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The radar tracking applications perform single and multiple object detections from noise-corrupted signal. These detections 
are used as measurements for target tracking. Tracking in cluttered environments requires false track discrimination and 
data association. However, data association for tracking closely located multiple targets in heavy clutter is prohibitive due to 
the excessive computational requirement. This results from exponential growth of mutually exclusive and exhaustive feasible 
joint events for track-to-measurement assignment. Specifically, our approach treats possible detections of targets followed by 
other tracks as additional clutter measurements. It starts by approximating the a priori probabilities of measurement origin. 
These probabilities are then used to modify the clutter spatial density at the location of the measurements. The probability of 
target existence is used to discriminate the false tracks. The extended simulations showed the effectiveness of this approach in 
two different multi-target tracking scenarios. 
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Introduction 
ACH of the sensor measurements may either be a 
spurious (clutter) or a target measurement. The target 

existence and trajectory are not a priori known. Target 
measurements are only present in a scan with some 
probability of detection PD. In a multi-target situation, the 
measurements may have also originated from one of various 
targets. Targets may enter and leave the surveillance region at 
any time, thus at any given moment the number of targets in 
the surveillance area is unknown. Automatic tracking in this 
environment initiates tracks using both target and clutter 
measurements [1]. 

If a track follows a target, we call it a true track; otherwise 
we call it a false track. To confirm likely tracks and terminate 
unlikely ones, a track quality measure is necessary [2]. Some 
standard track quality measures include the probability of 
target existence. The tracks are initialized using 
measurements, thus both true tracks and false tracks 
simultaneously exist. The false track discrimination (FTD) is 
a procedure to terminate a majority of false tracks and 
confirm majority of true tracks [3]. A track quality measure 
needs to be calculated for a successful FTD. 

The Multi Hypothesis Tracking (MHT) [3, 4] uses the track 
score (Sequential Probability Ratio Test - SPRT) as a track 
quality measure. The probability of target existence is first 
introduced for the single target Integrated Probabilistic Data 
Association (IPDA) [5], and then for the multi-target Joint 
IPDA (JIPDA) [6] and Linear Multi-target IPDA (LMIPDA) 
algorithm [7, 8]. The IPDA based algorithms approximate the 
trajectory state probability density function (pdf) by a 
Gaussian pdf. The single target Integrated Track Splitting 

(ITS) [9] and multi-target Joint ITS (JITS) and Linear Multi-
target ITS (LMITS) algorithms are the extensions of IPDA, 
JIPDA and LMIPDA to multi-target environments, 
respectively. They employ multi-scan data association similar 
to the MHT so that they are more effective in low detection 
probability and high clutter measurement density 
environments. The MHT, IPDA and ITS based algorithms are 
derived assuming linear trajectory propagation and linear 
measurement model. Some nonlinearity may be 
accommodated by the measurement conversion and by 
replacing the Kalman filter with the Extended Kalman Filter 
(EKF) or the Unscented Kalman Filter (UKF) [10, 11]. 

The particle filters [12] sample the trajectory state pdf by a 
set of random particles. They accommodate both non-linear 
measurements and non-linear state propagation. The particle 
filters have been successfully applied to a wide range of 
estimation problems. On the negative side, a large number of 
particles are often needed for difficult multidimensional 
scenarios, which typically results in about one to two orders 
of magnitude higher computational requirements compared to 
Gaussian Mixture ITS [12, 13]. However, with the technology 
progress this issue will become less important. 

The Integrated Track Splitting (ITS) [14-16] filter is an 
advanced method for automatic target tracking in a heavy 
clutter, and the track state includes a track quality measure 
which is presented with the probability of target existence for 
the FTD. The Integrated Particle Filters (IPF) [17], [18] track 
state also includes the target trajectory estimate in the form of 
a set of mutually exclusive probability density function.  

The linear multi-target generalization of IPF, named Linear 
Multi-Target IPF, is presented in this paper.  

E 
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The paper is organized as follows: after common 
considerations, a problem statement is presented in Section II. 
Section III derives the particle filter approach, followed by the 
recursion of integrated particle filter, linear multitarget data 
association approach and concluding remarks, presented from 
Section IV, Section V and Section VI, respectively.  

