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The advanced iterative learning control algorithm for 
rehabilitation exoskeletons 

Mihailo Lazarević 1) 
Nikola Živković 2) 

In this paper an advanced iterative learning control algorithm for rehabilitation exoskeletons is proposed. A simplified 
biomechanical model is used as the control object to verify control algorithm feasibility. The control design is proposed as two 
level controller consisting of inner and outer loop. In the inner loop the feedback linearization is applied to cancel out the 
model nonlinearities. In the outer loop the advanced iterative learning control algorithm of sgnPDD2 type is applied as a feed-
forward controller and classical PD controller as a feedback controller. Uncertainties are added in order to examine the 
controller design robustness. Numerical simulation is carried out. 
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Introduction
XOSKELETON as a real-time interaction with the 
wearer’s intelligent robot, in recent years, becomes a hot 

topic mouth class research in the field of robotics.  The term 
‘exoskeleton’ was used in biology referring to the chitinous or 
calcified external skeleton used by numerous animal taxa for 
structural support and defense against predators [1, 2]. 

Wearable exoskeleton outside the body, combined with the 
organic body, plays a role in the protection and support. By 
wearing an exoskeleton robot, it is possible to expand the 
wearer’s athletic ability, increase muscle endurance, and 
enable the wearer to complete tasks that one cannot perform 
under natural conditions as well as help for recovering of lost 
human motor functions. Based on the above advantages, the 
exoskeleton robot in military medical care and rehabilitation 
has broad application prospects [2]. 

In the military field, the exoskeleton is very attractive 
because it can effectively improve the individual combat 
capability. For example, HULC is an exoskeleton robot that 
can greatly increase the soldier’s ability to carry weight, 
making it easy for soldiers to carry heavy loads of 90 kg.  

Now, the exoskeletons are generally regarded as a 
technology that extends, complements, substitutes or 
enhances human function and capability or empowers the 
human limb where it is worn [3]. Unlike other robots, the 
operator of exoskeletons is a human who needs to make 
decisions [4] and perform tasks with exoskeletons. 

Stroke survivors are faced with some degree of limb 
impairment, depending on the place in brain, structure and 
size of caused damage. An increasing number of evidence 
suggests that brain of a patient who survived stroke has 
increased capacity for plastic change and thus some motor 
functions can be fully or partially recovered. Rehabilitative 
training plays an important role in recovery of lost motor 
functions [5]. In order to enhance a therapy delivered by 

therapists, the use of robotics emerged as an aid in the  
rehabilitation process [6]. In [7] and [8] it is shown that the 
robot-aided training, especially in the upper limbs, has 
positive effects in patient stroke rehabilitation. Also, it has 
been observed that robot-assisted rehabilitation has potential 
benefits to patients even several years after the stroke. 

Rehabilitative robotics of the upper limbs can be 
differentiated into two types – rehabilitative robots with one 
point of contact (end-effector robots) and rehabilitative robots 
with multiple points of contact (exoskeletons). End-effector 
robot supports patients arm in one point of contact, usually 
patients hand or forearm. End-effector robot joints movement 
does not coincide with the movement of the patients arm. 
These drawbacks with the end-effector robots influenced the 
research of exoskeleton rehabilitation robots. Exoskeletons 
mitigate important flaws of the end-effector robots mentioned 
above [9]. Rehabilitation robots can be developed to assist 
rehabilitation in individuals with stroke. 

Considering the repetitive nature of the patient`s 
rehabilitation process, Iterative Learning Control (ILC) 
algorithms emerged as suitable for this application. In the last 
three decades, (ILC) has been extensively studied. ILC has 
become one of the most active research and study topic in the 
field of control theory and its applications [10], [11], [12], 
[13], [14]. 

