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Robust Identification for Fault Detection and Diagnosis of 
Hydraulic Servo Cylinder 
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Intensive research in the field of mathematical modeling of hydraulic servo systems has shown that their mathematical models 
have many important details which cannot be included in the model. Due to impossibility of direct measurement or 
calculation of dimensions of certain components, leakage coefficients or friction coefficients, it was supposed that parameters 
of the hydraulic servo system are random (stochastic nature). On the other side, it has been well known that the hydraulic 
servo cylinder can be approximated by a linear model with time-varying parameters. An estimation of states and time-varying 
parameters of linear state space models is of practical importance for fault diagnosis and fault tolerant control. Previous 
works on this topic consider estimation in Gaussian noise environment, but not in the presence of outliers. The known fact is 
that the measurements have inconsistent observations with the largest part of the observation population (outliers). They can 
significantly make worse the properties of linearly recursive algorithms which are designed to work in the presence of 
Gaussian noises. This paper proposes the strategy of parameter-state robust estimation of linear state space models in 
presence of non-Gaussian noises. The case of robust estimation of states and parameters of linear systems with parameter 
faults is considered. Because of its good features in robust filtering, the extended Masreliez-Martin filter represents a 
cornerstone for realization of the robust algorithm. The good features of the proposed robust algorithm to identification of the 
hydraulic servo cylinder are illustrated by intensive simulations. 
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Introduction 
HE performance of hydraulic systems strongly depends 
on the control valve and spool geometry and their 

manufacturing tolerances. Without a proper model, accurate 
nonlinear analysis of hydraulic system performance is not 
possible. It is well known that it is very difficult to determine 
a large number of physical parameters which are an integral 
part of complex systems. Despite the fact that many system 
parameters are available with some reasonable accuracy, a 
large number of parameters are known within a certain range, 
while some parameters are entirely unknown because 
manufacturers consider these data as proprietary information. 
For example, precise determination of system parameters such 
as dimensions of certain components, leakage coefficients, 
friction coefficients, as well as static and dynamic friction 
forces due to impossibility of direct measurement or 
calculation causes great difficulty in control of servo actuators 
[1]. More precise knowledge of the system parameters 
increases the model quality, which causes better control 
performances. Hence, states filtering as well as parameters 
estimation can be key factors for performances, stability and 
accuracy of the systems. 

Since Rudolf Kalman published his famous paper [2], the 
Kalman filter (KF) has become the basis of many estimation 
processes in different application areas. In recent years, KF has 
encountered renewed interest, due to an increasing range of 
applications [3, 4]. Precise knowledge of the system parameters 
and states is crucial for successful realization of many control 

techniques. Many modern engineering applications such as 
autonomous vehicles [5], strain prediction for fatigue [6] or 
robotic manipulation tasks [7] require real-time Kalman 
filtering framework with linear models. 

It is usually too expensive to measure directly the system 
states. Self-applied state estimation methods assume that the 
system parameters are constant. In the real world, these 
parameters always change (e.g. friction coefficients, temperature, 
pressure, or flow). The states estimation procedure with constant 
parameters will result in large errors when changing parameters. 
It is also known that the dynamic behavior of complex systems is 
usually described by a linear stochastic state space model with 
time-varying parameters [8, 9]. Therefore, methods by which 
parameter and state estimation can be obtained at the same time 
are required. 

A significant number of papers have been published on the 
theme of the Kalman filter application for parameters 
estimation of dynamic systems. One of the first papers which 
deals with this topic is [10]. The convergence analysis of the 
extended Kalman filter for parameters estimation was 
analyzed in [11]. Estimation of states and parameters using 
the Kalman filters is widespread [12-14]. Estimation of states 
and time-varying parameters is of great practical importance 
for fault diagnosis and fault tolerant control. One of the 
biggest challenges in the design of flight control systems is a 
requirement for the flight of the aircraft to recover safely from 
structural damage and/or system faults. Regardless of whether 
the aircraft is equipped with a special control reconfiguration 
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capability, reliable fault diagnostic information are extremely 
important to the pilot. The main challenge is the detection and 
isolation of incipient faults in the presence of modeling 
uncertainty and noise [15-19]. The problem of joint estimation 
in dynamic systems has been intensively studied and the basic 
estimation techniques are well established but, because of the 
complex nature of dynamic systems, the application of 
techniques to these problems is not straightforward. These 
methods are quite popular. Inclusion of unknown parameters 
in the state vector allows easy implementation of the 
estimation algorithm, because the problem of parameters 
estimation in this case is solved using the standard filtering 
theory. In this way, a good joint estimation technique was 
obtained. Also, thus derived recursive estimation algorithm 
enables both offline and online realization. 

