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In this paper a closed-loop PDα  - type iterative learning control (ILC) of fractional order linear singular time-delay system is 
considered. The sufficient conditions for the convergence in time domain of the proposed PD-alpha type ILC for a class of  
fractional order singular system are given by the corresponding theorem together with its proof. Also, for the first time, we 
proposed a proposed ILC PDα  type for a given class of uncertain, fractional order, singular systems. Finally, the validity of 
the proposed PDα  ILC scheme for a class of fractional order singular time-delay system is verified by a numerical example. 
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Introduction 
TERATIVE learning control (ILC) is one of the recent 
topics in control theories which belongs to the intelligent 

control methodology[1-4]. Conventional control algorithms 
do not take advantage of the repetitiveness and ILC is a 
powerful control concept that iteratively improves the 
behavior of processes that are repetitive in nature. Iterative 
learning control was described by Uchiyama in 1978 [5] in 
Japanese, but only few people noticed it. Arimoto et al. [6] 
developed the ILC idea and studied the effective control 
algorithm for robotic system, and now it has become a hot 
issue in the field of control theory and has attracted broad 
attention over the past decades. ILC is an approach for 
improving the transient performance of systems that operate 
repetitively over a fixed time interval. Emulating human 
learning, ILC uses knowledge obtained from the previous trial 
to adjust the control input for the current trial so that a better 
performance can be achieved. Namely, ILC is a trajectory 
tracking improvement technique for control systems, which 
can perform the same task repetitively in a finite time interval 
to improve the transient response of a system using the 
previous motion. The key theme of ILC is to compose an 
upgraded control command for the next operation with its 
own proportional, integral, and/or derivative tracking errors at 
the previous operation. The objective is that the sequential 
ILC inputs stimulate the system to track a desired trajectory as 
perfect as possible as the operation approaches infinity [7]. It 
has been widely acknowledged that ILCs perform well for 
general dynamical systems [8,9]. 

Also, ILC requires less a priori knowledge about the 
controlled system in the controller design phase and also less 
computational effort than many other kinds of control. The 
study of ILC is of great significance for dynamic systems with 
complex modeling, uncertainty and strong nonlinear coupling, 

see [10,11].  
Since theories and learning algorithms on ILC were firstly 

proposed, ILC has attracted considerable interests [4] due to 
its simplicity and effectiveness of learning algorithm, and its 
ability to deal with problems with nonlinear, time-delay, 
uncertainties and recently singular systems. Namely, delay is 
very often encountered in different technical systems. It is of 
great significance to study time-delay systems in theory and 
practice, because the existence of pure time delay, regardless 
if it present in the control or/and state, may cause undesirable 
system transient response, or generally, even an instability. 
This motivates researches on iterative learning control to 
focus on systems with time delay [12]. 

During the past years, singular systems also known as 
differential-algebraic systems, semistate systems, descriptor 
systems, or generalized state-space systems have attracted 
considerable attention because of their significant applications 
in diverse areas [13-16]. Practically, many physical systems 
can be better described by singular systems than by regular 
systems. The conception about singular systems was 
originally put forward in 1974 [17]. Singular systems have 
more essential differences than the normal systems, due to the 
fact that singular systems can preserve the structure of physical 
systems and impulsive elements, and are widely applied in 
many practical control systems such as electrical network [17], 
power systems, robotic systems[18] economic systems, 
chemical processes, and network analysis [19]. Naturally, 
many theoretical results for regular systems have been 
extended to singular cases. In that way, issues of concern for 
singular systems are much more complicated than those for 
regular systems, because we need to consider not only 
stability, but also regularity and the absence of impulses at the 
same time for singular systems.  

From the control point of view it is also necessary to study 
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the ILC for singular systems.When dealing with the ILC issue 
of singular systems, it becomes far more interesting and 
challenging, and the ILC problem of such systems has been 
widely discussed so far. In [20] the convergence results for a 
continuous linear time-invariant singular system is proposed 
by the close-loop PD-type iterative learning control algorithm. 
Further, in [21], a new iterative learning control algorithm to 
study the state tracking for a class of singular systems is 
proposed and the convergence of the algorithm is completely 
analyzed. In [22], they proposed PD-type ILC algorithm to 
study the state tracking problem for a class of discrete 
singular systems, then the convergence analysis of the 
presented algorithm is given in detail.  

