 
Extended Kalman Filter (EKF) [15, 16] or the Unscented 
Kalman Filter (UKF) [17] within MHT, IPDA and ITS [18]. 
Nonlinear measurements, e.g. Bearings Only, Time 
Difference of Arrival, Multistatic, have measurement 
likelihoods which are not Gaussian. Any distribution may be 
approximated by the Gaussian Mixture [19]. This is used by 
the Gaussian Mixture Measurement likelihood approximation 
ITS (GMM-ITS) [20], which approximates both the 
measurement likelihoods and the posterior trajectory state 
PDF by the Gaussian Mixtures. The GMM-ITS may be used 
in more difficult situations where the EKF and UKF do not 
deliver an adequate performance [21]. The particle filters are 
used for target tracking. However, the publications 
concentrate on trajectory estimates, without the track quality 
measure and false track discrimination. Here we propose the 
Integrated Particle Filter (IPF) solution for the target tracking 
in clutter. Data association is included to stochastically 
discriminate against clutter measurements, and the probability 
of target existence is recursively calculated for use in the false 
track discrimination [22].  

Rest of the paper is organized as follows. The problem 
statement and models are presented in Section II. Section III 
derives an iteration of the Integrated Track Splitting 
algorithm.  Section IV is dedicated to nonparametric data 
association, which is also proposed, followed by the results of 
simulations, presented from Section VI. Concluding remarks 
are given in Section V.  

Problem Statement 
We assume the target trajectory at any time with dynamic 

state estimation model. In this model the state varies with any 
time interval.  In the cluttered environment, the sensor will 
return measurements created by zero or more targets as well 
as zero or more clutter measurements at each scan. The target 
and the clutter measurements are referred to as the true and 
false measurements, respectively. Also, we use superscripts   
to denote tracks, and also targets followed by tracks.  

Targets model 
Consider the Markov Chain One model [23]. In this model, 

at any time interval, we calculate the propagation and then a 
posteriori the probability of target existence   , for each 

target. In this model, we assume that the target exists and 
when it does it can be detected with a given probability of 
detection PD, or it may not exist [19]. The situation in which 
the target is maneuvering, the motion can be changed at any 
time interval.  

For the linear system, the target trajectory state zn
kx R   at 

time interval k, can be calculated by:  

 1( ) ( )k k k k kx F x         (1) 

where ( )kF   is the propagation matrix, and the process  

noise k  is a zero mean and white Gaussian sequence with 

covariance kQ . At each time interval k, the radar returns a 
number of the targets and clutter measurements.  

Measurements models 

If a measurement ikz ,  is generated by target   we assume 

that the measurement a priori probability density function 

(PDF) ,k ip  is known or can be estimated. Measurements may 
originate from the targets as well as from other objects.  

The clutter measurements follow the Poisson distribution. 
We assume that the uniform intensity of the Poisson process 
at point y in the measurement space, termed here the clutter 
measurement density and denoted by ( )y  is a priori known, 
or can be estimated using the sensor measurements.  

At time k, one sensor delivers a set of measurements 

denoted by , 1{ } kM
k k j jz z  . Denoted by kZ ,  the sequence of 

selected measurement sets up to including time k, 
1

,1 , ,{ , ,..., ,..., }k
K k

k k j k MZ Z z z z .  

Sensors model 
We assume the linear sensor in Cartesian coordinates, with 

an additive measurement noise covariance. At each scan the 
sensor returns a random number of the random target 
measurements and a random number of the random clutter 
measurements.  

The measurement of the existing and detectable target is 
taken with a probability of detection PD and is given by the 
following equation [24]:  

 k k ky Hx w     (2) 

where H is measurements matrix and the measurements noise 

kw  is zero mean and white Gaussian sequence with 

covariance matrix R [25]. 

