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Free Transverse Vibration Analysis of a Rayleigh Double-Beam 
System With a Keer Middle Layer Subjected to Compressive Axial 
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Free transverse vibration of a Rayleigh double-beam system with the effect of compressive axial load with a Keer layer in-
between is studied in this paper. It is assumed that the two beams of the system are continuously joined by the Keer layer. The 
equations of the motion for this system are described by a set of three homogenous differential equations. The classic 
Bernoulli-Fourier method was used for solving this system of differential equations. In the research found in literature on the 
subject of the Keer model, the most common methods used are the theories of Timoshenko and Euler-Bernoulli. It is for that 
exact reason that the research goal of this paper is determining analytical and numerical characteristics (natural frequency, 
associated amplitude ratio) of the considered model by applying the Rayleigh theory. What is also researched is the effect of 
elastic in-between layer on system’s frequency and amplitudes. The numerical analysis of the system was performed using 
software tools. The numerical results obtained are shown in the form of a plot diagram. Presented numerical results in this 
paper confirm those obtained in the literature. 
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Introductin 
 large number of mechanical systems is of a complex 
structure composed of two or more basic mechanical 

systems, whose dynamic behavior is conditioned by their 
mutual interaction. Systems connected by an elastic layer 
compose a group of such mechanical structures, and they have 
a wide appliance in mechanical and civil industry. 
Oscillations and stability of such systems are the subject of 
scientific and practical work spanning several decades. 

Oniszczuk [1, 2] analyzed the problem of free and forced 
oscillations of two elastically bound Euler-Bernoulli carriers. 
The paper determines analytical solutions of eigen frequencies 
for amplitude functions and oscillation forms. In the paper by 
Zhang et al. [3], on the basis of the Bernoulli–Euler beam 
theory, the properties of free transverse vibration and buckling 
of a double beam system under compressive axial loading are 
investigated. It is found that the effects of compressive axial 
loading on the natural frequencies of the system and 
associated amplitude ratios are more significant with the 
increase of axial compression. Also, the effects of 
compressive axial loading on the higher natural frequency and 
the amplitude ratios are significantly dependent on the axial 
compression ratio whereas that on the lower natural frequency 
is almost independent of it. It is concluded that the critical 
buckling load gets smaller with the increase of the ratio of the 
axial load F2 to F1 and the diminishment of the stiffness 
modulus K of the Winkler elastic layer. 

In the paper by Stojanovic et al. [4], free transverse vibration 
and buckling of a double-beam continuously joined by a Winkler 
elastic layer under compressive axial loading with the influence 
of rotary inertia and shear are considered. The motion of the 
system is described by a homogeneous set of two partial 
differential equations, which is solved by using the classical 
Bernoulli–Fourier method. A structural model of a layered-beam 
system composed of two parallel Euler beams of uniform 
properties axially loaded with a flexible Winkler elastic layer in-
between was used to study all the desired effects. It is determined 
that the influence of rotary inertia and shear on natural 
frequencies is manifested by the reduction of their values. In 
addition, it is found that the rotary inertia does not influence the 
critical buckling load model of a layered-beam system composed 
of two parallel Rayleigh beams, yet when the model of a layered-
beam system composed of two parallel Timoshenko beams is 
considered, the influence of transverse shear causes a decrease in 
the critical buckling load. 

The paper by Kozic et al. [5], an analytical theory to define 
the dynamic characteristics of the elastically connected 
parallel-beams under compressive axial loading. It is assumed 
that the two parallel-beams of the system are simply 
supported and continuously joined by a Kerr-type three 
parameter model. The motion of the system is described by a 
set of three homogeneous partial differential equations, which 
are solved by using the classical Bernoulli–Fourier method. 
The natural frequencies, associated amplitude ratio and the 
critical buckling load for complex system are determined. The 
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model is tested numerically, and the results were compared 
with other numerical models. 

In the paper by Mohammadi and Nasirshoaibi [6], the 
forced transverse vibrations of an elastically connected simply 
supported double-beam system with a Pasternak middle layer 
subjected to compressive axial load are investigated using the 
Rayleigh beam theory. The properties of the forced transverse 
vibrations of the system are found to be significantly 
dependent on the compressive axial load and shear foundation 
modulus of the Pasternak layer. The axial compression and 
shear foundation modulus of the Pasternak layer affects the 
magnitudes of the steady-state vibration amplitudes of the 
beam. Also, the ratios (φ1) and (φ2) decrease with increasing 
of the shear foundation modulus of the Pasternak layer Go. 
This research can be used in an optimal design of a dynamic 
rotation absorber. The paper by Younesian et al. [7] represents 
a comprehensive review on different theoretical elastic and 
viscoelastic foundation models in oscillatory systems, 
different models of structure on foundation, most common 
solution methods, as well as practical implementations. 

