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IPDA Filters in the Sense of Gaussian Mixture PHD Algorithm

Zvonko Radosavljevi¢

1)

The Integrated Probabilistic Data Association (IPDA) type filters provide estimates of the underlying target probability of
existence as well as they track state maintenance. For each scan, IPDA recursive calculates the probability of target existence
in order to resolve the uncertainty. Likewise, Random Finite Set (RFS) is a method for single target and multi-target tracking.
It provides a Bayesian recursion of multi-target distribution through the Finite Set calculus. Practical implementation of
multi-target posterior recursion is too difficult. It was analytically proved that IPDA algorithm can be derived from the RFS
based filter recursion under the linear Gaussian assumptions. Probability hypothesis density (PHD) filter is an alternative to
this problem where only the first order moment of the complete multi-target posterior is propagated in time. In this article,
IPDA and Gausian Mixtures PHD (GM PHD) filters in a single target tracking scenario are derived and compared.
Simulations have demonstrated the superiority of IPDA filters in heavy clutters.
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Introduction

HEN tracking a single target in the presence of clutter,
Wmore than one measurement may be received at each
scan after gating (measurement validation) process which
eliminates measurements that fall outside a specified
confidence region [1]. In general, track maintenance using
false measurements can lead to serious filter divergence
problem. Therefore, a data association technique is required to
differentiate target originated measurement from clutter. In a
typical target tracking scenario, measurements originate from
sources other than the desired target itself. The possible
sources may be terrain, clouds or even thermal sources
present in the sensor surveillance region. These unwanted
measurements are generally termed as “clutter” tracking
involving a data association technique [2]. In essence, data
association involves decision on which of the obtained
measurements belong to target(s). It also hypothesizes the fact
that no measurement may be target originated to clutter for
the possibility of missed detection. The sequence of
operations for a tracker in such case begins with the initiation
phase where tracks are started based on the measurements of
two successive scans. The IPDA, proposed by Musicki, in
[1,3], has two options on choice of Markov chain models of
target existence propagation. Markov Chain One, the default
one, recognizes two possibilities: the target either does not
exist, or it exists and is visible with a probability of detection.
Markov Chain Two, denoted with IPDA as IPDA-M2, also
recognizes the possibility of target existing but not being
visible. The IPDA filters provide estimates of the underlying
target probability of existence as well as they track state
maintenance. These quantities are conveniently used as track
quality measures and can be used for the track confirmation
and termination.

However, in [3], it was analytically proved that IPDA
algorithm can be derived from RFS based filter recursion

under linear Gaussian assumptions [4,5,6]. A closed-form
solution to the PHD recursion for linear Gaussian multi-target
model was discovered [7, 8]. This result was reported in [9,
10] together with the Gaussian mixture PHD filters for linear
and mildly non-linear multi-target models. While more
restrictive than SMC approaches, the Gaussian mixture
implementations are much more efficient. Convergence
results for the GM PHD filter were established in [11, 12]. In
[13] the Gaussian mixture PHD filter is extended to linear
Jump Markov multi-target model for tracking maneuvering
targets, while in [14] it is extended to produce track-valued
estimates. This study compared IPDA single target tracking
filter in the sense of the Gaussian Mixture PHD algorithm
effectiveness.

Paper is organized as follows: after introductory
considerations, Section 2 presents the mathematical problem
formulation. In Section 3 we derive IPDA and GM PHD in
the sense of Gaussian filtering. The common algorithms
comparisons and simulation results are presented in Section 4
followed by concluding remarks in Section 5.

Problem formulation

Any target tracking scenario is defined out of the
probability of detection and clutter density. Again, the clutter
density is depending on target dynamics and characteristics of
sensor. Generally, clutter is defined by a number of selection
measurement from the size of selection gate. At the
beginning, the target state is to be considered. The scenario
considers zero or at most one target. If the target exists, the
target state x (which may consist of position, velocity or any
other target dynamic parameter) follows the dynamic
equation:

X = FXp + v (1
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where F'is the propagation matrix, and the process noise v; is

a zero mean and white Gaussian sequence with covariance
0, - Target measurement is modeled by the:

Vi = Hx, +w 2

where H is the measurement matrix and the measurement
noise w; is a zero mean and white Gaussian sequence with
the covariance R, independent of v, . A measurement of target
T is present in each scan with a probability of detection Pp.
The sensor is also assumed to detect the target with certain
and known probability of detection. At every time instant, the
sensor receives clutter measurements. The number of clutter
measurements received at any particular time is random and
assumed to be governed by a Poisson distribution with known
average. The received clutter measurements are distributed
uniformly in the surveillance region. Clutter measurements
follow the non-uniform Poisson distribution by clutter
measurement density p, .

