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An Approach of Constant False Alarm Ratio for Improved Target 
Tracking 
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Each radar has the function of surveillance of certain areas of interest. In particular, the radar also has the function of 
tracking moving targets in that territory with some probability of detection, which depends on the type of detector. Constant 
false alarm ratio (CFAR) is a very commonly used detector. Changing the probability of target detection can directly affect 
the quality of tracking the moving targets. The paper presents the theoretical basis of the influence of CFAR detectors on the 
quality of tracking, as well as an approach to the selection of CFAR detectors, CATM CFAR, which enables better monitoring 
by the Interacting Multiple Model (IMM) algorithm with two motion models. Comparative analysis of CA and CATM 
algorithm realized by numerical simulations has shown that CATM CFAR gives less tracking error with proportionally the 
same computer resources. 
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Introduction 
HE radar sensors have different sources of noise, so the 
detector in radar receivers has the adaptive threshold. 

Constant false alarm rate (CFAR) detectors are designed to 
track changes in the interference and to adjust the detection 
threshold to maintain a constant probability of the false alarm. 
Detection decisions are based on measurements of reflected 
signals received at the radar and thermal noise inherently 
presented in the receiver. The radar detector is tasked with 
comparing the measurement with a threshold and choosing 
between two hypotheses [1]: 
a) Measurements exceeding the threshold are declared to 

contain returns from the targets as well as the energy from 
interfering sources and are associated with the target-plus-
interference hypothesis (commonly referred to as the H1 
hypothesis).  

b) Measurements below the threshold are declared to contain 
the energy only from the interfering sources and are 
associated with the null hypothesis, H0. 
It must use the adaptive threshold detector, which has a 

feature that automatically adjusts its sensitivity according to a 
variety of interference power. Thus, it maintains a constant 
probability of the false alarm [2, 3].  

An examination of CFAR algorithms begins with the cell-
averaging (CA) CFAR. The CA-CFAR exhibits the optimum 
performance in a homogeneous interference environment. 

They are used very often as a detector of very close targets 
per azimuth and per range using the Linear and Non Linear 
Fusion Constant False Alarm Rate (LF-CFAR and NLF-
CFAR) detectors and single CA-CFAR (Cell Averaging 
CFAR), OS-CFAR (Ordered Statistic CFAR) and TM-CFAR 
(Trimmed Mean CFAR) which are considered in [5, 6]. 

When tracking targets in clutter, existence and position of 
the targets in the surveillance are a-priori unknown. Unknown 

association of measurements with appropriate targets 
(unknown measurement source) is a common problem in 
multi target tracking. Automatic track initiation and 
termination under such conditions requires some knowledge 
about the track existence. A track exists if it is based on the 
measurements from a target (which follows specified dynamic 
and detection models), and is not a product of random clutter 
only. If a track follows a target, we shall call it a true track, 
otherwise we shall call it a false track.  

A tracking algorithm named the Interacting Multiple 
Model (IMM) estimator, which provides tracking estimates 
with significant noise reduction and response to sequences of 
aircraft maneuver modes is introduced in [7]. The tracking of 
an object in a cluttered environment might be a challenge due 
to the several observations for a single aircraft under such 
environment [8]. That is, some tracking measurements do not 
originate from the target. Therefore, the present paper utilizes 
the Probabilistic Data Association filter (PDAF) [9] to assign 
weights to the validated measurements. We consider the 
problem of tracking multiple maneuvering targets from 
possibly missing and false measurements, with the aim to 
develop novel combinations of two well known approaches in 
target tracking: Interacting Multiple Model (IMM) algorithm 
and multi target versions of PDAF. Because each of these two 
solve complementary tracking problems it is of a significant 
interest to combine both approaches. The PDAF can extend 
the tracking capability to a highly cluttered environment. This 
paper combines the IMM estimator and PDAF to create an 
IMMPDA filter (IMMPDAF), in order of improvement on the 
tracking performance [10]. 

Further, since sensor detection probability is generally 
below unity, it is also possible that no measurement on the 
target was received on a given scan. Pruning [3] involves 
either removing measurement histories with a low probability 
or removing whole sub-trees of the measurement histories.  