Recently, fractional calculus and fractional difference 
equations have attracted lots of authors in the past years  
[23-28], because they have been proved to be valuable tools in 
the modeling of many phenomena in engineering, physics, 
science, control, and they also provide an excellent tool to 
describe the hereditary properties of various materials and 
processes. Moreover, an increasing attention has been paid to 
fractional calculus (FC) and its application in control and 
modeling of fractional order singular system [29-32]. 
However, there are few works on the problems for singular 
fractional order systems with time delay as reported in the 
current literatures [33-35]. Besides, the fractional order 
iterative learning control is the latest trend in ILC research, it 
not only retains the advantages of the classical ILC, but also 
offers potential for better performances in a variety of 
complex physical processes. Even since the above literature 
suggested this good learning performance, there have been 
made some efforts to synthesize a better FOILC updating law 
for various types of fractional order systems, and we have 
witnessed some progress in the previous years, [36-47]. For 
example, a fractional-order D-type ILC algorithm was 
proposed in the frequency domain [36], and the convergence 
was investigated by means of the recursively direct 
discretization technique. The pioneer exploitation in the time 
domain was the fractional-order PD-type ILC algorithm for a 
class of fractional-order linear system, where the sufficient 
convergence of the algorithm was analyzed [37]. 

The most of the existing fractional-order ILC methods for 
fractional-order systems only focus on the non-singular 
systems. Moreover, an increasing attention has been paid to 
fractional calculus (FC) and its application in control and 
modeling of fractional order singular system [48-51]. 
Motivated by the mentioned investigations of ILC algorithms 
for classical singular systems, as well as ILC fractional order 
control in the tracking problems of these systems and taking 
into account that fractional-order models of these systems can 
be presented  as singular systems of fractional order, for the 
first time, ILC for fractional order singular systems is 
suggested in paper [48]. Namely, we presented and 
considered in [49], robust iterative learning feedback control 
second-order for fractional order singular systems, and 
recently in [50] (P)-PDα type ILC control as well as open-
closed-loop fractional-order iterative learning control for 
singular fractional order system [51]. Also, some preliminary 
results are presented in [52] for the for singular fractional 
order  time-delay system. 

As a result, in this paper, closed-loop iterative learning 
control PDα type for given fractional-order linear singular 
time-delay system described in the form of state space and 
output equations is suggested and considered. Sufficient 
conditions are derived in time domains which are our main 
contributions. Finally, we demonstrate the effectiveness of our 
proposed controller with simulation studies.  

The remainder of this paper is arranged as follows: in 
Section Preliminaries, some preliminaries for λ -norm as well 
as the fractional Caputo operators are presented. In Section  
Convergence analysis of PDα  type iterative learning control, 
the first main result is derived where the convergence is 
guaranteed by mathematical proof rigorously, which includes 
the extensions of some of the basic result ILC of singular 
fractional-order systems with order α ∈  (0, 1) to fractional-
order singular system  with time-delay. Further, it is presented 
the second main result in same manner where it is considered 
now, singular uncertain fractional order time-delay system. In 
section Simulation results a suitable numerical examples are 
included to illustrate the performance of the proposed PDα  
ILC scheme. Finally, the last section summarizes this work. 

Preliminaries 

The λ  - norm, maximum norm, induced norm 
For later using in proving the convergence of proposed 

learning control, the following norms are introduced [3] for 
n  - dimensional Euclidean space nR : the sup-
norm,

1
sup i

i n
x x∞

≤ ≤
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Property 1: λ norm has the next property 
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Induced norm of a matrix A is defined as: 

 sup : with 0
Ax

A x X xx
⎧ ⎫= ∈ ≠⎨ ⎬
⎩ ⎭

 (3) 

where ( ).  denotes an arbitrary vector norm. In case ( ). ∞
 it 

follows that  

 Ax A x∞ ∞ ∞≤ , (4) 

where A ∞  denotes the maximum value of the matrix A. For 
the previous norms, note that  

 ( ) ( ) ( )Th t h t e h tλ
λ λ∞

≤ ≤ . (5) 

The λ  - norm is thus equivalent to the ∞ - norm. For 
simplicity, in applying the norm ( ). ∞

 the index ∞  will be 
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omitted. Before giving the main results, we first give the 
following Lemma 1, [3]. 