Problem statement 
Tracks are initialized and updated using random 

measurements of unknown origin, thus each track may be a 
true track (following a target) or a false track. Target tracking 
involves determining the existence and the trajectory of 
possible targets in the surveillance space, by comparing 
random measurements received by the sensor with the 
applicable stochastic models. We use superscripts τ  to denote 
tracks, and also targets followed by tracks; the exact meaning 
is determined by the context.  

Targets model 
In this paper we use the Markov Chain One model [5] for 

the propagation of the probability of target existence ( )ψ . 
This model assumes that a target may exist and when it does it 
is always detectable with a given probability of detection PD, 
or it may not exist. During the targets maneuvering, the 
motion can be changed at random times. The trajectory of a 
target can be described at any time by one of k

τσ  predefined 
dynamic models. A linear model is considered. The target 
trajectory state, for the linear system, zn

kx Rτ ∈  at time k, 
evolves by:  

 τττ ν kkkk xFx += −1  (1) 

where kF  is the propagation matrix, and the process  noise 
τν k  is a zero mean and white Gaussian sequence with 

covariance kQ . At each scan k, the sensor returns a random 
number of the random target and clutter measurements. The 
measurement of the existing and detectable target is taken 
with a probability of detection. 

Sensors model  
At each scan the sensor returns a random number of the 

random target measurements and a random number of the 
random clutter measurements. The measurement of the 
existing and detectable target is taken with a probability of 
detection PD. 

 k k ky Hx wτ τ τ= +  (2) 

 
where H is measurements matrix and the measurements noise 

kwτ  is zero mean and white Gaussian sequence with 
covariance matrix R.  

Measurements model 
Measurements may originate from the targets as well as 

from other objects. The clutter measurements follow the 
Poisson distribution. We assume that the uniform intensity of 
the Poisson process at point y in the measurement space, 
termed here the clutter measurement density and denote by 

( )yρ  is a priori known, or can be estimated using the sensor 
measurements. At time k, one sensor delivers a set of 

measurements denoted by , 1{ } kM
k k j jz z == . The measurement 

set may be empty with 0kM = . Denote by kZ  the sequence 
of selected measurement sets up to including time k, 

1
,1 , ,{ , ,..., ,..., }k

k k
k k j k MZ Z z z z−= . 

Particle Filter Approach 
Particle filtering samples a continuous posterior density 

function of interest into a set of the weighted particles. If the 
weights are chosen appropriately, then these weighted set of 
particles represents the posterior density in a way that the 
posterior density function can be represented arbitrarily close 
to the equivalent set of the weighted particles. The target 
trajectory state pdf at scan k is defined by a set of particles 
{ , }k kx w , parameterized by a set of N particles  

Particles: 

 1{ , }i i N
k k iw x =  (3) 

where should be satisfied: 

 
1

1
N

i
k

i

w
=

=∑  (4) 

Integrated Particle Filter recursion 
The tracks state consists of the targets existence event, and the 
trajectories state, and for each track we recursively calculate 
the probability of target existence, and the trajectory state  
pdf, which is only defined conditioned on the target existence. 
Depending on the calculated probability of the target 
existence, we may conclude that the target exists and confirm 
the track. Each confirmed track stays confirmed until the 
termination. 

Each track is represented by a set of particles. A new pdf  is 
formed by each pair of particle-measurements. For track, each 
particle for the track propagates according to (1). One cycle of 
the Integrated Particle Filter algorithm consists of five steps: 
track propagation, measurements selection, data association, 
particle weight update and resampling. 

Track propagation: 
Each track is a set of particles. The estimation state of each 

particle is the output of a filter which is given a single 
measurement at each scan. Propagation does not change 
relative particle weight. The probability of the target existence 
is given by: 

 1 11 1ˆk kpτ τψ ψ− −=  (5) 

where p11 is a transition probability. During the overall 
recursion, the number of particles is kept constant. At this 
time, each of the particles i, from the k-1 scan, propagates as a 
Kalman Filter prediction step. The linear propagation model is 
a special case, given by the: 

 , , ,
1

i i i
k kk kx F xτ τ τν−= +  (6) 

where the additive plant noise ,i
k
τν is a zero mean Gaussian 

sequence with covariance matrix ,i
kQτ  , 11, 2,..., ki N −= . 