On the other side, there is no such solution available for 
linear systems in the presence of non-Gaussian measurements. 
Because of that, in this paper, it is assumed that the 
measurement noise is non-Gaussian. Justification of this 
approach was confirmed in practice [16]. Namely, the known 
fact is that the measurements have inconsistent observations 
with the largest part of the observation population (outliers). 
Their presence can destroy the good features of linearly 
recursive algorithms which are designed for estimation in the 
presence of Gaussian noises. Therefore, it is very important to 
design a robust algorithm which would be a little sensitive to 
outliers. Huber's theory of robust statistics is crucial for the 
algorithm design whose robustness is achieved by introducing 
a nonlinear transformation of prediction error (Huber’s 
function) [17, 18] . 

The Masreliez-Martin filter is a frame for realization of the 
proposed algorithm. It is considered the case when the process 
noise has a Gaussian distribution, and the measurement noise 
has a non-Gaussian distribution. Some heuristic modifications 
have been made in order to improve features of the robust 
filters. Namely, in a posteriori filter matrix, Fisher 
information has been replaced with a derivative of Huber's 
function. The benefits of such modified filters have been 
shown in [19]. Because of its good properties in robust 
filtering, the modified extended Masreliez-Martin filter 
represents a cornerstone for realization of the robust algorithm 
for state-parameter estimation of linear time-varying 
stochastic systems in the presence of non-Gaussian noises. 

Considering the unknown parameters of the dynamic 
system, for the purpose of pursuing accuracy robust 
estimation, this paper proposes two kinds of strategies to 
estimate the state and parameter jointly. The state estimation 
and parameter identification are united by the joint parameter 
and state estimation. It is completely natural to put unknown, 
generally time-varying, parameters in the vector of states, 
after which the problem is reduced to the classic filtering 
problem. This paper considers linear state space systems with 
parameter faults. In that case, in order to obtain the robust 
algorithm for estimation of states and parameters, we shall 
consequently face with a general nonlinear filtering problem. 
Conventionally, state-parameter robust estimation problem in 
such systems is based on extended Kalman filter. 

The good features of the proposed robust algorithm are 
illustrated through intensive simulations. 

A state space model of the hydraulic servo cylinder 
A schematic view of the hydraulic cylinder with connected 

four-way spool valve is shown on Fig.1. 

 
Figure 1. Schematic representation of the valve-controlled asymmetric piston 

The load can be seen as summing effects of inertia which 
comes from the total piston mass tm , friction forces fF , spring 
load forces eK y , and disturbance forces extF . The spool valve 
displacement is denoted as vx . Pressures ap  and bp denote the 
forward and the return pressure, respectively, the 
corresponding flows are aq  and bq , y is the piston 
displacement, eK denotes the load spring gradient, Sp  is the 
supply pressure, and 0p  is the tank pressure. The total mass of 
the piston tm  includes the mass of piston rod pm and the mass 
of the load m referred to the piston. The area ratio of the 
asymmetric piston is b aA Aα = , in which aA is the effective 
area of the head side of the piston, and bA is the effective area 
of the rod side of the piston, see Fig.1. 

Applying the Newton’s second law to the forces on the 
piston, the resulting force equation is: 

 ( )a a b b t f e extA p A p m y F y K y F− = + + +�� �  (1) 

Pressure dynamics in cylinder chambers 
Applying the continuity equation to each of the cylinder 

chambers yields: 

 a
a Li a a

e

V
q q V p− = +

β
� �  (2) 

 b
b Li Le b b

e

V
q q q V p+ − = +

β
� �  (3) 

where eβ  is the bulk modulus of the fluid, Liq  and Leq  
denote the internal leakage flow and the external leakage 
flow, respectively. The internal leakage flow can be 
calculated by: 

 ( )Li Li a bq c p p= −  (4) 

where Lic  is the internal leakage flow coefficient. External 
leakage (leakage from each cylinder chamber to case drain or 
to tank) is usually neglected, 0Lea Lebq q= = . 