Lemma 1. Suppose a real positive series { }1na ∞  satisfies  

 1n na aρ ε−≤ +  (6) 

where 0, 0ρ ε≥ ≥  and 1ρ < . Then the following holds: 

 ( )lim / 1nn
a ε ρ

→∞
≤ − . (7) 

One can notice that in case of 0, lim 0nn
aε

→∞
= → .  

Fractional calculus- Caputo operator 
Fractional calculus (FC) is a mathematical topic with more 

than 300 years old history, but its application to physics and 
engineering has been reported only in the recent years. The 
fractional integro-differential operators are a generalization of 
integration and derivation to non-integer order (fractional) 
operators [23-28]. The three most frequently used definitions 
for the general fractional differ-integral are: the Grunwald-
Letnikov (GL) definition, the Riemann-Liouville (RL) and the 
Caputo definitions, [23-28]. The definition of fractional integral 
is described by: 

 ( ) ( ) ( ) ( )0

0

11 , 0
t

t t

t

D f t t f dαα τ τ τ α
α

−− = − >
Γ ∫  (8) 

where ( ).Γ  is the well-known Euler’s gamma function, which 

is defined by ( ) 1

0

z zz e t dt
∞

− −Γ = ∫ . In this paper, Caputo 

fractional-order operator is used, where definition of the left 
Caputo fractional-order derivatives is given [14, 15] as 
follows:   
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where ( ) ( ) ( ) /n n nf d dτ τ τ= , is the classical n-order 

derivative, 1n nα +− ≤ < ∈Z . In the case 1n =  we have 
0 1α≤ <  as well as 
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0
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In the following sections, Dα  will denote 0
C

t tDα  for brevity 
of notation. 

Description of Fractional order  linear singular time–delay 
system  

In this paper, a non-integer (fractional) order singular time 
delay system is considered. Some examples of fractional order 
singular time delay systems are presented in [33-35]. To 
explain the essence of our proposed learning control, consider 
a following non-autonomous fractional order linear singular 
time-delay system (FOLSTDS) described by the pseudo-state 
space equations 

 ( )0 ( ) , 0 11ED (t)= A x t A x t Bu(t)α τ α+ − + < <x  (11) 

 ( ) ( ),t C t=y x  (12) 

with associated consistent function of initial state 

 ( ) ( ), 0.xx t t tψ τ= − ≤ ≤  (13) 

Here, for singular systems mentioned above, matrix E is 
considered to be singular, i.e., [ ]rank E r n= < , otherwise, 
the system (11) reduces to a standard (normal) system. In 
practical system analysis and control system design, some 
system models may be established in the form of (11, 12) 
while they could not be described by standard forms. Here, 
we are interested in dynamical behavior of system (11) over 
time interval [ ]0, ,J T J R= ⊂ , where i  denotes the iteration 

index or the operation number, ,n
ix R∈  m

iu R∈  r
iy R∈  are 

the state, control input and output of the system, respectively; 
0 ,n nA R ×∈  1

n nA R ×∈ . n mB R ×∈  , r nC R ×∈  are constant 
matrices as well as E  is a singular square matrix. Also, Dα  
denotes the α  th-order Caputo fractional derivative, 
0 1α< < , , and Tτ ≤  denotes pure time-delay.  

Definition 1. a)The SFOS system (11) is said to be regular 
if ( )det 0s E Aα − ≠ . 

b) The  SFOS system (11) is said to be impulse free if  (11) 
is regular and ( )( )deg det s E A rankEα − = . 

Lemma 2. The triplet ( ), ,E A α  is called regular if and only if 

( )det 0s E Aα − ≠  for some s ∈C , [33-35]. 

Also, if triplet ( ), ,E A α  is regular, we call SFOS system 
(11) regular, and consequently SFOS system is solvable.  