Derivation of IPDA and GMPHD

Automatic track initiation in clutter will initialize true
tracks which follow targets as well as false tracks which do
not. We want to confirm true tracks and terminate false tracks.
With on-line track quality measure, the IPDA type filters can
be used for the track confirmation and termination, as well as
the state estimation of tracks.

Derivation of IPDA

The IPDA proposed in [7] is derived based on PDAF [3] by
introducing the concept of target existence. Two mutually
exclusive and exhaustive events associated with the target
existence were assumed, and modeled as a random variable E.
E, - the target exists and is visible at time £,

E, - the target does not exist at time k.

The occurrence of these two events is modeled as two
states of the Markov Chain with transition probability matrix:

Hz[ﬂu 7712} 3)
o1 T
where
”ijEP{Ek:j|Ek4 :i}ai7j:{172} (4)
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is the transition probabilities for {ij}th entries and P{.}
denotes probability. A priori probabilities of the track
existence (Markov Chain One):
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a priori PDF of a measurements from the target at scan £,
given that it fell within the window is:
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- A priori PDF that no measurements originated from the

target:
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- A priori PDF that the track exists and that no
measurements originated from the target:
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- A priori PDF of measurements originated from the target,
given that the track exists and that m,>0:

Pix;; Xpomy, Z5y = Py By [ my (11)

The a priori probability density of measurements in the
window, given that they are all false measurements:
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A priori probability density of measurements in the
window, given that measurements i is a target and all others
are false measurements is:

i
_ k— _
p(zi ‘xk,iaxkamkszk ]) =p(Zrisxi, 2" 1)l I Vi 1 (13)
i=1
Now, the track existence at scan k (event x;) is composed
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Using the theorem of total probability we have:
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And applying the Bayes rule we get:
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In case of no measurements in the window, m;=0 the
probability of track existence can be calculated by the
derivation:
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Data association probabilities are calculated as below:
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The target state estimate conditioned on the target
existence and its associated covariance is obtained as:

mi
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where )%/(c)\k = )’ek‘k,l 5 1)/3]( = (1+CI0KH)Pk\k—1 is the corrected
predicted error covariance, K is the Kalman gain, ¢, is known
constant.

Derivation on GM PHD

Instead the IPDA, Gaussian model for individual targets
includes certain assumptions on the birth, death and detection
of targets. The GM PHD recursion has also been derived the
state dependent target survival and detection probabilities.
The GM PHD recursion propagates the intensity function that
is approximated with a Gaussian mixture by analytically
propagating the weights, means and covariances of the
Gaussian mixture terms. The updated intensity function is also
a Gaussian mixture. In case there is one sensor, this method
can be employed. Hereafter, we outline the GMPHD filter
with the assumption there are no spawning objects. In case
there are spawning objects, the prediction equation is
modified by adding Gaussian components representing for
spawning objects [4].

Schematic diagram of GM PHD implementation is given in
Fig.1.
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Figure 1. Schematic diagram of GM PHD implementation

Prediction step: Under the assumptions that target follow a
linear Gaussian dynamical model, the survival and detection
probabilities are constant, the intensities of the birth and
spawned targets are equal to zero, and that the posterior
intensity at time k-1 is a Gaussian mixture of the form

Jk-1

Ly (Xk) = Zwik—lN[Xk;mik—bPik—l] (23)

i=1

Then the predicted intensity to time k is a Gaussian
mixture, and is given:

Lk\k—l (x) = LS,k\k—l (x) (24)

where  Lg(x) is the PHD of existing targets and

determined from the linear Gaussian model by the:

J(k=1)
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Update step: Under the above assumptions, and if the
predicted intensity to time k is a Gaussian mixture:
Jhlk—1
Z Wi NDEm g, Pyl (28)

i=1

L (x)=

then the posterior intensity at time k is also a Gaussian
mixture and is given by

L) = (1= pp) Ly () + Y Lpe(x2)  (29)

yeY
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where
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and the mean and covariance are updated with the Kalman
filter update equations,
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Given that the initial intensity function L, at time step k=0
is a known Gaussian mixture, the posterior intensity function
at time step £>0 is also a Gaussian mixture from which the
estimates of individual target states need to be extracted via
peak extractions.

