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Linear Multi-Target IPF Algorithm for Automatic Tracking
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The radar tracking applications perform single and multiple object detections from noise-corrupted signal. These detections
are used as measurements for target tracking. Tracking in cluttered environments requires false track discrimination and
data association. However, data association for tracking closely located multiple targets in heavy clutter is prohibitive due to
the excessive computational requirement. This results from exponential growth of mutually exclusive and exhaustive feasible
joint events for track-to-measurement assignment. Specifically, our approach treats possible detections of targets followed by
other tracks as additional clutter measurements. It starts by approximating the a priori probabilities of measurement origin.
These probabilities are then used to modify the clutter spatial density at the location of the measurements. The probability of
target existence is used to discriminate the false tracks. The extended simulations showed the effectiveness of this approach in

two different multi-target tracking scenarios.
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Introduction

ACH of the sensor measurements may either be a

spurious (clutter) or a target measurement. The target
existence and trajectory are not a priori known. Target
measurements are only present in a scan with some
probability of detection Pp. In a multi-target situation, the
measurements may have also originated from one of various
targets. Targets may enter and leave the surveillance region at
any time, thus at any given moment the number of targets in
the surveillance area is unknown. Automatic tracking in this
environment initiates tracks using both target and clutter
measurements [1].

If a track follows a target, we call it a true track; otherwise
we call it a false track. To confirm likely tracks and terminate
unlikely ones, a track quality measure is necessary [2]. Some
standard track quality measures include the probability of
target existence. The tracks are initialized using
measurements, thus both true tracks and false tracks
simultaneously exist. The false track discrimination (FTD) is
a procedure to terminate a majority of false tracks and
confirm majority of true tracks [3]. A track quality measure
needs to be calculated for a successful FTD.

The Multi Hypothesis Tracking (MHT) [3, 4] uses the track
score (Sequential Probability Ratio Test - SPRT) as a track
quality measure. The probability of target existence is first
introduced for the single target Integrated Probabilistic Data
Association (IPDA) [5], and then for the multi-target Joint
IPDA (JIPDA) [6] and Linear Multi-target IPDA (LMIPDA)
algorithm [7, 8]. The I[PDA based algorithms approximate the
trajectory state probability density function (pdf) by a
Gaussian pdf. The single target Integrated Track Splitting

(ITS) [9] and multi-target Joint ITS (JITS) and Linear Multi-
target ITS (LMITS) algorithms are the extensions of /PDA,
JIPDA and LMIPDA to multi-target environments,
respectively. They employ multi-scan data association similar
to the MHT so that they are more effective in low detection
probability and high clutter measurement density
environments. The MHT, IPDA and ITS based algorithms are
derived assuming linear trajectory propagation and linear
measurement model. Some nonlinearity may be
accommodated by the measurement conversion and by
replacing the Kalman filter with the Extended Kalman Filter
(EKF) or the Unscented Kalman Filter (UKF) [10, 11].

The particle filters [12] sample the trajectory state pdf by a
set of random particles. They accommodate both non-linear
measurements and non-linear state propagation. The particle
filters have been successfully applied to a wide range of
estimation problems. On the negative side, a large number of
particles are often needed for difficult multidimensional
scenarios, which typically results in about one to two orders
of magnitude higher computational requirements compared to
Gaussian Mixture ITS[12, 13]. However, with the technology
progress this issue will become less important.

The Integrated Track Splitting (/7S) [14-16] filter is an
advanced method for automatic target tracking in a heavy
clutter, and the track state includes a track quality measure
which is presented with the probability of target existence for
the FTD. The Integrated Particle Filters (IPF) [17],[18] track
state also includes the target trajectory estimate in the form of
a set of mutually exclusive probability density function.

The linear multi-target generalization of IPF, named Linear
Multi-Target IPF, is presented in this paper.
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The paper is organized as follows: after common
considerations, a problem statement is presented in Section II.
Section III derives the particle filter approach, followed by the
recursion of integrated particle filter, linear multitarget data
association approach and concluding remarks, presented from
Section IV, Section V and Section VI, respectively.