Here, t  is the time in the operationinterval [ ]0 0,J t t T= + , 
J R⊂ , as well as A, B and C are matrices with appropriate 
dimensions. It is assumed that det 0E =  as well as SFOS 
system is regular. Throughout this paper, let [ ]( ),0 , n

MC Rτ−  
be the space of all continuous functions mapping the interval 
[ ],0 into n

M Rτ− , where the consistent initial function 

( ) [ ]( ). ,0 , n
x MC Rψ τ∈ − . Consider the following initial value 

problem (IVP) for fractional order nonsingular time delay 
system:  

    ( )0 1 , 0 1MD (t)= A x(t)+ A x(t - ) Bu tα τ α+ < <x  (14) 

 ( ) ( ), 0.x Mx t t tψ τ= − ≤ ≤  (15) 

It is well known that the initial value problem (IVP) (11) is 
equivalent to the following Volterra integral equation with 
memory  
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0 1
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t

x M

t

A x s
x t t t s A x s ds

Bu s

αψ τ
α

−
⎛ ⎞
⎜ ⎟= + − + −
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∫  (16) 

and  its solutions are continuous [53]. As discussed in paper 
[33], applying the method of steps, we obtain the following 
Lemma 2 which generalizes well-known  results of integer-
order singular systems without delay[13] to fractional-order 
singular delay differential systems [54].  

To obtain our main result, the following useful lemma is 
first listed. 

Lemma 3. (see [52]) Assume that (E, A) is regular and 
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( ) [ ]( ),0 , n
x Mt C Rψ τ∈ −  is the consistent initial function, 

then system (11) has a unique solution on [ ]0, +∞ . 
The following assumptions on the system (11), (12) are 

imposed. 
A1. The desired trajectories ( )dy t , ( )dx t  are 

continuously  differentiable on [ ]0,T . 

A2. The desired output trajectory ( )dy t  is reachable, that 

is there exists a control input ( )du t  such that  

 0 1( ) ( ) ( ),
0 1

d d d dED (t)= A x t A x t Bu tα τ
α

+ − +
< <

x  (17) 

 ( ) ( )d dy t Cx t=  (18) 

A3. The system (7) is causal, and when 0t < , is assumed 
( ) ( )i dt tψ ψ=  [ ],0Mt τ∀ ∈ −  where ( ) ( )i ix t tψ=  

[ ],0Mt τ∀ ∈ −  is the initial function of system (11) at i th−  

iteration, as well as ( ) ( )0 0i dx x= , 0,1, 2,...i = , holds for all 
iterations. 

A4. SFOS system is controllable and observable. 

Convergence analysis of PDα  type iterative 
learning control  

In this section, the convergence of ILC scheme given in the 
previous section is investigated. In order to track the desired 
output trajectory ( )dy t , and due to the complicity of the 
system (11), we take into account the PDα -type ILC 
algorithm to derive the control input sequences ( )iu t  such 
that the system output ( )iy t  tracks the desired output 
trajectory ( )dy t  as accurately as possible when i  goes to 
infinity for all [ ]0,t T∈ .  

Here, the following fractional order PDα  learning 
algorithm is considered which comprises control law a closed-
loop PDα  law. In that way, closed-loop fractional order 
PDα  learning algorithm takes the form of  

 1 1 0 1( ) ( ) ( ) ( )i i i t iu t u t e t D e tα
+ + += + Γ ⋅ + Π ⋅ , (19) 

where ,Γ Π are gain matrices of appropriate dimensions, 
( )u t  the value of the function at time. The expression 
( ) ( ) ( )i d ie t y t y t= −  denotes the tracking error of the 

fractional order singular system at i th−  iteration.  
First of all, let us consider the updating law (19) and 

system (11), (12). A sufficient condition for convergence of a 
proposed feedback ILC is given by Theorem 1 and proved as 
follows.  

Theorem 1: Consider the fractional order linear singular 
time–delay system governed by (11), (12) to which an closed-
loop PDα -type ILC algorithm (19) is applied, and assume 
that assumptions (A1)–(A4) are satisfied. If matrix Π , exist 
provided that 

 1I CB ρ− Π ≤ <⎡ ⎤⎣ ⎦ , (20) 

where is ( ) 1B E B C −= + Π  and matrix Π  is such that so 

( )E B C+ Π  is invertible, then, when i → ∞  the bounds of the 

tracking errors ( ) ( )d ix t x t− , ( ) ( )d iy t y t−
 

( ) ( ) ,d iy t y t−  converge asymptotically to zero. 

