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On Design of Fatigue Resistance Metallic Parts 

Strain Posavljak1) 

This paper is devoted to design of metallic parts exposed to low cycle fatigue. Two flat discs, as representatives of these parts, 
were discussed. The first with 8, and the second with 64 eccentrically arranged holes. Their resistance to low cycle fatigue was 
investigated. Cyclic properties of two aerospace steels nominated for workmanship, plus planned revolves per minute and 
revolves per minute of 5% above planned, are taken into account. On the base of estimated low cycle fatigue life data, good 
design solution was discovered. On the other hand, it was shown that the both mentioned discs would have a large drop of 
resistance to low cycle fatigue for revolves per minute of 5% above planned. 
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Introduction 
HERE are many metallic parts of machine systems that 
are required to have satisfying fatigue resistance. Among 

them are certainly the compressor and turbine disks of aircraft 
engines, in which resistance to low cycle fatigue (LCF) is 
important. 

Required resistance to LCF of certain disk, or its required 
low cycle fatigue life (LCFL), can be achieved by good 
combination assigned geometry, a material chosen for 
workmanship, and the load level. During assigning of 
geometry, a designer should devote attention to the stressed 
areas, as which are rims, hubs and holes of different purposes, 
in which, to a greater or lesser extent, local plastic strains can 
be provoked. 

This time, the holes of different purposes, their size, 
number and arrangement, are interesting for us. Here’s why. 
The aircraft accident described in [1] had occurred because of 
the crack initiation and fracture in the area of holes of one 
JTD8-15 engine compressor disk. Because of stressed holes of 
fractured fan disk of the left engine, of aircraft MD-88, 
occurred accident described in [2]. In the papers [3], [4] and 
[5], it is discovered that areas with holes are the most stressed 
areas of analyzed aircraft engine disks. 

Useful conclusions regarding the design of fatigue-resistant 
aircraft engine disks, which will have holes of different 
purposes, can be drawn from discussing of flat disks. 

Here we will discuss two flat disks with eccentrically 
arranged holes, and we will follow them under the basic 
marks D1 and D2. 

Everything, what we will say, it will be a supplement to the 
research described in [6] and [7]. 

Case of the flat disks  

Geometries of disks 
The flat disks D1 and D2 with their geometries are shown 

in Fig.1. 
Both disks have the same thicknesses (20 mm).  

Figure 1. Geometries of the flat disks D1 and D2 

The flat disk D1 has the central hole with radius R60 and 
eight eccentrically arranged holes 60. The centers of these 
holes lay on the circular R120. 

Beside of central hole and eight eccentrically arranged 
holes 60, the flat disk D2 has eight eccentrically arranged 
holes 30 whose centers lay on the circular R150, and forty-
eight holes 5 whose centers belong to circulars R90, R100, 
R125 and R165 (total 64 eccentrically arranged holes). 

Materials 
Two steels nominated for workmanship of our flat disks 

are: steel 13H11N2V2MF (Steel S1) and steel AISI 304 (Steel 
S2). Poisson’s coefficients of these steels are the same ( = 
0.29), while their mass densities are different and amount: 

  31 7820 kg/mS   and   32 7900 kg/mS 

Cyclic properties of steels S1 and S2 are included in Table 1. 
The estimation of the resistance to LCF, or estimation of 

LCFL of metallic parts, is based on the application of the next 
three equations: 

T 
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Table 1. Cyclic properties of steels S1 and S2 

Property Value 

Steel S1 [6] Steel S2 [8] 

Modulus of elasticity, E [MPa] 206682.0 190000.0 

Cyclic strength coefficient, K’ [MPa] 1103.0 2275.0 

Cyclic strain hardening exponent, n’ 0.118 0.334 
Fatigue strength coefficient,  σ’f [MPa] 1818.8 1267.0 

Fatigue strength exponent, b −0.144 −0.139 

Fatigue ductility coefficient, ɛ’f 0.5351 0.174 

Fatigue ductility exponent, c −0.6619 −0.415 

The first equation in (1) is the equation of the cyclic stress-
strain curve, the second presents Massing’s curve, and the 
third is the equation of the basic strain-life curve [9]. These 
curves for the certain metallic material, we obtain by the 
testing of specimens in the controlled strains regime, when is 

min max/ 1R     , and the mean stress 0m  . 