This article is organized as follows. In Section 2 a 
mathematical model of a double beam system with the Keer 
layer in between was formed using the Rayleigh beam theory 
[8, 9]. In Section 3 we solved formed differential equations in 
previous section and obtained analytical expressions of 
natural frequency and associated amplitude ratio. In Section 4, 
the critical axial buckling load of two elastically connected 
beams will be determined for the case where the physical 
properties and cross-sections of the two beams are identical. 
In Section 5, the numerical analysis of the system was 
performed using Matlab R2019a. Finally, in section 6, the 
conclusions are drawn, briefly. 

Mathematical model  
Fig.1 shows a double-beam system with the Keer layer [10] 

in-between with the length of l subjected to axial 
compressions F1 and F2. The model assumes that the axial 
forces F1 and F2 are not changed with time, the two beams 
have the same effective material constants, the rotary inertia 
and shear deformation are negligible, the behavior of the 
beam material is linear elastic and the cross-section is rigid 
and constant throughout the length of the beam and has one 
plane of symmetry. 

 
Figure 1. Double-beam dynamic system with a Kerr middle layer 

The equations of free transverse vibration of a Rayleigh 
double-beam system with the effect of compressive axial load 
with a Kerr layer in-between have the following form: 

 

 

4 4 4
1 1 1

1 1 12 2 2 4

2
1

1 1 1 32
0

w w w
A I EI

t x t x
w

F K w w
x

     
   
   


 (1) 

  
2

3
1 2 3 1 1 2 22

0
w

G K K w K w K w
x

     


 (2) 

 

 

4 4 4
2 2 2

2 2 22 2 2 4

2
2

2 2 3 22
0

w w w
A I EI

t x t x
w

F K w w
x

     
   
   


 (3) 

where ρ is the mass density, A is the cross-sectional area of 
the beam, Ix is the moment of inertia of the beam cross-section 
and E Young's  modules. 

Eliminating w3 from equations (1) and (3), one can obtain 
two sixth order coupled governing differential equations: 
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The initial conditions in general form and boundary 
conditions for simply supported beams of the same length are 
assumed as follows: 

        
.

0 0,0 , ,0 ,ii i iw x w x w x x   (6) 

        '' ''0, 0, , , , 1,2.i i i iw t w t w l t w l t i     (7) 

Solution of the problem 
Assuming time harmonic motion and using separation of 

variables, the solutions to Eqs. (3) and (4) with the governing 
boundary conditions can be written in the form: 
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where Tin(t) denotes the unknown functions, and Xn(x) is the 
known mode shape function which is defined as: 
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Substitution of Eq. (8) into Eqs. (3), (4) yields ordinary 
differential equations for the Rayleigh double-beam system. 
Therefore: 
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The solutions of equations (10) and (11) can be obtained 
by: 

 1 2, .n ni t i t
n n n nT C e T D e    (12) 

where ωn denotes the natural frequency of the system. 
Substituting equation (12) into equations (10) and (11), we 
obtained: 

  2
1 1 1 0n n nb a D H D    (13) 

  2
2 2 2 0n n nb a D H C    (14) 

When the determinant of the coefficients in Eqs. (13), (14) 
vanishes, non-trivial solutions for the constants Cn and Dn can 
be obtained, which yields the following frequency 
(characteristic) equation: 
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Then from the characteristic equation (15), we obtained 
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For each of the natural frequencies, the associated 
amplitude ratio of vibration modes of the 
two beams is given by: 
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From the above analysis we know that solutions (12) can 
be rewritten as: 
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or introducing the trigonometric functions we get: 
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where Ani and Bni  (i=1,2) are unknown constants which are 
determined from initial conditions [3, 5]. 

     1
1 20 2 10

01 2 1

2
sin ,

l
n

n n n
n n n

A v v k x dx
l

 
  

 
     (23) 

      2
2 20 1 10

02 1 2

2
sin ,

l
n

n n n
n n n

A v v k x dx
l

 
  

 
     (24) 

      1
1 20 2 10

02 1

2
sin ,

l
n

n n n
n n

B v v k x dx
l

 
 

 
   (25) 

      2
2 20 1 10

01 2

2
sin ,

l
n

n n n
n n

B v v k x dx
l

 
 

 
   (26) 

Finally, the free transverse vibrations of an elastically 
connected double beam system described by the following 
equations: 
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Numerical results  
In the numerical experiment, a model of two beams of 

identical geometrical and physical properties was used [1, 3]: 
A=0.05 m2, E=1010 Nm-2, l=10m, I=0.0004 m4, K0=200000 
Nm-2, G=(0,0.5,1)K0, ρ=2000 kgm-3. 