The total fluid volumes of two cylinder sides, aV  and bV , 
are given as:  

 0a a aV V yA= +   (5) 

 0 ( )b b aV V L y A= + − α   (6) 
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where L is the piston stroke and 0aV  and 0bV  represent initial 
chamber volumes. Equations (2) and (3) can be rearranged to 
yield the pressure dynamics equations 

 ( )( )
e

a a a Li Lea
a

p q A y q qV y
β= − − −� �  (7) 

 ( )( )
e

b b a Li Leb
b

p q A y q qV y
β α= + + −� �  (8) 

Valve flow equations 
The flow through the -th valve orifice sviq  is described by 

next relation, which takes the direction of the pressure drop 
into account: 

 ( , ) sg( ) ( )svi v vi vq q x p c x sign p p= Δ = Δ Δ  (9) 

where 1,2, , 4=i … . 
The function ( )sg x is defined by: 

 { , 0( ) 0, 0
x xsg x x

≥= <  (10) 

Discharge coefficients of valve orifices 0vic > , 1, 2,3, 4i =  
represent valve constants, which will be equal if all orifices 
are identical. Consider the four-way spool valve as shown in 
Fig.2.  

 
Figure 2. Four-way spool valve 

The corresponding flow equations for two valve chambers 
can be written as: 

 
1

2

1 2

0 0

( ) ( )

( ) ( )

a sv sv v v s a s a

v v a a

q q q c sg x sign p p p p

c sg x sign p p p p

= − = − − −

− − − −
 (11) 

 
3

4

3 4

0 0

( ) ( )

( ) ( )

b sv sv v v s b s b

v v b b

q q q c sg x sign p p p p

c sg x sign p p p p

= − = − − − −

− − −
(12) 

If state variables and input variables are defined as 

 1 2 3 4[ ] [ ]T T
a bX x x x x y y p p= ��  (13) 

 1 2[ ] [ ]T T
v extU u u x F= �  (14) 

then a completely nonlinear model of the hydraulic system, 
can be expressed in a state-space form as: 

 

( )

(

( ) (

1

4

3

2

1 2

2 3 4 2 1 2

3 1 3 3
1 0

1 3 0 3 0

2 3 4

4 1 4
1 0

4 1 4 0

4 0

1 ( ) ,

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

a a f e
t

e
v s s

a a

v

a Li

e
v s

a b

s v

a

x x

x A x A x F x K x um

x c sg u sign p x p xA x V
c sg u sign x p x p
A x c x x

x c sg u sign p x
A L x V

p x c sg u sign x p
x p A

α

β

β
α

α

=

= − − − −

= − − −
+

⎞− − − − −
⎟− − − ⎠

= − −
− +

− − −

− − +

�

�

�

�

)2 3 4( )Lix c x x+ −

 (15) 

It is now more convenient to define the pressure 
drop across the load, or simply the load: 

 L a bp p pα= −  (16) 

which can be seen as the "virtual" pressure required to 
counterbalance the friction and load forces. 

Finally, after linearization of nonlinear equations (15), 
using previous notation which allows us to present the 
hydraulic servo system in more compact form, with new state 
vector [ ] [ ]1 2 3 ( )T T

Lx x x y k y pΔ Δ Δ�� , the discrete time 
state-space description of the reduced order can be obtained in 
more compact form, see [20]: 

 ( 1) ( ( )) ( ) ( ( )) ( ) ( )x k A k x k B k u k w kθ θ+ = + +  (17) 

 ( ) ( ) ( )y k x k e k= +  (18) 

where  

1 0

( ( )) 0

0

s

m s s a

m p

h s
s d

h

T
T T T AA k T m

T TT K T

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−−⎢ ⎥⎣ ⎦

,

0 0

( ( )) 0

0

s

p

s Q

TB k m
T K

θ

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

in which 0.01sT s=  is the known sampling time. The 
damping of the resonance frequency is determined 
by the viscous friction ( 1 m C pT B m− = − ) and the leakage 
( 1 hT− ). Other useful quantities are damping ratio hТ , the 
valve control signal term QK , the hydraulic capacitance hC , 
valve flow-pressure coefficients QpK , valve flow gains QxK , 
as well as pressure sensitivities px Qx Q pK K K= . 

t
m

C

mT B=  

, ,
e e

Q Qx A Qx B
A B

K K KV V
β βα= −  

1
d

h

AK C= , 2e e
h

A B
C

V V
β βα

⎛ ⎞
= +⎜ ⎟
⎝ ⎠
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2 2 2
, ,

2 2

1
(1 ) (1 )