Integrated Track Splitting algorithm 
The Integrated Track Splitting algorithm (ITS) approach is 

a multi-scan tracking algorithm. In the ITS approach each 
track is represented by a set of components. Also, each 
component corresponds to a unique measurement history over 
multi-scan time horizon. We assume statistics for each 
component with the probability of component existence and 
the component state estimate probability density function 
(PDF), which is often Gaussian. The component existence 
state probability implies that the target component tracking 
exists and the measurement history of that component consists 
of the target detections.  

The ITS and its derivatives (joint ITS (JITS) and linear 
multi-target ITS (LMITS) significantly reduce the numerical 
complexity of the standard ITS algorithm. 

ITS filter derivations  
The three standard steps of ITS algorithms are performed 

during the one iteration of algorithm:  

- prediction step, 
- measurements selection step and 
- update step. 

Prediction step  
Each component state is propagated by the Kalman filter 

prediction with the probability density function (PDF) 
1

1 1( , , )k
k kp x c Z 
  . Probability of each component is given 

by the following:  

 ),(),( 11
11


  k

k
k

k
c
k ZcPZcP   (3) 

Target existence probability is propagated by the: 
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 1
1 ( )k

kk k P Z  
    (4) 

At each time interval, the trajectory state PDF of targets is 
given by the Gauss distribution function [26]: 

 1 1( , ) [ ; , ]k k k k kp x x N x Fx Q   (5) 

Track state PDF is the Gauss sum:   
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where predicted probability of each component is given by 
the: 

 1 1
1 1( , ) ( , )c k k

k k kP c Z P c Z   
   , 1,..., kc C  (7) 

Track prediction PDF is the Gauss sum of a product of 
component probability and a priori PDF of each track 
component by the [27]: 
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Then we have tracks state PDF 1( , )k
k kp x Z  , given by 

the following equation: 
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A posteriori track state PDF is given by the product of 
track state prediction PDF and total track probability by the 
equation: 

 ( , ) ( ) ( , )k k k
k k k k kp x Z P Z p x Z    (14) 

Target existence probability is: 
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By the use of total probability theorem, we have a 
posteriori track state estimate PDF: 
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Target measurements overall track a priori PDF: 
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where R  is measurements noise covariance. Thus, the target 
measurements a priori PDF for each component is given by 
the:  

 1 ˆ( , , ) [ ; , ]k c c
k k k k kp y c Z N y y S    (18) 

where c
kz  is target measurement arrived in time interval k and 

selected by component c.  

 
1

ˆ ˆc c
k k ky Hx    (19) 

 
1

c c T
k kk kS HP H R   (20) 

Measurements selection step 
Each track component has a PDF given by the [28]: 
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where kN  is a total number of  elements from selection 

measurements set kz , i
kz  i-th element of set, kC  is total 

number of component from k-th time interval.  
Otherwise, PDF of measurements, selected from the 

components is given by the equation: 
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where GP  indicates new measurements inside the validation 
gate. Next, a priori probability of the component is:  
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Update step  
Components estimate state PDF is given by the: 
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At the same time, a posteriori track state estimate PDF is 
given by: 
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Finally, a posteriori track existence probability, for the next 
iteration is: 

 1

1
( )

1 (1 )
k k kk

kk k
k k k

P Z
 

   



 

 
 (26) 

Target measurements likelihood ratio: 
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where the probability of each component is given by the:  
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Nonparametric Linear Multi Target ITS data 
association 

In nonparametric target tracking algorithm, the clutter 

measurement density ( )c
i k  is estimated using the 

measurements in the current scan. Since each component has 
a single measurement assigned to it at each scan (or the null 
measurement to represent the missed target detection case), 
the prediction and update steps for each component can be 
implemented using conventional filtering techniques. 