 

Figure 4. Effect of the axial load ratio ζ on the lower natural frequency ωn1 
for K=K0=K1=K2, (F1=0) 
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Figure 5. Effect of the axial load ratio ζ on the lower natural frequency ωn1 
for K=K0=K1=K2, (F1=0.4 Fb

cr) 

 

Figure 6. Effect of the axial load ratio ζ on the lower natural frequency ωn1 
for K=K0=K1=K2, (F1=0.8 Fb

cr) 

 

Figure 7. Effect of the axial load ratio ζ on the higher natural frequency ωn2 
for K=K0=K1=K2, (F1=0) 

 

Figure 8. Effect of the axial load ratio ζ on the higher natural frequency ωn2 
for K=K0=K1=K2, (F1=0.4 Fb

cr) 

 

Figure 9. Effect of the axial load ratio ζ on the higher natural frequency ωn2 
for K=K0=K1=K2, (F1=0.8 Fb

cr) 

From Figures 4-9, it is seen that the increase of 
compressive axial load seriatim F1 causes the reduction of the 
natural frequency. We also notice that the increase of the 
shear layer G causes the reduction of the higher natural 
frequency ωn2 and increasing of the lower natural frequency 
ωn1.  

 
Figure 10. Effect of the axial load ratio ζ on the amplitude ratio ωn1 for 
K=K0=K1=K2, (F1=0) 

 

Figure 11. Effect of the axial load ratio ζ on the amplitude ratio ωn1 for 
K=K0=K1=K2, (F1=0.4 Fb

cr) 

 

Figure 12. Effect of the axial load ratio ζ on the amplitude ratio ωn1 for 
K=K0=K1=K2, (F1=0.8 Fb

cr) 

 

Figure 13. Effect of the axial load ratio ζ on the amplitude ratio ωn2 for 
K=K0=K1=K2, (F1=0) 
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Figure 14. Effect of the axial load ratio ζ on the amplitude ratio ωn2 for 
K=K0=K1=K2, (F1=0.4 Fb

cr) 

 

Figure 15. Effect of the axial load ratio ζ on the amplitude ratio ωn2 for 
K=K0=K1=K2, (F1=0.8 Fb

cr) 

From Figures 10-15 it is seen that the amplitude ratios αn1 

and αn2 are influenced by the shear layer constant G and by the 
axial load ratio ζ. Amplitude ratios αn1 and αn2 are becoming 
higher with the increase in the shear layer constant G, but 
smaller with the increase in compressive axial load ratio ζ. 

Conclusion  
Based on the Rayleigh beam theory, the free transverse 

vibration of an elastically connected simply supported 
Rayleigh double-beam, with the Kerr middle layer under 
compressive axial loading for one case of particular excitation 
loading are studied in this paper.  

Using the classical Bernoulli-Fourier method, the solutions of 
differential equations of motion for double-beam system are 
formulated. The explicit expressions are presented for natural 
frequency, associated amplitude ratio of the two beams. 

From Figures 4-9 it can be concluded that the lower natural 
frequency ωn1 is more sensitive than higher natural frequency 
ωn2 to the compressive axial loading. We also notice that the 
increase of the shear layer G causes the reduction of the 
higher natural frequency ωn2 and increasing of the lower 
natural frequency ωn1. 

From Figures 10-15 it can be concluded that the amplitude ratios 
αn1 and αn2 are influenced by the shear layer constant G and by the 
axial load ratio ζ. The amplitude ratios αn1 and αn2 are becoming 
smaller with the increase in the compressive axial load ratio ζ, 
but increase with the increase in shear layer constant G. 

Future research could include the improvement of the 
considered model. A model of two connected parallel 
Rayleigh beams with the Kerr layer in between including 
inerter will be examined. 
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Analiza slobodnih transverzalnih oscilacija dva elastično povezana 
nosača slojem Keerovog tipa izloženog dejstvu aksijalnih  

pritisnih sila 

U ovom radu biće prikazana analiza slobodnih transverzalnih oscilacija Rayleigh sistema od dve grede koje su izložene 
dejstvu aksijalnih pritisnih sila, pri čemu je uzeto da je Keer sloj u sredini. Pretpostavlja se da su dve grede koje sačinjavaju 
sistem kontinualno spojene Keerovim slojem. Jednačine kretanja ovog sistema su opisane trima homogenim diferencijalnim 
jednačinama. Uobičajeni metod Bernoulli-Fourier je korišćen za rešavanje ovog sistema diferencijalnih jednačina. U 
dosadašnjoj literature iz Kerrovog modela, najčešće korišćene metode su Timoshenko i Euler-Bernoulli. Iz tog razloga je cilj 
ovog rada određivanje analitičkih i numeričkih karakteristika (prirodna frekvencija, odnos amplituda) razmatranog modela, 
koristeći Rayleigh teoriju. Ono što je takođe razmatrano je uticaj elastičnog središnjeg sloja na amplitudu i frekvencije 
sistema. Numerička analiza sistema je izvršena korišćenjem softverskih alata. Numerički rezultati su prikazani pomoću 
grafika, i potvrđuju rezultate iz literature. 

Ključne reči: prirodne frekvencije, Rayleigh teorija, aksijalne pritisne sile, Keerov sloj. 
 