1 1

h
Qp B Li Qp A Lie e

B B

Т
K C K C

V V
α α αβ βα

α α

=
⎡ ⎤ ⎡ ⎤+ + − +

−⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

0

0

0
,

0

0 0

0

0

v v
v

s AA
Qp A

v vA P v
A

c x za x
p pQK c xp za x
p p

−⎧ >⎪ −∂ ⎪= = ⎨ −∂ ⎪ <
−⎪⎩

 

0

0

0 0
,

0

0

0

0

v v
v

BB
Qp B

v vB P v
s B

c x za x
p pQK c xp za x
p p

−⎧ >⎪ −∂ ⎪= = ⎨ −∂ ⎪ <
−⎪⎩

 

0

0
,

0 0

0
0

v s A vA
Qx A

v P v A v

c p p za xQK x c p p za x
⎧ − >∂= = ⎨∂ − − <⎩

 

0

0 0
,

0

0
0

v B vB
Qx B

v P v s B v

c p p za xQK x c p p za x
⎧− − >∂= = ⎨∂ − <⎩

 

Further, the coefficients QpK , QxK  and pxK  are referred to 
as valve sensitivity coefficients and are extremely important 
in determining stability, frequency response, and other 
dynamic characteristics [20]: the flow gain, QxK , directly 
affects the open loop gain constant in a system and, therefore, 
has a direct influence on system stability. The flow-pressure 
coefficient, QpK , directly affects the damping ratio of valve-
cylinder combinations. The pressure sensitivity of valves, 

p xK , is quite large, which accounts for the ability of valve-
cylinder combinations to breakaway large friction loads with 
little error. 

Robust estimation algorithm of linear systems with 
parameter faults 

In this paper, we consider state-space systems with time-
varying parameters in the following form: 

 ( 1) ( ( )) ( ) ( ( )) ( ) ( )x k A k x k B k u k w kθ θ+ = + +  (19) 

 ( ) ( ( )) ( ) ( )y k D k x k e kθ= +  (20) 

where ( ) nx k R∈  and ( ) pk Rθ ∈  are unknown state and 
parameter vectors, respectively. From a practical point of 
view, it is unreasonable to make assumptions about the fault 
characteristics and not to consider these as unknown time 
functions. The general form of parameters changing of the 
stochastic linear system is defined as follows: 

 ( 1) ( ) ( )k G k kθ θ η+ = +  (21) 

in which G  is a priori known nonsingular matrix which is 
convenient for inclusion of a priori information on the 
phenomenon which is identified. The stochastic process ( )kη  
is zero-mean white noise whose covariance matrix ( )kΦ  has 
the form: 

 ( ) : (0, ( ))k N kη Φ  (22) 

Input and measured output vector of the system are 
( ) mu k R∈  and ( ) ry k R∈ . It is assumed that the process noise 

is zero-mean Gaussian white noise ( ) : (0, ( ))w k Q kΝ , in 
which ( )Q k  is the covariance matrix. The measurement noise 

( )e k  has non-Gaussian distribution with approximately 
normal distribution classes: 

 { }1 2( ) : ( ) (1- ) ( ) ( )p e p e p e p eε ε ε= = +P   (23) 

in which the probability density ( )p e  represents a mixture of 
primary probability density 1 1( ) : (0, ( ))p e R kΝ  and 
contaminating probability density 2 2( ) : (0, ( ))p e R kΝ  where 
contamination degree ε  is in range 0 1ε< < , while 1( )R k  
and 2 ( )R k  are covariance matrices of primary and 
contaminating term in non-Gaussian distribution (23), 
respectively. 

In some cases, the fault (k)pf  could be expressed as a 
change in the system parameter, for example a change in the 

thi  row and thj  column element of the matrix A , the system 
can then be described as (19-20), see Fig.3. 

 
Figure 3. Open-loop system with parameter faults in the system 

This approach is based on the assumption that the faults are 
reflected in the physical system parameters such as friction, mass, 
viscosity, resistance, inductance, capacitance, etc. As indicated, 
the linear state space model is often specified up to the value of 
some parameters ( )kθ . Since matrices A, B and D are dependent 
of parameters ( )kθ  and due to multiplying with state vector 

( )x k , the system (19, 20) is nonlinear. Hence, to obtain the 
parameter estimation recursively, we shall consequently face 
with a general nonlinear filtering problem.  