Measurements Selection and Likelihood  
After the prediction step, a two-tier measurements selection 
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procedure is performed. The purpose of the measurement 
selection is to decrease the computational requirements by 
reducing the number of measurements used to update track τ . 
For each measurement ,k jz  and each particle i we calculate 

innovations ,i jϑ  as follows: 

 ,
, ,

i
i j k j kz Hxτϑ = −  (7) 

and the likelihood of the measurement jkz , with respect to the 
particle i is: 

 1
, , ,

1 exp ( 0.5 )
2

i T
k j i j i jp R

R
τ τϑ ϑ

π
−

⎡ ⎤
= − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

 
where (·)T denotes the matrix transpose. The likelihood of the 
measurement ,k jz  is: 

 , ,
, 1 ,

i i
k j k k j

i

p w pτ τ τ
−=∑  (9) 

 

Data association 
Each track τ  selects a set zk  of Mk candidate measurements, 

the probability the target measurement is calculated by using the 
measurement likelihood ratio defined by: 

 ,

,1

1
kM

k j
k D D

k jj

p
P P

τ
τλ ρ

=

= − + ∑  (10) 

Then, the particle weight that represents the updated target 
trajectory state pdf is updated by using the data association 
probabilities ,k j

τβ , for each track τ , such as target trajectory 
update:  

 
,
,, ,

,0 ,1
,1

( )
kM i

k ji i
k k jk k

k jj

p
w w

p

τ
τ τ τ τ

τβ β−
=

= +∑  (11) 

where ,k j
τβ  represents the posterior probability that the jth 

measurement at scan k is the true target measurement and 
where ,0k

τβ  represents the probability that none of the 
selected measurements is target originated. The probability of 
the target existence is updated by the equation: 

 1

1

ˆ
ˆ1 (1 )

k k
k

k k

τ τ
τ

τ τ
λ ψψ

λ ψ
−

−
=

− −
 (12) 

Particle Weight Update 
Next step is the target trajectory update, by the particles 

weight update: 

 
,
,, ,

1
,1

(1 )
kM i

k ji i
D Dk k

k jj

p
w w P P

τ
τ τ

τρ−
=

= − + ∑  (13) 

Resampling 
Particle filter recursions tend to increase the variance of 

sample weights { }i
kw , where only a small number of 

particles have significant weight. This is known as a sample 
degeneracy and can lead to the particle filter divergence. 
Resampling corrects this problem [8] by removing the 

particles with small weights, and multiplying the particles 
with high weight. After resampling, all surviving particles 
have identical weight 1/i

kw N= .  
There are multiple possible ways to detect the need for 

resampling, as well as to perform resampling. The resampling 
details and tradeoffs are beyond the scope of this paper, useful 
discussions and tradeoffs may be found in [11, 12] and the 
references within.  

Linear Multi-target Integrated Particle Filter Data 
Association 

Linear multi-target (LM) is a suboptimal multi-target 
tracking technique which reduces complexity by eliminating 
joint measurements to tracks assignments. It also significantly 
reduces algorithmic complexity. LM derivations are presented 
in [18], thus here we only present the final formulae. When 
updating track τ  possible detections of targets being followed 
by other tracks are unwanted measurements. The LM method 
modulates the clutter measurement density ,k iρ  of each 

selected measurement ,k iz  of track τ  by a possible 
contribution of other tracks. Target state is then updated using 
a single target tracking filter.  