ILC is an intelligent control method for systems that 
perform tasks repetitively over a finite time interval. This 
method is similar to how humans learn – performing a certain 
task and observing the outcome. The next performance of the 
same task will be adjusted accordingly to the previously 
observed outcome. ILC algorithm constructs current system 
input by applying predetermined mathematical law on a 
previous system output which was stored in the memory [11]. 
Loosely said ILC is using past experience to improve current 
system behaviour. Basic ILC principle is illustrated in Fig.1. 
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Figure 1. Basic ILC scheme 

As it has been already said, rehabilitation training is a kind 
of repetitive training. Patient’s motor function will improve 
with an increase in the number of training while the auxiliary 
level of robot and electrical stimulation will be reduced. In 
ILC the control input is directly updated between trials and it 
is this feature that makes it suitable for exoskeleton robots 
(i.e. robotic assisted stroke rehabilitation) [15].  

In this paper, an advanced robust open-closed iterative 
learning control for exoskeleton rehabilitation robots is 
presented. 

Control object model 
In order to validate the proposed control algorithm 

feasibility, the control object is mathematically modelled 
using the Rodriguez approach. Human upper limb and 
supporting exoskeleton are adopted as the control object in 
this paper. The existing complex system is simplified to a 
biomechanical model consisting of 3DOF robot arm with 
truncated cone shaped links (Fig.2). 

Structure of this biomechanical model is a sequence of two 
rigid bodies – links, interconnected with joints where the first 
link has two degrees of freedom and the second link has one 
degree of freedom. In order to apply the Rodriguez approach 
the first joint is decomposed from 2DOF to two links 
interconnected with 1DOF joints. The first link is set to be 
fictive, i.e. mass and length of this link is zero. Now, open 
chain system of rigid bodies consists of three bodies with 
joints between them starting from inertial reference frame 

 as shown in Figure . The values , 1,2,3iq i   are 
generalized coordinates that define a configuration of the 
mechanical model. Each link is associated with local 
reference frame C . 

 

Figure 2. a)-Simplified model of the exoskeleton-human arm, b) kinematic 
scheme after joint decomposition 

At initial time reference configuration is set by setting 
corresponding axes of reference frames parallel to the 
Cartesian inertial reference frame Oxyz . This convention 
enables using the Rodriguez approach for obtaining dynamic 
equations of motion. 

Further, parameters , 1i i i     are defined, which 
denote whether a joint is prismatic or cylindrical. The 
geometry of the model is defined by the unit vectors ie


 and 

the position vectors iρ


 and iiρ


 expressed in local coordinate 

frames i i i iC   . Origins of these local coordinate frames are 

attached to the centre of mass of each link i  [16], [17].  
Dynamic equations of motion for the robot system can be 

obtained by applying the Lagrange equations of the second 
kind in the covariant form as follows: 

   ,

1 1 1

n n n

a q q q q Q      
    

       (1) 

where the coefficients     are the covariant 

coordinates of the basic metric tensor and present the 
Christoffel symbols of the first kind. Coefficients of the 
metric tensor are defined as, 
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where    i
k

k
k
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. The Christoffel 

symbols are: 
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2
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The generalized forces can be presented as: 

     a g v c f
γ γ γ γ γ γQ Q Q Q Q Q  (6) 

Wherein , , ,a g v c
γ γ γ γQ Q Q Q  and f

γQ  denote the generalized 

control, gravitational, viscous, spring and friction forces, 
respectively. 

Biomechanical model dynamics can be written in compact 
matrix form: 

    
¨ ¨

, ,a K a
    
        
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where  a q  is the inertia matrix,  ,K q q  is matrix that 

includes centrifugal and the Coriolis effects, gQ  is vector of 

gravitational forces and uQ  is vector of generalized control 
forces [18]. It is assumed that viscous, spring and friction 
forces are equal to zero in our case. 
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Control design 
The obtained mathematical model is multi-input multi-

output, nonlinear, time-varying system. Control law design in 
this case consists of inner and outer control loop. Inner loop is 
Feedback linearizing control law and outer loop is Iterative 
Learning Control algorithm with classical PD feedback. 