Problem statement

Tracks are initialized and wupdated using random
measurements of unknown origin, thus each track may be a
true track (following a target) or a false track. Target tracking
involves determining the existence and the trajectory of
possible targets in the surveillance space, by comparing
random measurements received by the sensor with the
applicable stochastic models. We use superscripts 7 to denote
tracks, and also targets followed by tracks; the exact meaning
is determined by the context.

Targets model

In this paper we use the Markov Chain One model [5] for
the propagation of the probability of target existence ().
This model assumes that a target may exist and when it does it
is always detectable with a given probability of detection Pp,
or it may not exist. During the targets maneuvering, the
motion can be changed at random times. The trajectory of a
target can be described at any time by one of o predefined
dynamic models. A linear model is considered. The target
trajectory state, for the linear system, x; € R" at time &,
evolves by:

T T T
X =F X+ vy M
where [, is the propagation matrix, and the process noise

T . . . .
V, is a zero mean and white Gaussian sequence with

covariance (J, . At each scan £, the sensor returns a random

number of the random target and clutter measurements. The
measurement of the existing and detectable target is taken
with a probability of detection.

Sensors model

At each scan the sensor returns a random number of the
random target measurements and a random number of the
random clutter measurements. The measurement of the
existing and detectable target is taken with a probability of
detection Pp,.

yi = Hxi +wj 2

where H is measurements matrix and the measurements noise

w; 1is zero mean and white Gaussian sequence with
covariance matrix R.

Measurements model

Measurements may originate from the targets as well as
from other objects. The clutter measurements follow the
Poisson distribution. We assume that the uniform intensity of
the Poisson process at point y in the measurement space,
termed here the clutter measurement density and denote by
p(y) is a priori known, or can be estimated using the sensor

measurements. At time k, one sensor delivers a set of

measurements denoted by z; = {z, ; }]]”:’f1 . The measurement

set may be empty with M, = 0. Denote by Z* the sequence
of selected measurement sets up to including time &,

k k-1
Z Z{Z 9Zk,19"'=zk,j7"'9zk,Mk}°

Particle Filter Approach

Particle filtering samples a continuous posterior density
function of interest into a set of the weighted particles. If the
weights are chosen appropriately, then these weighted set of
particles represents the posterior density in a way that the
posterior density function can be represented arbitrarily close
to the equivalent set of the weighted particles. The target
trajectory state pdf at scan k is defined by a set of particles
{x,w; }, parameterized by a set of N particles

Particles:

e, Xk 3k €)

where should be satisfied:

Si-i @

Integrated Particle Filter recursion

The tracks state consists of the targets existence event, and the
trajectories state, and for each track we recursively calculate
the probability of target existence, and the trajectory state
pdf, which is only defined conditioned on the target existence.
Depending on the calculated probability of the target
existence, we may conclude that the target exists and confirm
the track. Each confirmed track stays confirmed until the
termination.

Each track is represented by a set of particles. A new pdf is
formed by each pair of particle-measurements. For track, each
particle for the track propagates according to (1). One cycle of
the Integrated Particle Filter algorithm consists of five steps:
track propagation, measurements selection, data association,
particle weight update and resampling.

Track propagation:

Each track is a set of particles. The estimation state of each
particle is the output of a filter which is given a single
measurement at each scan. Propagation does not change
relative particle weight. The probability of the target existence
is given by:

'/}1371 = PV¥i- Q)

where p; is a transition probability. During the overall
recursion, the number of particles is kept constant. At this
time, each of the particles i, from the k-1 scan, propagates as a
Kalman Filter prediction step. The linear propagation model is
a special case, given by the:

T, _ 7,0 7,0
X = Fx e vy (6)
where the additive plant noise v, is a zero mean Gaussian

sequence with covariance matrix O;" ,i=12,..,N,_,.