In case of Linear multi targets (LM) ITS the selection area 
is the selection gate of the individual track. The clutter 
measurement density is calculated separately for each 
selection area defined above. Clutter measurement density is 
estimated as: 

 
ˆ

( )c k
i

k

n
k

V
   (29) 

where ˆkn  is the mean number of clutter measurements within 
the selection area, and Vk is the volume of the selection area. 
Nonparametric Linear multi-target (LM) approach is a multi-
target tracking technique which reduces requests for 
numerical resources by eliminating joint ‘measurements to 
tracks’ association. It also strongly reduces algorithmic 
complexity. When we update the track  , all possible 
detections of targets being followed by other tracks are treated 
as ‘unwanted’ measurements.  

In other words, the LM method modulates the clutter 

measurement density ,k i  of each selected measurement ,k iz  
of track   by considering possible contribution of other 
tracks. Probability density function of target state estimate is 
then updated using a single tracking filter. In this case we 

have a priori probability that the ith measurement is originated 
by the jth target, by following equation:  
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The modified clutter density for track  at measurement 

,k jz  is: 
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where T  is the total number of tracks. In order to find the 
data association probabilities for target  , we used single-

target formulae with ,k j
  replacing ,k j . In case that the 

targets are apart , ,k j k j
    for all i and j, and LM ITS 

becomes identical to IPF. Measurement likelihood ratio for 
track   at time k is given by the following equation: 
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After this step, we can calculate a posteriori state estimate 
probability of measurement j, by the following equations: 
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Results of simulations 
The experiments were performed and evaluated by the 

experimental scenarios, in which the clutter density and 
probability of detection changes. The scenario was used with 

two clutter density ( 5 22 10 [1/ m ]    and 4 210 [1/ m ]  ,) 
in Fig.1 and Fig.2, respectively. Two probabilities of 
detection ( 0.8DP   and 0.6DP  ) also combine with each 
other.  The main goal of the experiment is to determine the 
limit of effective tracking, i.e. target detection probabilities 
when the CTT diagram cannot reach the value 1. 

In each scenario (Fig. 1), there are two targets (red circles), 
which move in a straight line at a constant speed. Maximum 
permitted speed of movement (velocity) is vmax 25 [m/s]. 
Dimensions of terrain surveillance are x=1000 [m] and 
y=1000 [m]. Clutter (blue dots) has uniform distribution. The 
sampling period of radar sensor is T=1s. Duration of the 
scenario is 60 scans. The following definitions of true and 
false tracks are used: 

- Each initiated track is false with respect to all existing 
targets. 

- False track becomes a true track with respect to a target 
when the state estimate is close to the true target state 
estimate.  

- Track is true with respect to a target remaining true for as 
long as it selects the previous target detections. 
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Figure 1. Simulation scenario. ( 5 22*10 [1/ m ]  ), blue dot-noise 
measurements, red circle - targets measurements   

 

Figure 2. Simulation scenario ( 4 210 [1 / m ]  ), blue dot-noise measurements, 
red circle - target trajectory 

In all simulation scenarios, the linear coordinates are 
assumed, with additive measurement noise covariance of  
R =25I2. In this formula, the I2 denotes the two-dimensional 
identity matrix. We assumed that each target has the 
probability of detection PD=0.8. A number of clutter 
measurements is present in each time interval. All tracks are 
initiated from any pair of measurements [21] which satisfies 
the maximum speed criterion and are not selected by an 
existing track. In case that the target is not followed by a 
track, new tracks are initiated using its detections.  

In each scan, a number of false tracks are initiated. The 
false track discrimination procedure uses the track quality 
measure provided by the tracker to eliminate tracks with 
“false” quality, as these are assumed to be tracks, and confirm 
the “high” quality tracks. When the trajectory state estimates 
converge, the tracks are merged. In the experiments, we have 
two possible events, with relations on the probability of target 
existence: 

A) If the probability rises above a confirmation threshold, 
the track is confirmed and   

B) If the probability falls below the termination threshold, 
the track is terminated.  

We used a criterion to compare false track discrimination. 

If confirmed false tracks statistics is approximately equal 
across all tracks, the success rate of confirmed true tracks 
allows us to compare false track discrimination performance.  