In the previous three equations, / 2  and / 2  are the 
half-ranges of strains and stresses, while   and  are 
corresponding ranges. fN  is the number of cycles to failure 

(to crack initiation). 
Equations in (1), for steel S1, have the next forms: 
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For steel S2, the forms of those equations are: 
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Figure 2. Cyclic stress-strain curves of steels S1 and S2 

Cyclic stress-strain curves, Massing’s curves and the basic 
strain-life curves of the steels S1 and S2 are shown in the next 
figures. 

Figure 3. Massing’s curves of steels S1 and S2 

Figure 4. Basic strain-life curves of steels S1 and S2 

According to materials nominated for the flat disks 
workmanship, to the basic marks D1 and D2, we will add S1 
or S2, and practically we will have a job with four disks: 
D1S1, D1S2, D2S1 and D2S2. 

Loads 
Suppose that flat disks D1 and D2 will be loaded by own 

centrifugal forces provoked by imaginary spin tests ST1 and 
ST2, with diagrams included in Fig. 5. 

Figure 5. Diagrams of imaginary spin tests ST1 and ST2 

In the spin test ST1, the first test block is ABB’A’ and 
the other blocks are A’BB’A’ with maximal planned 
revolves per minute (RPM)  15000 (100%). Similarly, for the 
spin test ST2 we have blocks ACC’A’ and A’CC’A’ 
with maximal RPM of 5% above maximal planned, and it is 
15750 (105%). The quotient between 15750 RPM and 15000 
RPM is 1.05. 

Local stress-strain responses 
Local stress-strain responses of the flat disks D1 and D2 

are connected with their critical points. If they loaded by own 
centrifugal forces, according to [6] and [7], the critical points 
will be points P1 and P2. Position of these points is identified 
in Fig 6. They belong to the contours of the holes 60 and the 
circular R90. 

The data on local stress responses, for the case of ideal 
elasticity (the data on linear stress responses at critical points 
of the flat disks), are contained in Table 2. In that table, we 
notice nominal stresses ,n ij  and maximal stresses max,ij . 
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The index 1j   refers to disk D1 and its critical point P1, 

while the index 2j   refers to disk D2 and its critical point 
P2. 

Figure 6. Position of critical points P1 and P2 on the flat disks D1 and D2 

Stress values max,ij  were computed as follows: 

max, , ,      ( 1, 2,...,8 / 1, 2)ij t j n ijK i j     (4) 

Theoretical or geometric stress concentration factors 

,t jK in (4) are taken from [6]. 

Table 2. The data on linear stress responses at critical points of the flat 
disks 

Disk Spin test i j 
n,ij  

[MPa] 
Kt,j 

max,ij 
[MPa] 

D1S1 ST1 1 652.208 1381.377 

D1S1 ST2 2 719.059 1522.967 

D1S2 ST1 3 658.880 1395.508 

D1S2 ST2 4 

1 

726.415 

2.118 

1538.547 

D2S1 ST1 5 652.208 1308.981 

D2S1 ST2 6 719.059 1443.151 

D2S2 ST1 7 658.880 1322.372 

D2S2 ST2 8 

2 

726.415 

2.007 

1457.915 

The values of nominal stresses ,n ij  in Table 2, were 

obtained using the next expressions: 
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and they are connected with all points that lay on the circular 
R90, of the flat disks without eccentrically arranged holes. 

The reference nominal stresses ,nr  in the first expression 
in (5), at critical points of flat disks D1S1 and D2S1, for the 
reference rotation speed 16800 RPM,rRS   amounts: 

818.13 MPanr  [6]. Here, for the same disks, rotation sped 
15000 RPMRS  . 

Here is important to note that the stress values max,ij  are 

not real values. However, although they unreal, from the 
levels of these stresses, using Neuber’s hyperbola [9] or some 
of its modification, as it as Sonsino-Birger’s modification in 
[10] and [11], we can move to the level of real stress-strain 
response (nonlinear stress-strain response) at the critical 
points.  