Proof. Let  
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It follows from (18) and (21) one observes that tracking error 
is: 
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Substituting (23) into (24) we have  
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Using suitable gain matrix Π , as well as taking into 
account previously introduced assumptions, one can 
determine  matrix ( )E B C+ Π as invertible. Multiplying on the 

left side expression (25) by ( ) 1E B C −+ Π it is not difficult to 
get 

 ( ) ( ) ( )( )
0 1 1 11 i i M iix A x t A x t B u tαδ δ δ τ δ+ ++ = + − +  (26) 

where are  
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By (21) via (26), we get (28)  
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Taking the standard norm, (.) of the above equation, and 
using the condition of Theorem 1, we find  
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where 

 0 0 1 1,C CA CAβ β⎡ ⎤= Γ + Π = Π⎣ ⎦   (30) 

Also, one can write the solutions of (24) in form of the 
equivalent Volterra integral equations and applying Lemma 2. 
and assumption A3, as:  
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Applying the norm ( ).  on the equation (31), we derive:  
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where 0a A= , 1 1a A= , b B= . Moreover, taking λ  
norm, we have 
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Furthermore, due to the fact 
( ) ( )1 1i M ix t x tλδ τ δ λ+ +− ≤ , it holds that 
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⎜ ⎟≤ ⎜ ⎟
⎜ ⎟+⎝ ⎠

−
⋅

Γ∫ ∫
 (35) 

which implies that 

 ( )( )
( ) ( )( )

1 0 1 1( ) ( ) ( )

1 / 1 .

M
i i i

T

x t a a e x t b u t

T e

τ
λ λ λ

α λ

δ δ δ

λ α

−
+ +

−

≤ + + ⋅

− Γ +
 (36) 

Introducing ( )1O λ− , as 

( ) ( ) ( )( )1 1 / 1TO T eα λλ λ α− −= − Γ + , which implies that (33) 
simplifies to  

 ( ) ( )0 1 1 1
1

( )
( )

( )

M
i

i
i

a a e x t
x t O

b u t

τ
λ

λ
λ

δ
δ λ

δ

−
+ −

+
⎛ ⎞+

≤ ⋅⎜ ⎟⎜ ⎟+⎝ ⎠
 (37) 

Consequently, it follows that 

 
( )

( ) ( )( )
( )

1

1 1
0 1

1

( )
( )

1

( )

M

i
i

i

bO u t
x t

a a e O

O u t

λ
λ τ

γ λ

λ δ
δ

λ

λ δ

−

+ − −

−

≤ ≤
− +

≤

 (38) 

It then follows that there exists λ  large enough such that 

 ( ) ( )( )0 11 1 0M Ta a e e Tτ λ αλ α − −Γ + − + − >  (39)  

Summarizing, we see that taking the λ  - norm again on the 
expression (29) leads to: 

  ( ) ( ) ( ) ( )1 0 1 1
M

i i iu t u t e x tτ
λ λ λδ ρ δ β β δ−

+ +≤ + +  (40) 

Concerning equations (36) and (38) we have  

 ( ) ( )( )1
1 0 1

M
i i

i

u e O u
u

τ
γλ λ

λ

δ ρ β β λ δ
ρ δ

− −
+ ≤ + +

′=
 (41) 

It then follows that there exists λ  large enough such that 

 
( ) ( )( )1

0 1 1Me Oτ
γρ ρ β β λ− −′ = + + <

 (42) 

Therefore, according to Lemma1, [4] it can be concluded 
that: 

 lim 0i
i

u λδ
→∞

→ , (43) 

Moreover, due to the uniqueness and existence theorem for 
fractional order singular system, [32, 33] one can conclude 
that 

 
lim ( ) ( ),i d
i

x t x t
→∞

= lim ( ) ( ),i d
i

y t y t
→∞

=
 (44) 

This completes the proof.  
Further, we consider the case of the fractional order 

( )0,1α ∈  uncertain singular system nonautonomous singular 
linear system which can be written as pseudo state space 
equation and output equation: 

 ( )0 !( ) ( ) ( ) ,
0 1

ME D (t)= A x t Ax t Bu t tα τ η
α

+ − + +
< <

x  (45) 

 ( ) ( ),t C t=y x  (46) 

 
with associated consistent function of initial state (13). 
Function ( ) n

i t Rξ ∈  represents uncertainty of the system, and 
introduces next assumption: 

A5. The uncertainty term ( ) n
i t Rξ ∈  is bounded as 

follows, [ ]0,t T∀ ∈  and ( ) ,ii t dξξ∀ → ≤  where dξ  is 
positive constant. 