All experiments perform with 100 Monte Carlo (MC) runs 
over 2-dimensional test scenario.  The system input is modeled 
as follows: [ ]X x x y y    is a vector state, ,x y are the 

Cartesian coordinates of the target position, ,x y   are the 
appropriate velocities. Transition matrix (FCV - constant 
velocity model and process noise matrix are given by:  
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Figure 3. Confirmed true tracks diagram 

 

Figure 4. Overall RMSE of position diagram 

The diagram confirmed true tracks (CTT) in Fig.3 shows 
that the probability of target detection PD=0.6 is the limit of 
the possibility of effective target tracking at a clutter density 
of 10e-4 [1/m2] and higher. The position RMSE error, also 
increases at the same values (Fig.4). At the same time, false 
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true tracks diagram (Fig.5) strongly deviates from the 
standard values before PD=0.6, which confirms the previous 
claims.  

Table 1 shows the comparative values of some important 
system parameters: 

- CPU time for one recursion  
- Identification number (ID) for all confirmed tracks 
- Total number of all false tracks 
- Track confirmation probability  

It can be seen from Table 1. that there is a rapid growth of 
the total number of false track for this probability of target 
detection (Table 1). CPU time increases mainly due to a high 
density of clutter.  

 

Figure 5. Confirmed false tracks diagram  

Table 1. System parameters 

 Execut. 
time[s] 

Confirm 
tr. ID 

False  
tr.sum 

Confirm. 
prob. 

PD = 0.8 
ρ =1e-4 

7.74 2 14 0.998 

PD = 0.8 
ρ =2e-5 

0.89 5 4 0.998 

PD = 0.6 
ρ =1e-4 

10.75 30 100 0.996 

PD = 0.6 
ρ =2e-5 

1.21 27 47 0.997 

Conclusion 
In this paper we present the examination of target tracking 

possibilities by the example of an efficient multi-scan 
algorithm. In case with variable parameters (clutter 
measurements and probability of target detection), the limit of 
probability of target detection is determined, up to which it 
makes sense to continue tracking the target.  

The good performance of this approach primarily provides 
the reduction in numerical complexity. Other benefits include 
a much simpler algorithm structure, which translates into 
faster development software implementation. Whole target 
tracking procedure is performed and tested by the extensive 
simulation. Simulations showed the reader how to choose the 
optimal algorithm for known system parameters. The 
justification of the further improved procedure for rejecting 
false clues was also confirmed. 
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Doprinos određivanju granica efikasnog praćenja ciljeva 

U ovom radu je prikazano merenje kvaliteta traga uvođenjem verovatnoće postojanja traga u cilju određivanja granica 
mogućnosti efikasnogpraćenja ciljeva. Najpoznatiji algoritmi za radarsko praćenje ciljeva nemaju alate za merenje 
kvalitetatraga. Ne postoji validna procedura koja garantuje verifikaciju optimalnog algoritma za konkretnu primenu u 
praćenju ciljeva. Standardni algoritam Integrisanog razdvajanja tragova (Integrated Track Splitting-ITS) je efikasan, 
potpuno automatski algoritam za praćenje više ciljeva sa inicijalizacijom, održavanjem i brisanjem tragova, dobro je poznat 
kao algoritam za praćenje jednog i više ciljeva, i predložen u svrhu testiranja granica uspešnog praćenja. Rad omogućava 
korisniku izbor optimalnog parametra po predloženim parametrima – pragovima potvrđenih i lažnih tragova kako bi se 
postigla bolja diskriminacija lažnih tragova (False Track Discrimination -FTD). Posebno je dat dijagram srednje kvadratne 
greške pozicije cilja  (Root mean Square Error -RMSE ) u svrhu verifikacije kvaliteta predloženogalgoritma. 

Ključne reči: Algoritam integalnog razdvajanja tragova, algortiam pridruživanja podataka po verovanoći, praćenje više 
ciljeva. 

 

 