Our goal is to derive the robust algorithm for state and 
parameter estimation of stochastic linear systems in the 
presence of outliers which maintains a low sensitivity in 
appearance of outliers. Using the joint state-parameter 
formulation, a unified estimation of states and parameters has 
been achieved. It is completely natural to put the parameters 
in the vector of states, after which the problem is reduced to 
the classic filtering problem of k th−  order unified system 
(where k n p= + , in which n  is a number of estimated states 
and p  is a number of estimated parameters).  

The robust extended Kalman filter can be used to estimate 
states and parameters of linear stochastic systems, after the 
joint state-parameter formulation: 

   ( )
1

1

( ( 1), ( 1), ( 1)) ( 1)( ) ( 1) ( 1)
k

k

f x k u k k w kz k g k k
θ

θ η
−

−

− − − −⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦
 (24) 

The extended system is given in a more compact form: 

 1( ) ( ( 1), ( 1), ( 1)) ( 1)kz k q z k u k k kθ ξ−= − − − + −  (25) 
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 ( ) ( ( ), ( )) ( )ky k h z k k e kθ= +   (26) 

where ( )z k  denotes the extended state vector 

( ) [ ( ) ( )]T T Tz k x k kθ= , ( 1)kξ −  represents extended 

disturbance vector ( 1) [ ( 1) ( 1)]T T Tk w k kξ η− = − − , in 
which 

 ( ) : (0, ( ))k N kξ Ξ  and ( ) 0( ) 0 ( )
Q kk k
⎡ ⎤Ξ = ⎢ ⎥Φ⎣ ⎦

. (27) 

Based on extended robust filter which is proposed in [19], 
the robust algorithm for states-parameters estimation of 
system (25, 26) has the following form: 

 1ˆ ˆ( 1) ( ( 1 1), ( 1), ( 1),0)kz k k q z k k u k kθ−− = − − − −  (28) 

 ( 1) ( 1) ( 1 1) ( 1)
( 1) ( 1) ( 1)

T

T
P k k F k P k k F k

L k k L k
− = − − − − +

+ − Ξ − −
 (29) 

 ( ) ( 1) ( ) ( )T T TK k P k k H k T k= −  (30) 

 [ ]ˆ( ) ( ) ( ) ( ( 1), ( ),0)kk T k y k h z k k kν θ= − −  (31) 

 ( )ˆ ˆ( ) ( 1) ( ) ( )z k k z k k K k kν= − + Ψ  (32) 

 '( ) ( 1) ( ) ( ( )) ( )TP k k P k k K k k K kν= − − Ψ  (33) 

 ( )
( )

( )

'
1

'

'

( ) 0
( ) 0 0

0 ( )r

k
k

k

ψ ν
ν

ψ ν

⎡ ⎤
⎢ ⎥Ψ = ⎢ ⎥
⎢ ⎥⎣ ⎦

…
%
…

  (34) 

 
1
2

1( ) ( ) ( 1) ( ) ( ) ( ) ( )T TT k H k P k k H k V k R k V k
−

⎡ ⎤= − +⎣ ⎦  (35) 

where 

[ ]

ˆ ˆ( ) ( )

ˆ( 1)

ˆ( 1)

( ) ( )
( ) ; ( )0

( ) ( ) ( ) ; ( )

k k
z k k z k k

p

n p

k
z k k

k
rz k k

A k F kq qF k L kIz
I
hH k D k H k V kz
h I

θ

θ

ξ

υ

+

−

−

∂ ∂⎡ ⎤= = = =⎢ ⎥∂ ∂⎣ ⎦
=
∂= = =
∂
∂= =
∂

(36) 

Initial conditions are: 0ˆ 0z =  and 0
0

0

( ) 0
0 ( )

P xP P θ
⎡ ⎤= ⎢ ⎥⎣ ⎦

. 

Here ˆ( )z k  is the estimate of extended state vector, and 
generally, ( )P k  denotes the filter covariance matrix 

( )( ){ }ˆ ˆ( ) ( ) ( ) ( ) ( ) TP k E x k x k x k x k= − − . In relation (31), 

( )kν  represents transformed residuals ( )kε =  
ˆ( ) ( ) ( 1 1)y k H k z k k= − − − . In order to fulfill the conditions 

of symmetry of certain probability densities and conditions 
for marginal probabilities, the transformation ( )T k  has been 
included in the residual [18]. 