Results of Simulations

Consider a target motion scenario (Fig.2) with non-
maneuvering constant velocity (CV) flight mode, similar to
the previous work [15]. Speed is constant with 311 m/s. The
sampling period of radar sensor is 7=l1s. Duration of the
scenario is 50 scans.

=)
1000

....'...'I. = 2 Fy dgd
Co T

Figure.2 Simulations scenario: measurements and target

The target moves in the region x=[0; 1000], »=[0;500] and
can appear or disappear in the scene at any time. The target
states consist of positions and velocities and move according
to the linear and Gaussian target dynamics.

The system input is modeled as follows: vector state
x;(k)=[xx y y]" where x,y are the Cartesian coordinates

of the target position, X,y are the appropriate velocities.

Initial target state is given by x,(0) =[100; 16.0; 100; 7.0]" .

Transition matrix and process noise matrix are given by:

T3/3 T*/2 0 0

17 00 R

0100 /2 T 0 0
= k)=

=lo o1 7| A= o ps s
0001

0 0 T*/2 T

respectively, where g=0.0052 is a maneuver coefficient. The
Integrated Track Splitting (ITS) simulation process is
governed by a Markov Chain one. The calculations are based
on Monte Carlo (MC) simulations using Ny, =100
realizations. During the one cycle of simulations, we have
equal number of confirmed false tracks. This is achieved by
adjusting initial probability of detection, while the
confirmation threshold is the same and equal 0.95. In these
circumstances, the number of false confirmed tracks is 20,
overall the experiment for a period of 100 Monte Carlo
simulations.

The measurement noise is also independent of the process
noise. The probability of detection is assumed almost unity.
Examined probability of detections is Pp=0.7. Clutter is
uniformly distributed over the observation space with an
average rate of 50 points per scan. The results of experiments
are given via three comparative parameters: number of
confirmed true tracks, number of confirmed false tracks and
root mean square error position (Fig.3-5, respectively).
Diagram of confirmed true tracks over all simulations (Fig.3)
shows better performance of IPDA instead of GM PHD
filters, in heavy clutter environments.
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Figure 3. Diagram of confirmed true tracks over simulation
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Figure 4. Diagram of confirmed false tracks over simulation
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S Numbar

Figure 5. Comparative diagram of root mean square error of position

Conclusions

The paper has compared the two GM-based target tracking
algorithms: IPDA and GM PHD. The IPDA is the target
existence and Bayes-based solution, newly represented here
as a target density filter. The GM PHD is an approximation of
the Bayes random set solution and the target density filter is
its natural form. The modeling assumptions are translated into
requirements for mutual exclusiveness of the same-track
components and mutual exclusiveness of the feasible joint
events. The GM PHD does not follow these requirements
which indicate a future work to improve the GM PHD
performance. The IPDA paradigm, on the other hand, may
benefit from the elegant GM PHD birth and track splitting
processes. Results of simulations with single target tracking
scenario showed better track measure performance than GM
PHD algorithms. In future, we should try multi target tracking
experiments.

Acknowledgement

The author would like to thank to deceased professor Darko
Musicki, (Hanyang University, An San, Republic of South
Korea), who has began this research.

(1]

[2]

[3]

(4]

[3]

(6]

(7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

Reference

MUSICKI,D., EVANS,R., STANKOVIC,S.: Integrated Probabilistic
Data Association, IEEE Transaction of Automatic Control, June 1994,
39, pp.1237-1241.

MUSICKID., EVANS,R.: Joint integrated probabilistic data
association —JIPDA, 1IEEE Trans. Aerosp. Electron. Syst., 2004, 40,
(3), pp. 1093-1099

CHALLA,S., VO,B.N., WANG.X.: Bayesian approaches to track
existence — random sets and IPDA, Fifth Int. Conf. on Information
Fusion, Fusion 2002, Annapolis, USA, July 2002.

CHAKRAVORTY R.,CHALLA,S.: Multitarget tracking algorithm —
joint IPDA and Gaussian mixture PHD filter, 12th Int. Conf. on
Information Fusion, Fusion 2009, Seattle, USA, July 2009, pp.316-323

SONG,T.L, MUSICKI,D., KIM,D.S., RADOSAVLJEVIC,Z.:
Gaussian mixtures in multi-target tracking: a look at Gaussian mixture
probability hypothesis density and integrated track splitting, TET
proceedings on Radar Sonar and Navigation, June 2012, Vol.6, No.5,
pp-359-364.