The a priori probability that the ith measurement is 
originated by the jth target is given by: 

 , ,
, 1

. .
1

/

/
k

k j k j
k j k M

k l k l
l

p
p
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τ
τ τ

τ
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ψ
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∑
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The modified clutter density for track τ at measurement 
,k jz  is: 

 ,
, ,

,1;( )1

T
k j

k j k j
k j

p
p

τ θ
τ

θ
θ θ τ

ρ
= ≠

Θ = +
−∑  (15) 

where Tτ  is the total number of tracks. To calculate data 
association probabilities for target τ , single-target IPF 
formulae are used with ,k j

τΘ  replacing ,k jρ . If the targets are 

far apart , ,k j k j
τ ρΘ =  for all i and j, LMIPF becomes identical 

to IPF. Measurement likelihood ratio for track τ at time k is 
given by the following equation: 

 ,

,1

1
kM

k j
k D

k jj

p
P

τ
τ

τλ
=

= − +
Θ∑  (16) 

A posteriori state estimate of the measurement j is given by: 

 ,,

,

1 , 0
1

, 0.

D

k jk j
Dk

k j

P i
p

P i
ττ

τβ
λ
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⎧ − =
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 (17) 

Then, a posteriori probability of the target existence is 
given by (12). 

Results of simulations 
The application selected for the study was a two 

dimensional (positions and velocities), four-state aircraft 
tracking problem in which the sensor observes both position 
coordinates. The area under surveillance was x=[0; 1000] [m] 
long and y=[0; 1000] [m] wide. Simulations have been 
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performed by choosing 1000== NNk particles.  
In the initialization process, creating a total of Nk  particles 

on the track, schedules are: position have Gaussian 
distribution, and the speeds have uniform distribution in a 
circle with the center at zero and radius maxv . Both 
dimensions were assumed independent. The transition 
probability for the Markov Chain One model are chosen by 
the p11 = 0.98.  

The IPF parameters are calculated on-line according to the 
appropriate equations. Period of scanning is T=1s. All 
experiments were conducted on the basis of multi target 
tracking (MTT) for two and fifteen targets scenario. Transition 
matrix and process noise matrix are given by: 

 

1 0 0
0 1 0 0
0 0 1
0 0 0 1

T

F T

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
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 (18) 
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and measurements matrix are given by 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

0100
0001

H  (20) 

The measurements noise vector are independent Gaussian 
noise with constant covariance matrix, given by the 
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where 2 2 225 mx yσ σ ⎡ ⎤= = ⎣ ⎦  

The selected scenarios were presented for the first time in 
literature [11]. Two sets of simulation experiments are 
presented in this section: the two targets (Fig.1.) and fifteen 
targets (Fig.2.) simulation experiments. Both experiments 
consist of 500 Monte Carlo runs. Each run lasted for 40 scans. 
The intention is to show the improvements in multi-target 
situations that can be obtained by using standard IPF and ITS 
against LMIPF and LMITS procedure 

Instead of the recent IPF single target tracking experiments 
[35], a MTT scenario will be presented. Targets are initially 
positioned at the edges of a circle with the centre at (500, 500) 
and a radius of 450, for the both, two and fifteen targets 
experiments. Each target moves with a uniform speed towards 
the centre of the circle, which they should reach in 20 scans, 
after which they carry on with the uniform motion for further 
20 scans. A random component is added to the speed vector 
of each target, thus at scan 20 the variance of the distance 
between each target and the centre of the circle will be double 
the sensor measurement error noise covariance matrix. In the 
two targets scenario, the targets initial separation is 20o, 
instead of fifteen targets scenario with the targets initial 
separation 10o. The following definitions of true and false 
tracks are used. 
1. Each initiated track is false with respect to all existing 

targets. 

2. A false track becomes a true track with respect to a target 
when the state estimate is sufficiently close to the true 
target state. 

3. A track that is true with respect to a target will remain true 
for as long as it selects the target detections 

Each simulation experiment consists of a number of 
simulation runs. In each simulation run, targets will repeat 
their trajectories. The measurements are generated 
independently. Each algorithm uses the same set of 
measurements. False tracks may be initiated using target 
measurements, either in a conjunction with a clutter 
measurement, or by using measurements from different 
targets in different scans.  

Thus, the average number of initialized false tracks per 
scan will depend on the number of targets present. The 
average number of initialized false tracks per scan was 8, and 
120 for the two and fifteen targets experiments, respectively.  