For the class of ε-contaminated distributions of 
probabilities, the nonlinear transformation of prediction error 

( )ψ ⋅  (Huber’s function), is obtained using game theory in 

statistics [17] 

 { }( ( )) min ( ), sgn( ( ))k k k kεψ ν ν ν=  (37) 

and its derivative: 

 {' 1 ( ) ,( ( ))
0 .

k kk
otherwise

ενψ ν <=  (38). 

in which kε  is an appropriately defined parameter of Huber’s 
function, see Fig.4.  

The following relation determines the relationship between 
the contamination degree ε and the parameter kε  of Huber’s 
function [17]: 

 2

'

2

( ) 2 ( ) ,1

1( )
2

N
N

x y

N

k kk

x e dy

ε
ε

ε

ε
ε

π
−

−∞

Φ − Φ − =
−

Φ = ∫
 (39) 

in which NΦ  represents the standard normal cumulative 
distribution function. 

 
Figure 4. Huber’s function and its derivative 

It can be shown that the mathematical expectation and the 
covariance matrix of transformed residuals 

ˆ(k) ( ) ( ) ( 1 1)y k H k x k kε = − − −  are: 

 { } { }( ) ( ) ( ) 0E k T k E kν ε= =  (40) 

 { }
1

2 2 2
1( ) ( ) ( ) (k 1) ( ) (k)TE k T k H k P k H k Rν

−
⎡ ⎤= − +⎣ ⎦ (41) 

Therefore, in case that transformation ( )T k  is: 

 
1/2

1( ) ( ) (k 1) ( ) (k)TT k H k P k H k R
−

⎡ ⎤= − +⎣ ⎦   (42) 

the covariance matrix of the transformed residuals will be I . 
The following block structure of the matrix gain and 

covariance matrices is in accordance with the joint state-
parameter formulation (24): 
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1 2

2 3

1 2

2 3

( )( ) ,( )

( 1) ( 1)
( 1)

( 1) ( 1)

and

( ) ( )
( )

( ) ( )

T

T

N kK k M k

P k k P k k
P k k

P k k P k k

P k k P k k
P k k

P k k P k k

⎡ ⎤= ⎢ ⎥⎣ ⎦

− −⎡ ⎤
− = ⎢ ⎥− −⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (43) 

Keeping this in mind, estimates of a priori and a posteriori 
extended state vectors, relations (28) and (32), are given by 
the following relations: 

1
ˆˆ( ( 1 1), ( 1), ( 1 1))ˆ( 1) ˆ( 1 1)

kf x k k u k k k
z k k

k k
θ

θ
−⎡ ⎤− − − − −

− = ⎢ ⎥
− −⎢ ⎥⎣ ⎦

 (44) 

 ( )[ ]
ˆ( 1) ( )ˆ( ) ( )ˆ ( )( 1)
x k k N kz k k kM kk k

ν
θ

−⎡ ⎤ ⎡ ⎤= + Ψ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦
 (45) 

Now, it is easy to express the estimates of the state and 
parameter vectors: 

 
( )

1
ˆˆ ˆ( ) ( ( 1 1), ( 1), ( 1 1))

( ) ( )
kx k k f x k k u k k k

N k k
θ

ν
−= − − − − − +

+ Ψ
 (46) 

 ( )ˆ ˆ( ) ( 1 1) ( ) ( )k k k k M k kθ θ ν= − − + Ψ  (47) 

In this way, the robust algorithm for the states-parameters 
estimation of linear stochastic systems with parameter faults, 
has been derived.  

Simulation results 
Determination of exact state and parameter values of the 

valve-controlled hydraulic cylinder is a basic prerequisite for 
a high-quality synthesis of control algorithms and an adequate 
choice of controller parameters. This causes energy savings in 
processes of production, transportation, and energy 
consumption, and in special, in energy and working machines.  