RADOSAVLIEVIC,Z., MUSICKI,D., KOVACEVIC,B., KIM,W.C.,

SONG,T.L.: Integrated particle filter for target tracking in clutter, IET
proceedings on Radar Sonar and Navigation, DOI: 10.1049/iet-
rsn.2014.0341 , Print ISSN 1751-8784, May 2015.

MAHLER,R.: Random-set approach to data fusion, 29 July 1994 SPIE
Vol.2234.
GOUTSIAS,J., MAHLER,R., NGUYEN,H. (eds.): Random Sets

Theory and Applications, Springer-Verlag New York, 1997.
GOODMAN,I., MAHLER,R., NGUYEN,H.: Mathematics of Data
Fusion, Kluwer Academic Publishers, 1997.

VO,B.N.,, MAW.K.: 4 closed-form solution for the probability
hypothesis density filter, Proc. Information Fusion, 8th International
Conference, July 2005, Vol.2, pp.25-28.

VO,B.N., MA,W K.: The Gaussian mixture Probability Hypothesis
Density filter, IEEE Trans. Signal Processing, IEEE Trans. Signal
Processing, 2006, Vol.54, No.11, pp.4091-4104.

CLARK,D.E., VO,B.N.: Convergence analysis of the Gaussian
mixture Probability Hypothesis Density filter, IEEE Trans. Signal
Processing, 2007, Vol.55, No.4, pp.1204-1212.

PASHALA., VO,B.N., TUAN,H.D., MA,W K.: Closed-form solution to
the PHD recursion for jump Markov linear models, Proc. 9th Annual
Conf. Information Fusion, Florence, Italy, 2006.
CLARK,D.E.,PANTA K., VO,B.N.: The Gaussian mixture PHD filter
Multiple Target Tracker, Proc. 9th Annual Conf. Information Fusion,
Florence, Italy, 2006.

RADOSAVLIEVIC,Z., SONG,T.L., KOVACEVIC,B.: Linear Multi-

Target IPF Algorithm for Automatic Tracking, Scientific Technical
Review, ISSN 1820-0206, 2016, Vol.66, No.1, pp.3-10.

Received: 12.05.2016.
Accepted: 23.08.2016.

IPDA filteri u smislu Gausovog mesovitog proizvoda
PHD algoritma

Integrisani filter pridruZivanja podataka po verovatno¢ama (IPDA) daje procene verovatnoca postojanja cilja, potrebne za
odrZavanje stanja traga. U svakom okretaju antene radara, IPDA rekurzivno izra¢unava verovatnoéu postojanja cilja u
svrhu reSavanja neizvesnosti oko postojanja cilja. Na slican na¢in, metoda slu¢ajnog kona¢nog skupa (RFS) namenjena je za
pracenje jednog ili viSe ciljeva. Koriste¢i Bajesova pravila, rekurzivno izracunava distribuciju konacnog skupa vise ciljeva.
Prakti¢na primena ovog sistema pracenja je veoma teSka. Analiticki je dokazano da se IPDA algoritam moZe uporediti sa
rekurzijom slu¢ajnog konacnog filtra (RFS) jer se zasniva na linearnim Gausovih pretpostavkama. Algoritam gustine
verovatnoce hipoteza (PHD) je alternativa ovom problemu gde se Koristi prvi momenat posteriorne verovanode cilja koja
propagira kroz vremenske odbirke prilikom okretaja antene. U ovom radu, izvedeni su i uporedeni algoritmi IPDA i Gausov
mesaviti proizvod PHD filtra u linearnom scenariju pracenja jednog cilja. Simulacije su pokazale superiornosti praéenja cilja
IPDA algoritmom u uslovima gustog klatera.