A confirmed false track in one scan is 300 and 200 for the 
two and fifteen targets cases, respectively. The performance 
measures used to compare the algorithms confirmed true 
tracks, root mean square error positions and target retention 
statistics. Results are presented by a number of confirmed true 
tracks and Root Mean Square Error Position.  

The target retention statistics was obtained by noting the 
identity of the confirmed true track following each of the 
targets at scan 14. These identities are checked again at scan 
38, and the following statistics is accumulated for each 
experiment:  

nCases: total number of cases of a target being followed by 
a confirmed track at scan 14; 

nOK: percentage of tracks still following the original target 
at scan 38; 

nSwitched: percentage of tracks that end up following a 
different target at scan 38; 

nLost: percentage of tracks not following any target at 
scan 38, 

nMerged: percentage of tracks lost due to merging between 
tracks counted in nCases between scans 14 and 38 

Two targets simulations 
Simulation scenario with two targets is presented in Fig.1 

Confirmed true tracks diagram and root mean square diagram 
are presented in Fig.2 and in Fig.3, respectively.  

 
Figure 1. Two targets scenario 
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Figure 2. Number of confirmed true tracks (two targets) 

 
Figure 3. RMS error over time (two targets scenario) 

Fifteen targets simulations 
Simulation scenario (fifteen targets) is presented in Fig.4. 

Confirmed true tracks diagram and root mean square diagram 
are presented in Fig.5. and in Fig.6., respectively.  

 
Figure 4. Fifteen targets scenario 

 
Figure 5. Number of confirmed true tracks (fifteen targets scenario) 

 
Figure 6. RMS error over time (fifteen targets scenario) 

Table 1. Target Retention-Two Targets 

 ITS LMITS IPF LMIPF 
nCases [n] 148 148 144 152 
nOK [%] 79.7 100 97.9 100 

nSwitched [%] 1.4 0 0 0 
nLost [%] 18.9 0 2.1 0 

Merged [%] 21 0 0 0 

Table 2. Target Retention-Fifteen Targets 

 ITS LMITS IPF LMIPF 
nCases [n] 1165 274 282 274 
nOK [%] 23.7 76.6 61 76.6 

nSwitched [%] 17.9 15.4 13.8 15.3 
nLost [%] 58.4 8 25.2 8.1 

Merged [%] 527 7 33 7 

Results of the Integrated Particle Filter-multiple targets 
(two and fifteen targets) tracking simulations showed better 
confirmed true tracks and target retention statistics than the 
standard ITS algorithm that was recently presented. At the 
same time, linear multi targets methodology (LMITS and 
LMIPF) shows better statistics results than the standard ITS 
and IPF algorithms.  

Especially, the increase of the number of targets and 
decrease the targets initial separation show better targets 
statistics in favour of IPF. 
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Conclusion 
The multiple target tracking algorithm, generalizations of 

standard IPF, named Linear Multi-target IPF, is proposed and 
was tested in a special scenarios with a small (two) and large 
(fifteen) number of crossing targets. It uses the well-known 
features of ITS algorithms that account the probability of 
target existence of objective forms, trace and ease of use 
offered by the Particle Filter. Results of two and fifteen 
targets simulations showed better confirmed true tracks and 
target retention statistics than the standard ITS algorithm, with 
the CPU loss time. In the next step of the research it is 
necessary to examine the possibility of improving 
computational efficiency by choosing significant and 
discrimination weakness particle weights.  

In this sense it is necessary to study the limits of target 
existence in the heavy clutter environments, increasing the 
number of particles. 
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Algoritam linearnog sjedinjavanja čestica više tragova za automatsko 
praćenje ciljeva 