Adopted sampling time is 0.01sT s= . The model 
parameters are: 82.1 10 Paeβ = ⋅  is the bulk modulus of the 

fluid, 110eK −=  denotes the load spring gradient, extF  
represents the load force disturbance on the piston, 

40Sp bar=  is the supply pressure, and 0 1.7p bar=  is the 

tank pressure, 6 3
0 0 8 10a bV V m−= = ⋅  represent initial chamber 

volumes, 1L m=  is the piston stroke, 20m kg= is the piston 
mass. The area ratio of the asymmetric piston is b aA Aα = , 

where 4 22.36 10bA m−= ⋅  is the effective area of the head side 
of the piston, and 4 24.91 10aA m−= ⋅  is the effective area of 
the rod side of the piston. Discharge coefficients of valve 
orifices 1.14vic > , 1, 2,3, 4i =  represent valve constants, and 

145 10Lic −= ⋅  is the internal leakage coefficient. The term 
2( )fF x  in equation (17) describes the summing nonlinear 

effects of viscous, static and Coulomb friction forces of the 
system.  

 
2

2 2 2 0 0( ) ( ) s

x
c

f c c sF x B x sign x F F e
−⎡ ⎤

= + +⎢ ⎥
⎢ ⎥⎣ ⎦

  (48) 

in which 220 /CB Ns m=  is the parameter for viscous 
friction, 0 50cF N=  is the parameter for Coulomb friction, 
and 0 30sF N=  and 0.015sc m s=  are parameters for static 
friction. The detailed analysis for the influences of friction 
forces can be found in [20]. 

Since the linear state space system with parameter faults is 
considered, we need to apply the extended Kalman filter 
based algorithm. Following results demonstrate superiority of 
the proposed robust estimation algorithm in the presence of 
non-Gaussian noises in relation to the estimation algorithms 
based on widely-used extended Kalman filter and extended 
Masreliez-Martin filter. Behavior of the algorithm will be 
considered on: 

 

1 1
7

12 2

2 33 3

1
4 1

2
2

4 3

1 0.01 0( 1) ( )
0 2.4 10( 1) ( )
0( 1) ( )

0 0 ( )( )0 5 10 ( )( )0 ( )

x k x k
px k x k
p px k x k

w ku k w ku kp w k

−

−

⎡ ⎤+⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ ++
⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥+ − ⋅ +⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦

 (49)  
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 (50) 

The features of the proposed robust algorithm are 
considered on the model whose time-varying parameter vector 
has expected value: 

 [ ]0.88 0.87 1.79 1.21 Tθ = −  (51) 

The process noise ( )w k  is zero-mean white noise with 
covariance matrix: 
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 (52) 

The covariance matrix of parameters has the form: 
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  (53) 

The non-Gaussian distribution of the measured noise is 
given by  

{ }1 1 1

2 2 2

( ) (1 ) (0;0.0001) (0;0.01),
( ) (1 ) (0;0.0001) (0;0.01)

p
pε
ν ε ε
ν ε ε

= − ⋅ + ⋅=
= − ⋅ + ⋅

Ν ΝP Ν Ν  (54) 

For the purpose of illustrating estimation quality, mean 
square error (MSE) is used as follows: 

 ( )2ˆln E ( ) ( )MSE z k z k= −   (55) 

The system outputs, estimates of states and parameters, as 
well as mean square errors in case when contaminations have 
values 1 2 0.15ε ε= =  are shown in Figures 5-8. 
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Figure 5. System output signals 

 
Figure 6. States estimates (solid line: Proposed robust algorithm, dashed line: 
Algorithm based on extended Masreliez-Martin filter, dash-dot: Algorithm 
based on extended Kalman filter, dotted line: True values of states). 

 
Figure 7. Parameters estimates (solid line: Proposed robust algorithm, dashed 
line: Algorithm based on extended Masreliez-Martin filter, dash-dot: Algorithm 
based on extended Kalman filter, dotted line: True values of states). 

 
Figure 8. Mean square errors 

The presented results have shown that the widely-used 
extended Kalman filter (EKF) is very sensitive to the presence 
of non-Gaussian noises, as opposed to the proposed robust 
estimation algorithm. In order to show robustness of the 
proposed robust estimation algorithm for systems with 
parameter faults in relation to other conventional and widely-
used estimation algorithms as well as some modern filters, the 
algorithms are run 50 times independently, for different 
contamination degrees. Furthermore, it is particularly 
important to note that the proposed robust estimation 

algorithm for systems with parameter faults (REA) keeps high 
performances in relation to joint estimation algorithms based 
on modern filters such as particle filter (PF). Table 1 provides 
statistical data based on 1000 iterations. 

Table 1. Mean square errors for different degrees of contaminations. 