T 
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How different types of CFAR detectors influence the 
quality of targets tracking is the subject of the theoretical and 
experimental analysis in this paper. However, this topic is not 
often processed in the literature. Mostly, the targets clutter is 
treating only in the sense of radar and CFAR threshold [8], 
without review of tracking. This paper examines the effects of 
the two different CFAR detectors to the target tracking 
system. 

The paper is organized as follows. After the introducing 
preamble, problem statements are presented in the Section II.  
The cell averaging (CA) and cell averaging-trimmed mean 
(CATM) CFAR detectors are briefly described at the 
beginning, in the Section III. The standard steps of the well-
known IMM and PDAF algorithm are given in the Section IV. 
At the end of this Section, a probability of detection 
dependence on target tracking, followed by the results of 
simulation and final conclusions, from the Section V and 
Section VI, respectively.  

Problem Statement 
Consider the target tracking scenario with two dimensions. 

Target state is [ ]x x y y  , where x, y are the Cartesian 
coordinates. Also, consider the tracking algorithm with two 
parameters: probability of detection (PD) and clutter density. 
The clutter density is depending on target dynamics and 
characteristics of the sensor. Generally, clutter is defined by a 
number of selection measurement from size of the selection 

gate. At the beginning, consider the target state zn
kx R  at 

time interval k, which evolves according to:  

 1k k kx Fx v   (1) 

where F is the state propagation matrix and the process noise, 

k  is a zero mean and white Gaussian sequence with 
covariance matrix Qk. The size of selection gate is depending 
on measurements matrix R and process noise matrix Q. False 
tracks are consumed at the beginning, while true tracks are 
depending on matrix Q. Measurement merging is best 
modelled in the sensor measurement space, while tracking and 
data association issues are using more often converted 

measurements. Converted target measurement yny R is: 

 kkk wHxy   (2) 

Clutter measurements follow the non-uniform Poisson 
distribution by clutter measurement density (Poisson 
intensity) y . At time k a set of ( )m k  measurements 
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  is detected, where each measurement 

either originates from one of n known linear measurement 
models or it is a false detection. The sequences ( )k  are 
mutually independent and uncorrelated with the process noise.  

Description of CFAR algortihm 
The basic parameters of each CFAR are the probability of 

false alarm rate PFA, size of the window detection N = 2n, 
average signal value in cells Z, scaling factor of the detection 
threshold T and detection threshold S. Scaling factor of the 
detection threshold T is a constant which achieves a desired 
value of the probability of a false alarm for a given size of the 
window detection N. The detection window consists of two 
groups with the same number of cells n that are located on the 
opposite sides with respect to the cell whose contents are 

tested. CFAR processes signals by averaging of signals in 2n 
neighbourhood range bins (Xi) and the resulting mean value 
compares with the signal in a range bin which is under the test 
(Y). 

The cell averaging (CA) CFAR algorithm [4] consists of 
two collectors for the leading and lagging windows (Fig. 1). 
Here, Z is simply the sum of Y1 and Y2. The cell Y in the 
middle of the reference window is a cell under test. Input 
samples are sent serially into the reference window. At the 
beginning, we calculate the mean clutter power level Z using 
the appropriate CFAR algorithm, and then we multiply Z by a 
scaling factor T which depends on the CFAR algorithm and 
the designed probability of the false alarm rate Pfa. Probability 
of detection PDCA is given by [5]: 

  1
1

N

DCA
TP
SNR


 


 (3) 

where SNR is signal-to-noise ratio. 

 

Figure 1. Block diagram CA-CFAR detector 

The CATM-CFAR [4, 5] is a cell-averaging-trimmed-mean 
detector which optimizes the features of some mentioned 
CFAR detectors from different groups depending on the 
characteristics of the clutter and targets, and it is shown in 
Fig.2. The main goal of the CATM-CFAR modelling was 
increasing the probability of detection at a constant 
probability of the false alarm rate. The cell Y in the middle of 
the reference window is a cell under test. Input samples are 
sent serially into the reference window. 