Feedback Linearization 
Feedback linearization or Computed torque control 

algorithm is introduced in order to linearize nonlinear 
biomechanical model so the linear control laws can be applied 
in the outer loop. This linearization is exact and it differs from 
the Jacobian linearization which is linear approximation of 
dynamics of given system. Feedback linearization can be 
applied in general form [19], but here the concept of 
Computed torque is applied out of the convenience. Given the 
equations of motion (7), 

  
¨

,a
 
  
 
 

uq q c q q Q


 (8) 

where input vector uQ  can be chosen as: 

   ,a
 
  
 
 

uQ q u c q q


 (9) 

Where u  is new input vector. A new linear decoupled 
system is obtained in form of double integrator: 

 q u  (10) 

Now u  can be chosen conveniently as the linear control 
law which is going to close the outer control loop. 

Open-closed loop iterative learning control  
After closing the inner loop control algorithm in the outer 

loop an open-closed loop ILC algorithm is applied which 
consists of feed-forward sgnPDD2 type control law and 
feedback PD type control law as represented in the block 
diagram (Fig.3). 

 

Figure 3. Block diagram of an ILC sgnPDD2/PD type control algorithm 

Control law can be written as: 
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where       k d ke t y t y t  is trajectory tracking error and 

 dy t  is desired output trajectory. PK  and DK  are closed-

loop positive definite diagonal learning matrices. Function 
sgn(.) is sign function defined as: 

  
1, 0

sgn 0, 0
1, 0

x
x x

x

  
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 (12) 

and value k  in index denotes the iteration number. 
Advantages of the proposed approach in calculating open- 
loop ILC law are: the controller needs only addition and 
subtraction as well as the controller needs only to store the 
values of corresponding variables, thus dramatically reduces 
the demanding for storage size. 

', k kM M  and ''
kM  are the functions of , ,k k kse se se  , 

respectively [20]. These sums are defined as: 

      
0 0 0

, ,
T T T

k k kse se se    k k ke t e t e t   (13) 

Also, to reduce the computation and storage size for the 

proposed method, parameters, ', k kM M  and ''
kM  can be 

adapted as a simple step functions of previously defined error 
sums (13). This is shown in Fig.4. 

 

Figure 4. Step function Mk. Threshold values m1, m2, m3, s1, s2, s3 initially are 
chosen arbitrarily and then tuned. 

For example if sum kse  has value between 1S  and 2S , 

parameter kM  is designated with value 2m . Parameters kM   

and ''
kM  are chosen analogously. Step function threshold 

values are chosen purely by trial and error and currently no 
specific recommendation can be given for the initial selection. 

Simulation results and discussion 
In this section the numerical simulation in MATLAB is 

carried out in order to verify control law error convergence. A 
method used to solve ordinary differential equations is the 
Runge-Kutta with fixed step. Simplified exoskeleton/ human 
arm model with 3DOF is used as a simulation object with 
following parameters 1 0 kg,  m   2 31.4 kg,  1.1 kg, m m   

1 0 m, l   2 0.369 m,  l   3 0.36 ml   where the first segment 
is fictive due to 2DOF joint decomposition [16]. Exoskeleton 

system is tasked with desired trajectory tracking,   ndq t  . 

System response is observed over the time interval  0,t T  

where 5sT  . Desired trajectories are given as the fifth order 
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polynomials   2 3 4 5
0 1 2 3 4 5dq t a a t a t a t a t a t       with 

constraints: 
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
 (14) 

Let the error bounds be   2max 0.5 10 rade    . Exact 

feedback linearization of the given system left us with a linear 
system. In order to verify the control law robustness 
additional uncertainties are introduced in the system via η . 
Uncertainty of the given biomechanical model can be 
represented as a change of mass of the object. With that in 
mind inertia matrix, centrifugal matrix and gravity vector can 
be written as a sum of nominal and uncertain part [21]. 
Equations of motion (7) can be rewritten as: 

       Δ , ΔN Na a K K     g g u
Nq q q Q ΔQ Qq   (15) 

Applying computed torque we can choose: 

    ,  N Na K   gu
NQ q u q q Q  (16) 

Equations now become: 