Nonlinear stress-strain response at the critical points of our 
flat disks, taking into account spin tests ST1 and ST2, was 
described by stabilized hysteresis loops which were modeled 
using corresponding Massing’s curves of steels S1 and S2.  

The upper points of the stabilized hysteresis loops were 
determined graphically (see [6]), as the intersection points 
between Sonsino-Birger’s curves 
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and cyclic stress-strain curves defined by the first equations in 
(2) and (3). Coordinates of the i-th intersection point 
are: ( 2)i and ( 2)i . All these coordinates we have in 
Table 3.  

Table 3. Coordinates of upper points of stabilized hysteresis loops  

Disk Spin test i (/2)i (/2)i [MPa] 

D1S1 ST1 1 0.01076712 621.690 

D1S1 ST2 2 0.01250489 636.139 

D1S2 ST1 3 0.01379287 506.385 

D1S2 ST2 4 0.01574510 532.586 

D2S1 ST1 5 0.00992109 613.683 

D2S1 ST2 6 0.01151185 628.176 

D2S2 ST1 7 0.01282519 492.414 

D2S2 ST2 8 0.01463500 517.989 

Dimensions ( i i   ) of the stabilized hysteresis loops 
were obtained graphically also, as the interaction point 
coordinates between the second forms of Sonsino-Birger’s 
curves  
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and the second equations in (2) and (3). For our imaginary 
tests ST1 and ST2 Sonsino-Birger’s curves in (6) and (7), 
coincide. Values for ,t jK  and , ,n ij n ij    in them are taken 

from Table 2. Values of modulus elasticity , 1jE j   of steel 

S1 and modulus elasticity , 2jE j   of steel S2, are taken 

form Table 1. 

Figure 7. Graphically determined nonlinear stress-strain response at the 
critical point of disk D1S1 (spin test ST1) 

For example, graphically determined nonlinear stress-strain 
responses at critical points of disks D1S1 and D1S2, for spin 
test ST1 and ST2, that defined by stabilized hysteresis loops, 
are shown in Fig. 7 and Fig. 8. 

The intersection points between Sonsino-Birger’s curves in 
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(6) and lines 

,      ( 1,2)jE j    (8) 

define local stress response of the flat disks, for the case of 
ideal elasticity (linear stress response). 

Figure 8. Graphically determined nonlinear stress-strain response at the 
critical point of disk D1S2 (spin test ST2) 

All data on nonlinear stress-strain responses at critical 
points of the flat disks are included in Table 4. 

Table 4. The data on nonlinear stress-strain responses at critical points of 
the flat disks 

Disk Spin test i mi  
[MPa] 

i

[MPa] 
i 

D1S1 ST1 1 111.165 1021.050 0.00786292 
D1S1 ST2 2 108.125 1056.028 0.00899770 
D1S2 ST1 3 156.971 698.827 0.01100589 
D1S2 ST2 4 163.803 737.567 0.01249450 
D2S1 ST1 5 113.286 1000.792 0.00730842 
D2S1 ST2 6 109.683 1036.985 0.00834991 
D2S2 ST1 7 153.352 678.122 0.01026591 
D2S2 ST2 8 159.990 715.999 0.01164870 

Fatigue resistance estimation and results discussion 
Fatigue resistance estimation or LCFL estimation of the 

flat disks was carried out using Morrow’s strain-life curve, 
that is defined in [9], and given in the general form: 
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This curve takes into account the influence of mean stress 

m  and it presents a modification of the basic strain-life 
curve in (1).  

By graphically solving of the four systems of equations, 
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we obtained the first four data for f fi iN N LCFL  . 

Similarly, by graphically solving the next four systems of 
equations  
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we obtained the second four data for f fi iN N LCFL  . 