Measurements Selection and Likelihood
After the prediction step, a two-tier measurements selection
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procedure is performed. The purpose of the measurement
selection is to decrease the computational requirements by
reducing the number of measurements used to update track 7 .

For each measurement z, ; and each particle i we calculate

innovations ., ; as follows:
_ T,
Sy = 2k~ Hxy (7

and the likelihood of the measurement z, j with respect to the

particle i is:

Py == | exp (059 "RG,) ()
27r\R‘

where (-) denotes the matrix transpose. The likelihood of the

measurement z; ; is:

Dij = ZWIZ—llP/:l, )
i

Data association

Each track 7 selects a set z, of M, candidate measurements,
the probability the target measurement is calculated by using the
measurement likelihood ratio defined by:

M T
X :1—PD+PDZPL{ (10)
=) pk,]

Then, the particle weight that represents the updated target
trajectory state pdf is updated by using the data association

probabilities 37 ; , for each track 7, such as target trajectory

update:
M pr,i
7,0 7,0 T T k,j
we't =wii (Bro +Zﬂk,j =) (11)
= Pk.j

where S ; represents the posterior probability that the J"
measurement at scan k is the true target measurement and
where [, represents the probability that none of the

selected measurements is target originated. The probability of
the target existence is updated by the equation:

T AI:I/;I:—I
Ve =" s (12)
1-(=)Wia

Particle Weight Update
Next step is the target trajectory update, by the particles
weight update:

My

T,i 7,0 pT:i_
e = Wi (L= P+ P )| PR (13)

=1 Pk
Resampling

Particle filter recursions tend to increase the variance of
sample weights {w',}, where only a small number of

particles have significant weight. This is known as a sample
degeneracy and can lead to the particle filter divergence.
Resampling corrects this problem [8] by removing the

particles with small weights, and multiplying the particles
with high weight. After resampling, all surviving particles

have identical weight w; =1/ N .

There are multiple possible ways to detect the need for
resampling, as well as to perform resampling. The resampling
details and tradeoffs are beyond the scope of this paper, useful
discussions and tradeoffs may be found in [11, 12] and the
references within.

Linear Multi-target Integrated Particle Filter Data
Association

Linear multi-target (LM) is a suboptimal multi-target
tracking technique which reduces complexity by eliminating
joint measurements to tracks assignments. It also significantly
reduces algorithmic complexity. LM derivations are presented
in [18], thus here we only present the final formulae. When
updating track 7 possible detections of targets being followed
by other tracks are unwanted measurements. The LM method

modulates the clutter measurement density p,; of each

selected measurement z,; of track 7 by a possible

contribution of other tracks. Target state is then updated using
a single target tracking filter.

The a priori probability that the i* measurement is
originated by the /” target is given by:

Di,j = Vi o (14)
Zpi.z ! Pra
=1
The modified clutter density for track z at measurement

Zk,j 1S:

T

[
Ok =Pr;+ Z Pr (15)

0
oA7en |~ Pk

where 7, is the total number of tracks. To calculate data
association probabilities for target 7, single-target /PF

formulae are used with ®j ; replacing p, ;. If the targets are

far apart ®; ; = p; ; foralliandj, LMIPF becomes identical

to IPF. Measurement likelihood ratio for track 7 at time & is
given by the following equation:

My~
Pr,j

AT =1-Py + (16)

j=1 = ki

A posteriori state estimate of the measurement j is given by:

1-B,, i=0
e (17)
Pei 2| B LR iz,

Pk, j

Then, a posteriori probability of the target existence is
given by (12).

Results of simulations

The application selected for the study was a two
dimensional (positions and velocities), four-state aircraft
tracking problem in which the sensor observes both position
coordinates. The area under surveillance was x=[0; 1000] [m]
long and y=[0; 1000] [m] wide. Simulations have been
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performed by choosing N, = N =1000 particles.

In the initialization process, creating a total of N, particles
on the track, schedules are: position have Gaussian
distribution, and the speeds have uniform distribution in a
circle with the center at zero and radius v,,, . Both

dimensions were assumed independent. The transition
probability for the Markov Chain One model are chosen by
the p1; = 0.98.