 

Figure 2. Block diagram of CATM-CFAR detector 

The first step is to calculate the mean clutter power level Z 
using the appropriate CFAR algorithm. The second step is to 
multiply Z by a scaling factor T which depends on the CFAR 
algorithm and the designed probability of the false alarm rate 
PFA. The product TZ is the detection threshold S. During this 
time, the TM-CFAR detector uses the first cells in the 
reference window to be sorted per amplitude. Then, it trims 
the T1 smallest cells and T2 cells with the highest amplitudes. 
After that, the summation of the content in the remaining cells 
is done to obtain Z. CATM CFAR algorithm is realized by the 
parallel. The CA CFAR detector and the TM CFAR detector 
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work simultaneously and independently but with the same 
scaling factor of the detection threshold T. They produce their 
own mean clutter power level Z using the appropriate CFAR 
algorithm. Next, they calculate their own detection thresholds 
SCA and STM. After the comparison with the content in the cell 
under the test Y, they decide about the target presence 
independently. The finite decision about target presence is 
made in the fusion center composed of one ”and” logic 
circuit. If both input single decisions in the fusion center are 
positive, the finite decision of the fusion center is the presence 
of the target in the cell under the test. In other cases, the finite 
decision is negative and the target is not at the location which 
corresponds with the cell under the test. Probability of 
detection PDCATM is given by [5]: 
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where MV in (4) is defined as: 
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where ai is defined as: 
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Probability of detection of optimal CFAR 
detector 

In radar signals processing it is not possible to use an 
optimal detector with the fixed optimal threshold SO to decide 
the target existence, because is it a priori unknown 
background clutter. A solution is to use the CFAR detector 
which has a constant probability of the false alarm. For the 
optimal detector with the fixed optimal threshold SO, the 
probability of detection PD is given by [4]: 

 1[ | |] exp[ ]
2 (1 )

O
D O

S
P P Y S H

SNR   


 (8) 

where H1 is the hypothesis the target is present in the radar 
cell, parameter SNR signal to noise ratio and   background 
clutter power. The corresponding diagram of dependence of 

probability of detection versus |ˆk kx  signal-to-noise ratio SNR 

is given in Fig.3 according to (3), (4) and (8) for N=16 and 
Pfa=10-6.  

Finally, we have CFAR probability of detection -PD
CFAR  as 

follows [9]: 
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The set value of the signal-to-noise ratio (SNR) always 
gives a certain value of the detection probability PD which is a 
parameter of the tracking quality. The parametric diagram 
(Fig.3) shows this dependence with a change in the 
probability of the false alarm. 

 

Figure 3. Parametric diagram probability of detection PD versus SNR 
(parameter probability of false alarm PFA) 

Interacting multiple model probabililistic data 
association filter 

IMM algorithm 
In the first step, the state estimate and covariance are 

mixed. These mixed estimates and covariances are the inputs 
of the Kalman filter. The equations are [15]: 
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where indexes ji,  and l  indicate the different Kalman 
filters. Different dynamic Kalman filter models are used here, 

the total for 0 0 0, , ,i j i ju X X P  and iP  is r, total number for ijU  

and ijp  is 2r , where 1, kiu   represents the probabilities of the 

model in the previous time interval (iteration) 1k   .  
Since the initial probabilities of the model have little effect 

on the results over time, they can be favorably selected. In this 
project, the initial probabilities of the model are placed in 
rectangular functions, where ijP  is element of the Markov 

transitional matrix, ijp  is probability that the target will pass 

from the model i  to the model j  in each time interval, ijU  

represents the conditional probability of a target in the 
condition j -th model, which is crossed over state i -th 
model. The performance of the IMM algorithm is very 

dependent on the choice of the transition matrix, u
kiX 1,   and 

u
kiP 1,   represent the updated state vector and noise covariance, 

respectively, from the Kalman filter in the previous time 
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1k  , 0
, 1i kX   and 0

, 1i kP   are mixing state and error covariance, 
for each Kalman filter, as inputs in the time interval . 

In the second step, multiple Kalman filter models are 
implemented (for each assumed dynamic motion model). The 
Kalman filter prediction step is given by the following 
equations: 
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while the Kalman filter update step may be represented as: 
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where j  indicate the ordinal number of the Kalman filter, iF  

is dynamic filter model matrix, jQ  is noise process 

covariance, ,
p
j kX  and p

kjP ,  are predicted state and error 

covariance, respectivelly, jH  is the measurements matrix jR  

is measurements noise covariance, jK  is the Kalman gain, 

kZ  is the measurements from time interval k , I is identity 

matrix, ,
u
j kX  and ,

u
j kP  are updated state and error 

covariance,respectivelly. 
In the third step we have updated a model probability as 

follows: 
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where index j  is an ordinal number of the Kalman filter, | | is 

determinante of the matrix. j  is likelihood function, kju ,  is 

probability of a new model in time interval k .  
In the fourth and final step, the state vector predictions are 

updated ,
u
j kX  and error covariance u

kjP ,  from the Kalman 

filters are combined to obtain the final state and covariance of 
the trace error. The weighting factor is the likelihood of a new 

target movement model kju , :  
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where kX  and kP  are combined state and error covariance of 
the tracks for 1 to r–th  Kalman filter. Using the equations  
(1–9), the IMM state estimator calculates state and error 
covariance from time interval 1k  totime inteval k . 