The first equations in the system (10) and (11) are 
equations of Morrow’s strain-life curves which refer on steels 
S1 and S2. The values for ,m i  and i , in them, were taken 
from Table 4. 

Results of estimated fatigue resistance, or estimated LCFL, 
expressed in test blocks of the spin tests ST1 and ST2, are 
contained in Table 5. 

Table 5. Results of estimated LCFL 

Disk Spin test i LCFLi [Test blocks]  

D1S1 ST1 1 6519 

D1S1 ST2 2 4525 

D1S2 ST1 3 9610 

D1S2 ST2 4 6555 

D2S1 ST1 5 8026 

D2S1 ST2 6 5524 

D2S2 ST1 7 11893 

D2S2 ST2 8 8091 

Graphically determined LCFL of disks D1S1 and D1S2 
exposed to spin test ST1, we have in Fig. 9. 

Figure 9. Graphically determined LCFL of disks D1S1 and D1S2 exposed to 
spin test ST1 

The data on estimated LCFL are shown by histogram in 
Fig.10. 

Figure 10. Histogram of data on estimated LCFL 

For the same disks, in the case of their exposure to the spin 
test ST2, the resistance to LCF decreases, compared to the 
resistance to LCF in the case of exposure to the spin test ST1 
(30.588% for disk D1S1, 31.790% for disk D1S2, 31.174% 
for disk D2S1 and 31.977% for disk D2S2). 

Disk D1S2 has better resistance to LCF than disk D1S1 
(47.415% for the case of spin test ST1 and 44.862% for the 
case of spin test ST2). Similarly, disk D2S2 has better 
resistance to LCF than disks D2S1 (48.181% for the case of 
spin test ST1 and 46.452% for the case of spin test ST2). 

Disk D2S1 has better resistance to LCF than disk D1S1 
(23.117% for the case of spin test ST1 and 22.077% for the 
case of spin test ST2). 

Disk D2S2 has better resistance to LCF than disk D1S2 
(23.757% for the case of spin test ST1 and 23.417% for the 
case of spin test ST2). 
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Conclusion 
If we had a request to replace disk D1S1 with a new disk 

that would be overloaded by 5% above the planned load and 
would have LCFL at least 20% longer, we would conclude 
that we could replace it with disk D2S2. Because this disk is 
discovered as a good design solution. 

The parts of machines, exposed to LCF, should not be 
forced, because with a small percentage increase in load, in a 
much higher percentage, their fatigue resistance can be 
reduced. 

If it is necessary to overload the machine part exposed to 
LCF, then it is necessary to start with its redesigning. It is 
necessary to change its geometry or choose a new material for 
its workmanship, or both. 

In the future research it would be interesting to carry out 
experimental spin tests for discussed flat disks and obtained 
results of LCFL compare with here estimated. 

On the other hand, it would be interesting, through the 
boundary conditions, simulate the action of centrifugal forces 
of rims and blades of aircraft engine compressor and turbine 
discs, and investigate their influence on LCFL of flat disks 
that here were discussed. 

The methodology of the fatigue resistance estimation of the 
flat disks with eccentrically arranged holes, can be applied 
and for the other metallic parts. 
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O projektovanju metalnih delova otpornih na zamor 

Ovaj rad je posvećen projektovanju metalnih delova izloženih malociklusnom zamoru. Razmatrana su dva ravna diska, kao 
predstavici ovih delova. Prvi sa 8 i drugi sa 64 ekscentrično raspoređena otvora. Istražena je njihova otpornost na 
malociklusni zamor. Uzete su u obzir ciklične karakteristike za dva vazduhoplovna čelika kandidovana za izradu, plus 
planirani obrtaji u minuti i obrtaji u minuti od 5% iznad planiranih. Na osnovu podataka o procenjenom malociklusnom 
zamornom veku, otkriveno je dobro projektno rešenje. S druge strane, pokazano je da bi oba pomenuta diska imala veliki 
pad otpornosti na malociklusni zamor za brojeve obrtaja od 5% iznad planiranih. 

Ključne reči: ravni diskovi, malociklusni zamor, dobro projektno rešenje. 