The /PF parameters are calculated on-line according to the
appropriate equations. Period of scanning is 7=1s. All
experiments were conducted on the basis of multi target
tracking (MTT) for two and fifteen targets scenario. Transition
matrix and process noise matrix are given by:

1700
0100
F= 001T (18)
0001
T°/4 T°/2 0 0
T°/2 T 0 0
= 19
=90 0 a1 (19)
0 0o T1/2 T
and measurements matrix are given by
1
. 000 (20)
001 0

The measurements noise vector are independent Gaussian
noise with constant covariance matrix, given by the

R {"5 02} @1
0 o,

where o = o"f =25 [m2]

The selected scenarios were presented for the first time in
literature [11]. Two sets of simulation experiments are
presented in this section: the two targets (Fig.1.) and fifteen
targets (Fig.2.) simulation experiments. Both experiments
consist of 500 Monte Carlo runs. Each run lasted for 40 scans.
The intention is to show the improvements in multi-target
situations that can be obtained by using standard IPF and ITS
against LMIPF and LMITS procedure

Instead of the recent IPF single target tracking experiments
[35], a MTT scenario will be presented. Targets are initially
positioned at the edges of a circle with the centre at (500, 500)
and a radius of 450, for the both, two and fifteen targets
experiments. Each target moves with a uniform speed towards
the centre of the circle, which they should reach in 20 scans,
after which they carry on with the uniform motion for further
20 scans. A random component is added to the speed vector
of each target, thus at scan 20 the variance of the distance
between each target and the centre of the circle will be double
the sensor measurement error noise covariance matrix. In the
two targets scenario, the targets initial separation is 20°,
instead of fifteen targets scenario with the targets initial
separation 10°. The following definitions of true and false
tracks are used.

1. Each initiated track is false with respect to all existing
targets.

2. A false track becomes a true track with respect to a target
when the state estimate is sufficiently close to the true
target state.

3. A track that is true with respect to a target will remain true
for as long as it selects the target detections

Each simulation experiment consists of a number of
simulation runs. In each simulation run, targets will repeat
their trajectories. The measurements are generated
independently. Each algorithm uses the same set of
measurements. False tracks may be initiated using target
measurements, either in a conjunction with a clutter
measurement, or by using measurements from different
targets in different scans.

Thus, the average number of initialized false tracks per
scan will depend on the number of targets present. The
average number of initialized false tracks per scan was 8, and
120 for the two and fifteen targets experiments, respectively.

A confirmed false track in one scan is 300 and 200 for the
two and fifteen targets cases, respectively. The performance
measures used to compare the algorithms confirmed true
tracks, root mean square error positions and target retention
statistics. Results are presented by a number of confirmed true
tracks and Root Mean Square Error Position.

The target retention statistics was obtained by noting the
identity of the confirmed true track following each of the
targets at scan 14. These identities are checked again at scan
38, and the following statistics is accumulated for each
experiment:

nCases: total number of cases of a target being followed by
a confirmed track at scan 14;

NOK: percentage of tracks still following the original target
at scan 38;

nSwitched: percentage of tracks that end up following a
different target at scan 38;

nLost: percentage of tracks not following any target at
scan 38,

nMerged: percentage of tracks lost due to merging between
tracks counted in nCases between scans 14 and 38

Two targets simulations

Simulation scenario with two targets is presented in Fig.1
Confirmed true tracks diagram and root mean square diagram
are presented in Fig.2 and in Fig.3, respectively.
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Figure 1. Two targets scenario
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Figure 2. Number of confirmed true tracks (two targets)

Figure 3. RMS error over time (two targets scenario)

Fifteen targets simulations

Simulation scenario (fifteen targets) is presented in Fig.4.
Confirmed true tracks diagram and root mean square diagram
are presented in Fig.5. and in Fig.6., respectively.
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Figure 4. Fifteen targets scenario
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Figure 6. RMS error over time (fifteen targets scenario)