PDAF  step 
The probabilities are used to measure the correction and 

covariance in a PDA filter. The basic assumptions and 
theories for the PDA filter can be found in [6, 7]. Here is a 
brief introduction of its functions and equations. The first step 
is to predict the trace state and covariance of the system error. 
Since the PDA filter is based on the Kalman filter, the first 
equations are for the prediction step and are the same as for 
the Kalman filter [16]:  
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where j  is an ordinal number of the PDA filter, , 1
u
j kX   is 

vector state in time inteval 1k  , F -dynamic model, ,
p
j kX  - 

predicted state in time interval k , H  -measurements matrix, 

 kjz ,ˆ -predicted measurements state in time interval k , p
kjP 1,   

-error covariance  in time interval 1k , jQ  is th noise 

process covariance.  
In the second PDA step, we have performed the 

measurements which are used for update vector state and error 
covariance: 

 










j
T
j

p
kjjkj

kjki
k
ij

RHPHS

zz

,,

,, ˆ
 (15) 

   k
ijkj

Tk
ij S ,)(  (16) 

 















k
j

Dkjkjkik
ji

kj
k
j

Vm

PSzzN
L

SV

/

];ˆ;[
3

4

,,,
,

,
2/3

 (17) 

 





































0,

1

1

,...1,

1

1
,

1
,

i

LPP

PP

mi

LPP

L

m

n

k
jnGD

GD

m

n

k
jnGD

k
ij

k
ij  (18) 

where j  is an ordinal of the PDA filters, k
jV  is volume 

region of validation,  m  is a total number of measurements in 
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the region of validation, ];ˆ;[ , kkki SzzN  is a normal 

distribution with variance kS , ijL is likelihood of the i -th 

measurements for the j -th PDA filter, ij  is a probability of 

association of the i -th measurements for the  j -th PDA 

filter, DP  and GP  are detection and gate probability of target 

respectively, k
i  is a probability of association for confirmed 

measurements. Here 0,
k  is a probability for non-valid 

measurements.   
Proposed value for DP  и GP  can be given in [5]. 

Probability of detection DP  is often greater than 90% for the 
surveillance radar and 98% for the secondary radar. The last 
step is an update vector state and covariance of track.  In this 
step, only confirmed measurements and their probability of 
association are used.  
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where j  is an ordinal number of the PDA filter.   

Results of Simulations 
The application selected for the study was a two-

dimensional (positions and velocities), four-state aircraft 
tracking problem in which the sensor observes both position 
coordinates. The false measurements satisfied a Poisson 

distribution with density 4 210 [scan/m ]  . Both dimensions 
were assumed independent, and the sensor measurement 
errors, target maneuver state excitation errors, and the 
equations of motion were assumed identical in each 
dimension. 

For the purpose of the simulation, the scenario with six 
(Fig.5) and twenty targets has been selected (Fig.8). Two 
diagrams are used to compare the quality of tracking:  
- a comparative diagram of the number of simulated targets 

and the number of realized tracks, 

- a diagram of the root mean square error (RMSE). 

Tracks are initialized by each pair of measurements in 
consecutive scans, so that they meet the maximum speed 
criterion provided they are not selected from any other trace. 
Each new initialized trace is assigned an initial detection 
probability, which is described in detail in the literature [13]. In 
this way, if the target is not tracked by the track, a new track is 
initialized using its detections. The track can start following the 
same target, or the same measurement sequence. When this 

happens, the estimation of the state of the trajectory should 
converge, and these tracks will be united. In each scan, a 
number of false tracks are initialized. In that situation, the first 
thing the tracking algorithm should do is discriminate or 
separate between the real and false tracks [18, 19]. 

The false track rejection procedure uses “track quality 
measurements” to eliminate tracks of “poor” quality and is 
presumed to be false, while at the same time confirming 
“high” quality tracks and calling them real. 