          1 ,Na a q t q q u t η q q   (17) 

where u is a new control signal and η  is the model 
uncertainty: 

       1, ,a q   gη q q ΔK q q ΔQ   (18) 

A new control input u is selected as sgnPDD2/PD type 
controller designed in the previous section. Equations of 
motion can be represented in state-space form as: 
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Where 
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Before applying the proposed ILC algorithm as input u, the 
following assumptions will be made: 
(i) Desired trajectories  dq t  are continuously 

differentiable on  0,T , 

(ii) Initial conditions for all iterations are 

    0 0 , 1,2, ,k  k dx x  (21) 

(iii) Influence of changing the masses of links are negligible 

on matrix  a q , so it follows that 1
Na a I   and 

0n n
a

n n
B B

I



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, 

(iv) System (18) is causal [17]. 
Gain matrices for the feedback loop are chosen as 

 diag 161 01 0PK   and  diag 8 5 7DK  . Step values kM , 

kM   and kM   and their bounds are chosen in the process of 
trial and error: 
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 (24) 

It can be seen from figures (Figures 1, 2 and 3) that the 
system output reaches desired trajectory. Increasing mass 
uncertainties results in slower system output error 
convergence. 

The first link (fictive) reaches proposed error bound in 35 
iterations for 5% mass uncertainty, in 96 iterations for 10% 
mass uncertainty and in 101 iterations for 15% mass 
uncertainty. Two other links reach desired trajectory much 
faster, within 20 iterations. 

Also, it can be concluded that, although the system 
response in some cases requires relatively large number of 
iterations to reach the desired error bound, the initial 
trajectory does not deviate too much from the desired 
trajectory. In other words, maximum errors above the 
proposed error bound are not drastically greater than 
mentioned error bound for real world applications, in this case 
- patient rehabilitation. 



 LAZAREVIĆ,M., etc.: THE ADVANCED ITERATIVE LEARNING CONTROL ALGORITHM FOR REHABILITATION EXOSKELETONS 33 

 

Figure 5. Maximum error of the first link per iteration for different 
percentages of link mass uncertainties 

 

Figure 6. Maximum error of the second link per iteration for different 
percentages of link mass uncertainties 

 

Figure 7. Maximum error of third link per iteration for different percentages 
of link mass uncertainties 

Conclusion 
In this paper sgnPDD2 type of feed-forward iterative 

learning controller is investigated. In addition to feed-forward 
controller, regular PD feedback controller is present. Control 
law behaviour is tested, through simulation, on a linear system 
with added bounded uncertainties. A simulation results show 
convergence of the systems response and controller ability to 
track the reference trajectory. System output in some cases 
needs a relatively large number of iterations to reach the 
desired trajectory. 

Parameters kM , kM  , kM   and threshold values in 
sgnPDD2 type of ILC algorithm are chosen arbitrarily and 
tuned by trial and error, which can be time consuming. 
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Napredni iterativni algoritam upravljanja učenjem za  
rehabilitacione egzoskelete 

U ovom radu predložen je napredni iterativni algoritam kontrole učenja za rehabilitacione egzoskelete. Pojednostavljeni 
biomehanički model koristi se kao objekt upravljanja kako bi se proverila izvodljivost  algoritma upravljanja. Projektovano 
upravljanje  je predloženo kao dvostepeni regulator koji se sastoji od unutrašnje i  spoljašnje petlje. U unutrašnjoj petlji 
primjenjuje se linearizacija  kako bi se eliminisala nelinearnost modela. U spoljašnjoj petlji napredni iterativni algoritam 
upravljanja učenja tipa sgnPDD2 primjenjuje se kao kontroler u direktnoj grani, a klasični PD kontroler kao kontroler u 
povratnoj grani. Dodaju se nesigurnosti kako bi se ispitala robusnost projektovanog kontrolera. Sprovedena je  numerička 
simulacija. 

Ključne reči: biomehanički model, iterativna kontrola učenja, feedback linearizacija, neizvesnost. 

 

 