Estimation algorithms Mean Best Worst Variance 

Case I Contamination degree ε=0.05 

EKF -1.4246 -1.6615 -1.0493 0.0110 
PF -2.3275 -2.6391 -2.1653 0.0112 

EMMF -2.8431 -3.0315 -2.5911 0.0095 
REA -4.2473 -4.4349 -3.9921 0.0077 

Case II Contamination degree ε=0.1 

EKF -0.8371 -1.0913 -0.5615 0.0119 
PF -1.3791 -1.7025 -1.1411 0.0114 

EMMF -2.6544 -2.9043 -2.5288 0.0101 
REA -3.8731 -4.1006 -3.6747 0.0083 

Case III Contamination degree ε=0.2 

EKF -0.7171 -0.9256 -0.4417 0.0129 
PF -1.0461 -1.2856 -0.8474 0.0120 

EMMF -2.4136 -2.6036 -2.1280 0.0105 
REA -3.2892 -3.5101 -3.0779 0.0090 

From Table 1, it can be seen that the worst results obtained 
by the proposed robust algorithm is even better than the best 
result obtained by others, at a certain contamination degree. 
Furthermore, from Table 1, it can be clearly seen that the 
superiority of the proposed robust algorithm is greater in 
higher degrees of contamination.  

Conclusions 
An application of the proposed robust algorithm to 

identification of hydraulic servo cylinders is considered. 
Namely, due to impossibility of direct measurement or 
calculation of dimensions of certain components, leakage 
coefficients or friction coefficients, it was supposed that 
parameters of the hydraulic servo system are stochastic. 
Change of parameters of the model was described by random 
walk. Because nonlinear models can be approximated by a 
linear model with time-varying parameters, the nonlinear 
model of the hydraulic cylinder was approximated with time-
varying linear model. For this purpose, the state and 
parameter robust estimation algorithm in presence of non-
Gaussian noises has been proposed. Since the system is 
described with a stochastic model with variable parameters, 
robust Kalman filters were the natural frame for identification. 
Because of their good features in robust filtering, the modified 
extended Masreliez-Martin filter was used as a basis in 
formulating the joint robust estimator of linear stochastic 
systems. The benefits of the proposed robust algorithm were 
illustrated through intensive simulations. 
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Robusna identifikacija za detekciju otkaza i dijagnostiku 
hidrauličkog servo cilindra 

Intenzivna istraživanja u oblasti matematičkog modelovanja hidrauličnih servo sistema pokazala su da njihovi matematički 
modeli imaju mnogo bitnih detalјa koji se ne mogu uklјučiti u model. Zbog nemogućnosti direktnog merenja ili izračunavanja 
dimenzija pojedinih komponenti, koeficijenata curenja ili koeficijenta trenja, pretpostavlјa se da su parametri hidrauličnog 
servo sistema slučajni (stohastičke prirode). Sa druge strane, dobro je poznato da se hidraulični servo cilindar može 
aproksimirati linearnim modelom sa vremenski promenlјivim parametrima. Procena stanja i vremenski promenljivih 
parametara linearnih sistema u prostoru stanja je od velike važnosti za detekciju i dijangnostiku kao i za upravljanje koje je 
tolerantno na otkaze. Prethodni radovi na ovu temu razmatraju zajedničku procenu u okruženju Gausovih šumova, ali ne i u 
prisustvu autlajera. Poznata je činjenica da merenja sadrže nekonzistentne opservacije u odnosu na glavninu populacije 
opservacija (autlajeri). Oni mogu značajno pokvariti svojstva linearnih rekurzivnih algoritama koji su projektovani da rade u 
prisustvu Gaussovih šumova. U ovom radu je predložena strategija zajedničke robusne procene parametara i stanja linearnih 
modela u prostoru stanja u prisustvu negausovih šumova. Razmatran je slučaj robusne procene stanja i parametara linearnih 
sistema sa greškama parametara. Zbog svojih dobrih karakteristika u robusnoj filtraciji, prošireni Masreljez-Martinov filtar 
predstavlјa osnovu za realizaciju robusnog algoritma. Dobre osobine predloženog robusnog algoritma za identifikaciju 
hidrauličnog servo cilindra ilustrovane su uz pomoć intenzivnih simulacija. 

Kljične reči: robusna identifikacija, hidraulični servo cilindar, linearni stohastički sistemi, detekcija otkaza, negausovi šumovi. 

 