Before giving the other main result, we give the following 
Lemma 4 [55]: 

Lemma 4. Suppose a real positive series { }1na ∞  satisfies  

 1 1 2 2 ...
( 1, 2,..., )

n n n N n Na a a a
n N N

ρ ρ ρ ε− − −≤ + + + +
= + +

 (47) 
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where 0iρ ≥  ( )1, 2,...,i N= , 0ε >  and 
1

1
N

i
i

ρ ρ
=

= <∑ . Then 

the following holds: 

 ( )lim / 1nn
a ε ρ

→∞
≤ −  (48) 

Theorem 2. For the fractional order singular  system (45), 
(46) with the PDα  - type ILC scheme (19), and the 
assumptions A1-A5 where the convergence condition is given 
by (20), then when i → ∞  the bounds of the tracking errors 

( ) ( ) ,d ix t x t−  ( ) ( ) ,d iy t y t−  ( ) ( ) ,d iu t u t−  converge 
asymptotically to a residual ball centered at the origin. 

Proof: The proof follows from the proof of Theorem 1. 
Namely, from (45), (46) one can easily find that  

 ( )
1 1 11 i i iiE x A x B uαδ δ δ ξ+ + ++ = + −  (49) 

Multiplying on the left side expression (49) by 
( ) 1E B C −+ Π  we obtain (50) in the form  

 ( )
1 11 i i iix A x B u Gαδ δ δ ξ+ ++ = + −  (50) 

where we adopted 

 
( ) ( )
( )
( )

1

1

1

,
,

A E B C A B C
B E B C B
G E B C

−

−

−

= + Π − Γ

= + Π Λ

= + Π

 (51) 

By replacing (50) into (25), we obtain  

  1 1 1i i i iu I CB u C CA x CGδ δ δ ξ+ + += − Π − Γ + Π + Π⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  (52) 

Estimating the norms of (52) with ( ).  and using the 
condition of Theorem 2 one gets  

 
1 1 1

0 1 0 1

0 1 0

i i i i

i i i

i i

u u C CA x CG
u x
u x dξ

δ ρ δ δ ξ
ρ δ β δ γ ξ
ρ δ β δ γ

+ + +

+ +

+

≤ + Γ + Π + Π⎡ ⎤⎣ ⎦
= + + ≤
≤ + +

 (53) 

Also, one can write the solutions of (45) in the form of the 
equivalent Volterra integral equations using assumption A5, 
as:  

  ( ) ( ) ( ) ( )
( )

1 1
1

1
0

1( )
t

i i
i

i

A x s B u sx t t s ds
G s

α δ δδ
α ξ

− +
+

+

+⎛ ⎞= − ⎜ ⎟Γ −⎝ ⎠∫  (54) 

In similar manner, applying the norm ( ). on the equation 
(54), if there exists unique solution, [32,33] where 
are, , ,a A b B g G= = =  and applying λ  norm, we have 

 

( )

( )

( )

1
1

0

1
1

0 |
0

1

0

( ) ( )

( ) sup ( ) ( )
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t
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t
t

i i
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a t s x s ds

bx t e t s u s ds

g d
t s ds
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λ α
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δ δ
α

α

−
+

− −
+
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⎧ ⎫
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⎪ ⎪≤ + − +⎨ ⎬Γ⎪ ⎪
⎪ ⎪

⋅⎪ ⎪+ −⎪ ⎪Γ
⎩ ⎭

∫

∫

∫
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δ
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δα

α

−
+−

+
≤ ≤

−
−

≤ ≤

⎧ ⎫− +⎪ ⎪⎡ ⎤≤ +⎨ ⎬⎢ ⎥+Γ ⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫−⎪ ⎪+ ⋅⎨ ⎬Γ⎪ ⎪⎩ ⎭

∫

∫
 (55) 
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≤
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⎧ ⎫−⎪ ⎪+ ⋅ ⎨ ⎬Γ⎪ ⎪⎩ ⎭

∫

∫

  

or,  
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( )

( ) [ ] ( )
( )
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1 1( ) ( ) ( )

1
,

1 1
0,

i i i

T t

x t a x t b u t

e e tT g d
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λ λ λ
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δ δ δ