The analysis of the impact of probability of detections 
versus signal to noise ratio (where probability of the false 
alarm is a parameter) was conducted in Fig.4. For the value 
SNR ratio 13.2dB, given empirical from CA CFAR and 
CATM CFAR), we calculate the detection of probabilities 
PD=0.6 and PD=0.87, respectively. 

 

Figure 4. Parametric diagrams probability of detections versus signal to noise 
ratio (parameter probability of the false alarm) 

Six targets scenario 
Six targets are moving straight or with a maneuver (Fig.5). 

The sampling period of the radar sensor is T=1s. Duration of 
the scenario is 50 scans. The target moves in the region x=[0; 
1000], y=[0;500] and can appear or disappear in the scene at 
any time. The target states consist of positions and velocities 
and move according to the linear and Gaussian target 
dynamics [20]. Comparative diagram of simulated and 
realized tracks (six targets) is given in Fig.6. 

 

Figure 5. Simulations scenario of six targets  
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Comparative diagram RMSE of the position for overall 
(six) tracks (CATM CFAR versus CA CFAR) is given in 
Fig.7. 

 

Figure 6. Comparative diagram of simulated  and realized tracks (six 
targets) 

 

Figure 7. Comparative diagram RMSE of the position for overall  tracks 
(CATM CFAR versus CA CFAR) 

The system input is modeled as follows: 
[ ]X x x y y    is a vector state, ,x y are the Cartesian 

coordinates of the target position, ,x y   are the appropriate 
velocities. Transition matrix (FCV - constant velocity model 
and FCT- coordinate turn model) and process noise matrix are 
given by:  
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Twenty targets scenario 
Twenty targets are moving straight or with a maneuver 

(Fig.8). The sampling period of the radar sensor is T=1s. 
Duration of the scenario is 50 scans. The target moves in the 
region  x=[-40000;40000], y=[-40000; 40000] and can appear 
or disappear in the scene at any time. The target states consist 
of positions and velocities and move according to the linear 
and Gaussian target dynamics.  

 

Figure 8. Simulations scenario of twenty targets 

 

Figure 9. Comparative diagram of simulated  and realized tracks (twenty 
targets) 
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Figure 10. Comparative diagram RMSE of the position for overall  (twenty) 
tracks (CATM CFAR versus CA CFAR) 
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The comparative diagram RMSE of the position for overall 
(twenty targets) tracks (CATM CFAR versus CA CFAR) is 
given in Fig.9. Finally, the comparative diagram RMSE of the 
position for overall (twenty) tracks (CATM CFAR versus CA 
CFAR) is given in Fig.10 

Conclusion 
The results of the study of the contribution of different 

types of CFAR detectors on the characteristics of the multi 
target tracking were given in the paper. The application of the 
CA CFAR and CATM CFAR algorithms in the radar pre-
processing phase and their influence on the distribution of the 
clutter were examined, through the scattering of the actual 
confirmed traces in the known IMM PDAF algorithm.  

The result of multi target tracking simulations, with six and 
with twenty targets, showed better tracking performance by 
the use of the CATM-CFAR algorithm, related to CA CFAR 
algorithm.  
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Pristup odnosa konstanthih lažnih alarma za poboljšano praćenje 
ciljeva 

Svaki radar ima funkciju nadzora određenog područja od interesa. Radar takođe ima funkciju praćenja pokretnih ciljeva na 
tom području sa izvesnom verovatnoćom otkrivanja, što zavisi od vrste detektora. Odnos konstantnih lažnih alarma (CFAR) 
je vrsta veoma često korišćen detektor. Promena verovatnoće otkrivanja ciljeva može direktno uticati na kvalitet praćenja 
pokretnih ciljeva. U radu su predstavljene teorijske osnove uticaja CFAR detektora na kvalitet praćenja, kao i pristup 
odabiru CFAR detektora CATM, koji omogućava bolje praćenje algoritmom Interaktivnog višestrukog modela (IMM) sa dva 
modela kretanja . Uporedna analiza CA i CATM algoritma realizovana numeričkim simulacijama pokazala je da CATM 
CFAR daje manje grešaka u praćenju s proporcionalno istim računarskim resursima 

Ključne reči: CFAR detektor, radarska detekcija, IMM, praćenje ciljeva 

 

 