Postupak radarskog praćenja podrazumeva detekciju jednog ili više ciljeva iz signala u okruženju šuma. Detekcije se koriste 
kao merenja za praćenje ciljeva. Praćenje u okruženju klatera zahteva odbacivanje lažnih tragova i pridruživanje podataka. 
U radu je predložena linearna generalizacija praćenja ciljeva koja na lak način omogućava premošćavanje ovog koraka i u 
potpunosti korišćenjem asocijativnih verovatnoća i rekurzivno proračunava verovatnoću postojanja traga.  
Na poseban način, predloženi pristup tretira moguće detekcije ciljeva koji potiču od drugih ciljeva kao dodatna klater 
merenja. On počinje aproksimacijom apriorne verovatnoće porekla merenja sa radarskog senzora. Ove verovatnoće se zatim 
koriste za modifikovanje prostorne gustine klatera na lokaciji  merenja.  
Verovatnoće postojanja cilja mogu da se koriste za odbacivanje lažnih tragova. Algoritam podrazumeva model propagacije 
trajektorije više ciljeva i zavisnost verovatnoće postojanja cilja od stanja cilja. Sprovodeći intenzivne simulacije sa dva 
različita scenarija kretanja više ciljeva, pokazana je efikasnost predložene generalizacije. 

Ključne reči: radarsko praćenje, otkrivanje cilja, praćenje cilja, pokretni cilj, automatsko praćenje cilja, algoritam 

Линейное обобщение алгоритма объединения частиц следов для 
автоматического многоцелевого отслеживания 

Процесс отслеживания целей радаром включает в себя мониторинг радиолокационного обнаружения одной или 
нескольких целей из окружающих шумовых сигналов. Обнаружения используются в качестве измерений для 
мониторинга целей. Мониторинг окружающей клаттерной среды требует отказа ложных ключей (следов) и 
объединения данных. В данной работе  предлагается линейное  обобщение мониторинга целей, что позволяет легко 
обойти этот шаг и полностью с использованием ассоциативных вероятностей рекурсивно вычисляет вероятность 
существования следа. 
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Особым образом, предложенный подход трактует может ли обнаруживать цели, которые вытекают из других целей 
таких как дополнительные измерения местных помех. Он начинает  аппроксимируя априорные вероятности 
происхождения из измерений с радиолокационными датчиками. Эти вероятности затем используются для изменения 
пространственной плотности местных помех на месте измерения. 
Существование объективной вероятности целей может быть использовано, чтобы отвергнуть ложные следы. 
Алгоритм включает в себя модель распространения траекторий больше целей и зависимость вероятности 
существования цели от состояния цели. Проводя интенсивные моделирования с двумя различными сценариями 
движения больше целей, здесь продемонстрирована эффективность предлагаемого обобщения. 

Ключевые слова: отслеживания целей радаром, обнаружения целей, сопровождения целей, движущаяся цель, 
автоматические сопровождения целей, алгоритм. 

La généralisation linéaire de l’algorithme de l’association des 
particules de piste pour le suivi automatique de plusieurs cibles  

Le procédé du suivi par le radar comprend la détection d’une ou plusieurs cibles à partir du signal dans l’environnement de 
bruit. Les détections sont utilisées comme les mesurages pour le suivi des cibles . Le suivi dans l’environnement de désordre 
demande l’élimination de fausses pistes et l’association des données. Dans ce travail on propose la généralisation linéaire de 
suivi des cibles qui permet facilement de franchir ce pas entièrement en employant les probabilités associatives et elle calcule 
récursivement la probabilité de l’existence des pistes. L’approche proposée traite particulièrement les détections possibles des 
cibles qui proviennent des autres cibles comme le mesurage additionnel de désordre. Cela commence par l’approximation de 
la probabilité à priori de l’origine de mesurage depuis le capteur de radar. Ces probabilités sont ensuite utilisées pour la 
modification de la densité spatiale de désordre à l’endroit de mesurage. Les probabilité de l’existence de cible peuvent 
s’appliquer pour éliminer les fausses pistes . L’algorithme comprend le modèle de la propagation de trajectoire pour plusieurs 
cibles et la dépendance de probabilité de l’existence de cible de l’état de cible. En faisant les simulations intenses selon deux 
différents scénarios du mouvement de plusieurs cibles on a démontré l’efficacité de la généralisation proposée.  

Mots clés: suivi par radar, détection de cible, suivi de cible, cible mobile, suivi automatique de cible, algorithme. 

 
 