Kljucne reci: otkrivanje cilja, pracenje cilja, radarsko pracenje, Gaus-Markovljev proces, IPDA filtar, PHD filtar, algoritam
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®uiabTpsl IPAD B posiu cMemanHoro ¢puibtpa raycca PHD
aJropuT™Ma

Berpoennsblii guiabTp BeposiTHocTeili Tuma Integrated Probabilistic Data Association (IPDA) nmpemocraBisier oneHKu
BEpOSITHOCTeIl CylllecTBOBAHMs LeJleii, HeoOXoauMble /ISl MOUIeP:KaHUsl CTaTyca MeTKU. B kaxkaom oGopoTe aHTeHHBI
panapa, IPDA pekypcHBHO BbIYMC/IsIET BEPOSTHOCTh CyHIECTBOBAHUS MHIICHH € LeJIbIO pa3peleHusl HeonpeaeaéHHOCTH
OTHOCHUTEJIHLHO CYLECTBOBAHMS MUILIEHH. AHAJIOTHYHO, MeTO/1 CJIy4aiiHOro koneuHoro Mmuoxectsa (Random Finite Set - RFS)
NpeHa3HAYEH /ISl OTC/IeKHBAHMS OJHON MJIHM HecKoJbKHX meieil. Mcnonb3oBanne npapmuia baiiecoBa pexypcuBHO
BbIYHCJIsET pacnpeaejieHue KOHEYHOro Ha0opa 0oJibie weseid. [IpakTuyeckas peannsanusi 3T0i cMCTeMbl MOHHTOPHHIA
OYeHb CJIOKHASA. MBI AaHAIMTHYECKHU 0KA3a/H, YT0 aJroput™m IPDA Mosker ObITh MOJIy4eH M3 PEKYPCUH CIy4YaiiHOro
¢uabTpa ToHKOI ouncTku (RFS), Tak Kak OH OCHOBaH Ha JIMHEHHBIX NpeanoaokeHusix 'aycca. AIropuT™M IIOTHOCTH
runorernyeckoii BepositHocTH (PHD) siBisieTcsi ajbTepHATHBOW K JIToi mpodieMme, rae BOBpeMsl HCHOJIb3yeTCs M
pacnpocTpaHsieTcsi TOJIbKO NepBblii MOMEHT 3a/IHeii BepPOSITHOCTH IieJieii, PAacCpoCcTPaAHSIIOIUXCSI Yepe3 BpeMeHHbIe BbIOOpBI
npu 060poTe aHTeHHBI. B 1aHHO cTaThbe MoTyUYeHbI M cpaBHUBAIOTCS AMropuT™Mbl IPDA 1 cmemannblii puiabtp I'aycca PHD
B JIMHEH{HOM CLIEHAPMM OTCJIeKMBAHUS OTHOM LeJIU. DKCIePUMEHTHI MOKA3AJIM IIPEBOCXO/ICTBO OTC/Ie:knBanus nesiu IPDA
AJIFTOPUTMOM B YCJIOBHSIX IVIOTHBIX H TSAKEIbIX IOMeX.

Kniouesvie ciosa: oonapy:keHue 1eJIH, cJleskeHHe 3a 11eJ1b10, oTciaesxkuBanue PJIC, npouecc I'aycca-Mapkosa, IPAD ¢uasTp,
PHD ¢uabTp, anropurm

Les filtres IPDA dans le sens de I’algorithme mixte de Gauss

Le filtre intégré de ’association des données selon les probabilités ( IPDA) fournit les estimations des probabilités sur
I’existence de cible nécessaires pour maintenir I’état de trace. Dans chaque tour de I’antenne de radar IPDA calcule
récursivement la probabilité de I’existence de cible dans le but de résoudre ’incertitude de I’existence de cible. De méme la
méthode de I’ensemble fini aléatoire (RFS) est destinée pour le suivi d’une ou plusieurs cibles. En utilisant les principes de
Bayesian elle calcule récursivement la distribution de ’ensemble final pour plusieurs cibles. L’application pratique de ce
systéme de suivi est trés difficile. On a prouvé analytiquement que I’algorithme IPDA peut étre dérivé de la récurrence du
filtre aléatoire fini (RFS) car il est basé sur les assomptions linéaires de Gauss. L’algorithme de la densité de probabilité des
hypothéses (PHD) est I’alternative a ce probléme o on utilise le premier moment de la probabilité postérieure de la cible qui
propage a travers les choix temporels pendant les touts de I’antenne. Dans ce papier on a dérivé et comparé les algorithmes
IPDA et le produit mixte du filtre PHD de Gauss dans le scénario du suivi de cible. Les essais ont démontré les supériorités de
suivi de cible par I’algorithme IPDA dans les conditions du dense désordre.

Mots clés: détection de cible,suivi de cible,suivi par radar, processus de Gauss Markov, filtre IPDA, Filtre PHD, algorithme.