Table 1. Target Retention-Two Targets

ITS LMITS IPF LMIPF
nCases [n] 148 148 144 152
nOK [%] 79.7 100 97.9 100
nSwitched [%] 14 0 0 0
nLost [%] 18.9 0 2.1 0
Merged [%] 21 0 0 0
Table 2. Target Retention-Fifteen Targets
ITS LMITS IPF LMIPF
nCases [n] 1165 274 282 274
nOK [%] 23.7 76.6 61 76.6
nSwitched [%] 17.9 154 138 153
nLost [%] 58.4 8 252 8.1
Merged [%] 527 7 33 7

Results of the Integrated Particle Filter-multiple targets
(two and fifteen targets) tracking simulations showed better
confirmed true tracks and target retention statistics than the
standard ITS algorithm that was recently presented. At the
same time, linear multi targets methodology (LMITS and
LMIPF) shows better statistics results than the standard ITS
and IPF algorithms.

Especially, the increase of the number of targets and
decrease the targets initial separation show better targets
statistics in favour of IPF.
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Conclusion

The multiple target tracking algorithm, generalizations of
standard IPF, named Linear Multi-target IPF, is proposed and
was tested in a special scenarios with a small (two) and large
(fifteen) number of crossing targets. It uses the well-known
features of ITS algorithms that account the probability of
target existence of objective forms, trace and ease of use
offered by the Particle Filter. Results of two and fifteen
targets simulations showed better confirmed true tracks and
target retention statistics than the standard ITS algorithm, with
the CPU loss time. In the next step of the research it is
necessary to examine the possibility of improving
computational efficiency by choosing significant and
discrimination weakness particle weights.

In this sense it is necessary to study the limits of target
existence in the heavy clutter environments, increasing the
number of particles.
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Algoritam linearnog sjedinjavanja Cestica viSe tragova za automatsko
pracenje ciljeva

Postupak radarskog praéenja podrazumeva detekciju jednog ili viSe ciljeva iz signala u okruZenju Suma. Detekcije se koriste
kao merenja za pracenje ciljeva. Pracenje u okruZenju klatera zahteva odbacivanje laznih tragova i pridruZivanje podataka.
U radu je predloZena linearna generalizacija praéenja ciljeva koja na lak na¢in omoguéava premosc¢avanje ovog koraka i u
potpunosti kori§¢enjem asocijativnih verovatnoca i rekurzivno proracunava verovatnocu postojanja traga.

Na poseban nacin, predloZeni pristup tretira moguée detekcije ciljeva koji poti¢u od drugih ciljeva kao dodatna Kklater
merenja. On pocinje aproksimacijom apriorne verovatnoée porekla merenja sa radarskog senzora. Ove verovatnoce se zatim
koriste za modifikovanje prostorne gustine klatera na lokaciji merenja.

Verovatnoce postojanja cilja mogu da se koriste za odbacivanje laZnih tragova. Algoritam podrazumeva model propagacije
trajektorije viSe ciljeva i zavisnost verovatnoée postojanja cilja od stanja cilja. Sprovode¢i intenzivne simulacije sa dva
razli¢ita scenarija kretanja viSe ciljeva, pokazana je efikasnost predloZene generalizacije.

Kljucne reci: radarsko pracenje, otkrivanje cilja, praéenje cilja, pokretni cilj, automatsko pracenje cilja, algoritam