λ α α

∗
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− − ∗

∗

≤ + ⋅

−
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∈

 (56) 

Defining respectively ( ) ( )1 1O and Oλ λ− ∗ −     as 

 
( ) ( )

( )
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1

1

1
,

1

, 0,
1
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e TO

t
O e t T

λ
α
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λ
α

∗

−
−

∗
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−
=

Γ +

= ∈
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 (57) 

where (56) simplifies to 

 ( ) ( )
[ ] ( )

1
1 1

1

( ) ( ) ( )
,

i i ix t a x t b u t O
g d O

λ λ λ

ξ

δ δ δ λ

λ

−
+ +

∗ −

≤ + ⋅

+ ⋅
 (58) 

then we can get 

 ( ) ( )

[ ] ( )
( ) ( ) [ ] ( )

1
1 1

1
1 * 1

1

( ) ( )
1
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1

i i

b i

bx t u t O
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δ δ λ
λ

λ
λ δ λ

λ

−
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−
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 (59) 

Then, if a sufficiently large λ  is used, one can obtain that: 

 ( ) ( )1 1 0Ta e Tλ αλ α −Γ + − − > . (60)  

Taking the λ -norm of the above, equation (53) leads to: 

 1 0 1i i iu u xλ λ λδ ρ δ β δ δ+ +≤ + +  (61) 

Finally, taking into account (59) we have  

 
( )( )

[ ] ( )
1

1 0
* 1

0

i b i

i

u O u
g d O

u

λ λ

ξ

λ

δ ρ β λ δ

β λ δ
ρ δ ε

−
+

−

≤ + +

+ ⋅ +
≤ +

 (62) 

So that, there exists a sufficient large λ  satisfying 

 ( )( )1
0 1yOρ ρ β λ−′ = + <  (63) 

Therefore, taking into account Lemmas 4,1 [54], it yields: 

 1lim
1i

i
u λδ ε

ρ→∞
≤

′−
, (64) 

This completes the proof of Theorem 2. 
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Remark 1. In the case of no uncertainty, i.e., ( ) n
i t Rξ ∈  

one can obtain that when i → ∞  bounds of the tracking 
errors ( ) ( ) ,d ix t x t− ( ) ( ) ,d iy t y t−  and ( ) ( )d iu t u t−  
converge asymptotically to zero, as stated in Theorem 1, (i.e., 

( ) 0i tξ = ). 

Simulation results 
In this section, we provide an example to illustrate the 

applicability of the proposed method. Consider the following 
fractional order linear singular time delay system in state 
space form described by 

 

( )
( )

( )
( )

( )
( )

( )
( )

0.5
1 1

0.5
22

1 1

2 2

1 0 1 2
0 0 1 1
1 0 1 0
0 1 0 1

M

M

D x t x t
x tD x t

x t u t
x t u t

τ
τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (65) 

 ( )
( )

( )
( )

1 1

2 2

1 0
0 1

y t x t
y t x t

⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 (66) 

where [ ]0,1 ,t ∈  0.5α = , 0.1Mτ =  and  

 ( ) ( )1 2 0.1d dt t tψ ψ= = − , 0.1 0t− ≤ ≤ .  (67) 

The desired trajectories are given by  

 ( ) ( )1 1.5 1dy t t t= ⋅ − , ( ) 2
2 0.5dy t t= , (68) 

 ( ) ( )1,2 1,20 0 0d iy y= =   

The gain matrices are  

 0.9 0.3 0.7 0.2,0 0.9 0 0.7
⎡ ⎤ ⎡ ⎤Π = Γ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (69) 

It is easy to show that the pair (E, A) is regularand 
0.7 1I CB− Π = <⎡ ⎤⎣ ⎦ . Simulation results in Figures 1-4 show 

the effectiveness of the developed ILC control scheme for the 
system (45, 46). It can be seen that the system output ( )y t  is 
capable of approaching the desired trajectory accurately 
within few iterations. Also, it can be seen (see Figures 1 and 
2) that the proposed requirement for the tracking performance 
is achieved at the seventh iteration. The ILC rule (19) is used, 
(Figures 3 and 4) show the tracking performance of the ILC 
system outputs on the interval [ ]0,1t ∈ .  
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Figure 1. The sup-norm of tracking error ( )1e t  in each iteration  
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Figure 2. The sup-norm of tracking error ( )2e t  in each iteration 
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Figure 3. The tracking performance of the system output ( )1y t : solid line, 

( )1dy t : bold line ), k-number of iteration 
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Figure 4. The tracking performance of the system output ( )2y t : solid line, 

( )2dy t : bold line) 

Conclusions 
In this contribution, PDα  type of iterative learning 

feedback control for given class of fractional order linear 
singular time-delay system is investigated. The sufficient 
conditions for the convergence in time domain of a proposed 
ILC were given by the corresponding theorem and proved. 
Also, for the first time, we proposed a robust PDα  type of 
iterative learning feedback control for given class of 
uncertain, fractional order, singular systems which guaranteed 
the convergence conditions in presence of bounded 
uncertainty of the system. 
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Finally, the theoretical results have been verified through 
numerical simulations which demonstrate the effectiveness of 
the proposed robust PDα  ILC scheme for a class of fractional 
order linear singular time-delay system. 
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Iterativno upravljanje učenjem u zatvorenoj petlji necelog reda za 
singularni sistem sa kašnjenjem necelog reda: PDα tip 

U ovom radu razmatrano je iterativno upravljanje učenjem u zatvorenoj petlji (ILC) - PDα  tip linearnim singularnim 
sistemom sa kašnjenjem necelog reda. Dati su dovoljni uslovi  za konvergenciju u vremenskom domenu predloženog PD-alfa 
tipa ILC za datu klasu linearnog singularnog sistema sa kašnjenjem necelog reda zajedno sa odgovarajućom teoremom i 
dokazom. Takođe, po prvi put je u ovom radu predloženi tip PDα  ILC primenjen za datu klasu linearnih singularnih sistema 
sa kašnjenjem necelog reda sa neizvesnošću. Konačno, valjanost predloženog ILC algoritma upravljanja za razmatranu klasu 
singularnih sistema je potvrđena sa  adekvatnom  numeričkom simulacijom. 

Ključne reči: singularni sistem, linearni sistem, sistem sa kašnjenjem, robotizovani sistem, zatvorena petlja, konvergencija, 
algoritam upravljanja, iterativno upravljanje. 

Итеративное управление обучением в замкнутом цикле не 
целого порядка для особой сингулярной системы с 

незапланированной задержкой: типа PDα  

В этой статье рассматривается итеративное управление замкнутым циклом обучения (ILC) - PDα  тип линейной 
сингулярной системы с запаздыванием не целого порядка. Имеются достаточные условия сходимости во временной 
области предложенного ILC типа PD-alpha для данного класса линейной сингулярной системы с 
незапланированным запаздыванием вместе с соответствующей теоремой и доказательством. Кроме того, впервые в 
данной работе предложенный PDα  ILC типа применяется к данному классу линейных сингулярных систем с 
запаздыванием не целого порядка с неопределённостью. Наконец, правильность предложенного алгоритма 
управления ILC для рассматриваемого класса сингулярных систем была подтверждена адекватным численным 
моделированием. 

Ключевые слова: сингулярная система, линейная система, система задержки, роботизированная система, замкнутый 
контур, сходимость, алгоритм управления, итеративное управление. 

Contrôle itératif de l’étude dans la boucle fermée de l’ordre 
fractionnel pour le système singulier à retard: type PD alpha  

Dans ce papier on considère le contrôle itératif par l’étude dans la boucle fermée (ILC) du type PD alpha du système singulier 
linéaire à retard de l’ordre fractionnel. On a donné les conditions suffisantes pour la convergence dans le domaine temporel 
du type PD alpha ILC pour la classe donnée du système singulier linéaire à retard de l’ordre fractionnel avec le théorème 
correspondant ainsi que sa preuve. Pour la première fois dans ce travail le type proposé PD alpha ILC a été appliqué pour la 
classe donnée des systèmes linéaires singuliers à retard de l’ordre fractionnel avec incertitude. Finalement la validité de 
l’algorithme ILC proposé du contrôle pour la classe considérée des systèmes singuliers a été confirmée par la simulation 
numérique correspondante. 

Mots clés: système singulier, système linéaire, système à retard, système robotisé, boucle fermée, convergence, algorithme de 
contrôle, itérativement. 