JIuneiiHoe 00001IeHUE AJITOPUTMA 00bEAUHEHUA YACTHUIL CJIEI0B JIJIA
AaBTOMATH4Y€CKOI0 MHOTOLIEJIEBOI'0 OTCJICKMBAHUS

IIpouece oTcie:kUBaHUS LeJleil pagapoM BKJIIOYAeT B ce0si MOHUTOPUHT PAHOJIOKAIMOHHOI0 00OHAPY KeHMsI OIHOW WJIN
HECKOJbKHX LeJIeil U3 OKPY:KAIoUIMX IIYMOBBIX CUTHAJ0B. O0HApY:KeHHs] HCIOJIbL3YIOTCSI B KadyecTBe M3MepeHuil s
MOHMTOPUHIa ueJeii. MOHUTOPHHI OKpY:Kalollell KJIATTEPHOI cpeabl TpedyeT 0TKAa3a JIOKHBIX KiKoueil (cjie1oB) u
o0beTuHeHNsI JaHHBIX. B 1aHH0ii padoTe nmpeaiaraercs JinHeliHoe 00001IeHe MOHUTOPHHTA 1eJIel, YTO MO3BOJISIET JIETKO
000iiTH 3TOT LIAT H MOJHOCTHIO C HCNOJIB30BAHNEM ACCOUUATUBHBIX BEPOATHOCTEl PEKYPCHBHO BBIYHC/ISIET BEPOSTHOCTH

CyuiecTBOBaHus cjieaa.
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Oco6bIM 00pa30M, NPeIIOKEHHbIH MOIX0/] TPAKTYET MOKeT JIM 00HAPY:KUBATD LIe/IH, KOTOPbIe BHITEKAIOT U3 APYTHX 1eei
TAKHX KaK JOMOJIHATEIbHbIe H3MepeHHs] MeCTHBIX moMeX. OH HAUYHHAET ANNMPOKCHMHPYSl ANPHOPHBIE BEPOSITHOCTH
MPOUCXO0KACHHS H3 H3MePeHHii ¢ paIH0J0KAIMOHHBIMH AATYHKAMH. ITH BEPOSITHOCTH 3aTeM HCIOJIB3YIOTCS 1151 H3MeHEeHHsI
NPOCTPAHCTBEHHOH NJIOTHOCTH MECTHBIX IIOMeX Ha MecTe M3MepeHHsl.

CymecTBoBaHHe 00LeKTHBHOI BePOSITHOCTH mesieii MOKeT OBITh MCHOJIB30BAHO, YTOObI OTBEPTHYTH JIOXKHbIE CJIEAbI.
AJITOPHTM BKJIIOYAeT B cedsi MoJelb PACHpOCTPaHeHHsl TPaeKTopuii Go/ble HeJell M 3aBHCHMOCTb BePOSITHOCTH
CYIIeCTBOBAHMSI LIeJIM OT cocTostHUs LeJid. IIpoBoJsi HHTEHCHBHBIE MOJeJHPOBAHMS ¢ ABYMsI PA3JIMYHBIMHU CLEHAPHAMM
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La généralisation linéaire de I’algorithme de I’association des
particules de piste pour le suivi automatique de plusieurs cibles

Le procédé du suivi par le radar comprend la détection d’une ou plusieurs cibles a partir du signal dans I’environnement de
bruit. Les détections sont utilisées comme les mesurages pour le suivi des cibles . Le suivi dans I’environnement de désordre
demande I’élimination de fausses pistes et I’association des données. Dans ce travail on propose la généralisation linéaire de
suivi des cibles qui permet facilement de franchir ce pas entiérement en employant les probabilités associatives et elle calcule
récursivement la probabilité de I’existence des pistes. L’approche proposée traite particulierement les détections possibles des
cibles qui proviennent des autres cibles comme le mesurage additionnel de désordre. Cela commence par I’approximation de
la probabilité a priori de ’origine de mesurage depuis le capteur de radar. Ces probabilités sont ensuite utilisées pour la
modification de la densité spatiale de désordre a I’endroit de mesurage. Les probabilité de I’existence de cible peuvent
s’appliquer pour éliminer les fausses pistes . L’algorithme comprend le modéle de la propagation de trajectoire pour plusieurs
cibles et la dépendance de probabilité de I’existence de cible de I’état de cible. En faisant les simulations intenses selon deux
différents scénarios du mouvement de plusieurs cibles on a démontré Iefficacité de la généralisation proposée.
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