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Review of the Spalart-Allmaras Turbulence Model and its 
Modifications to Three-Dimensional Supersonic Configurations 

Čedomir Kostić1) 

The Spalart-Allmaras (SA) model is a turbulence model for modeling different types of turbulent flows, especially in 
aerodynamics. Until 1992, when it was published by Spalart and Allmaras, there had been modified different terms of the 
governing equation of this model (prediction, diffusion and destruction). In this literature review, one can go through the 
details of the governing equation of this model and the role of each term and reasoning behind it. The model is 
implemented in three-dimensional compressible supersonic flows, and validated for two different configurations: a 
ballistic missile and a cruciform missile simulations show the ability of the method to snap the interaction between the 
fuselage vortices and the winglets 
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Notation and symbols 
T – Temperature 
F – Force  
V – Velocity 
x, y, z – Physical Carthesian coordinate axes 
α – Angle of attack (degree) 
γ – Ratio of specific heats 
M, μt – Laminar, eddy viscosities 
ρ – Density 
CA – Total axial force coefficient 
Caf – Skin friction coefficient 
Cl – Roll moment coefficient 
CN – Normal force coefficient 
Cp – Pressure coefficient 
D – Diameter of the fuselage 
E – Total energy 
M – Mach number 
P – Static pressure 
P0 – Total pressure 
RANS – Reynolds-averaged Navier–Stokes equations  

Introduction 
OMPUTATION Fluid Dynamics (CFD) has got an 
increasingly significant role in aircraft aerodynamic 

design. CFD commercial packages, like FLUENT, make 
performing numerical simulations easier than ever. An easy 
access to the required tool for doing different types of CFD 
works can run a simulation successfully; however, the 
results sometimes do not make any physical sense or can 
even be totally wrong. 

The prediction of flow phenomena such as a boundary 
layer picture, precisely boundary layer separation or shock 
boundary layer interaction, depends strongly on the choice 

of the turbulence model. The renowned models are: 
Baldwin Lomax, commonly used in industrial missile 
applications, Degani - Schiff and Deck – Guillen, algebraic 
models built to calculate attached turbulent boundary 
layers. They need several modifications to calculate other 
flow fields.  

Two equation models sometimes have to be aware of 
wall distances, but in same tame can be formulated 
autonomously of the flow topology and therefore they are 
more suited to computations of complex geometries. They 
take physically into account history effects through 
transport equations.  

H.Daniau [1] has illustrated a review of transport 
equation models capacities and has shown that some 
models can be difficult to implement in a general way. 
Boundary wall conditions are not straightforward and can 
influence stability and correctness of calculations. 
Numerical problems restrict their general application. 

One-equation models give the impression of being a 
compromise between algebraic and two-equation models. 
The Spalart–Allmaras model solves directly the transport 
equation for the vortex viscosity. In this paper, the details 
of each term of the governing equation are reviewed and 
different proposed modifications are explained. The last 
section relies on the numerical aerodynamic calculation of 
two typical external configurations. 

Spalart-Allmaras Governing Equation 

The Basic Equations 
The Spalart-Allmaras model is a one-equation turbulence 

model that has been developed primarily for aerodynamic 
flows. This model is a transport equation for eddy viscosity. 

G 
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In order to develop a closed system of the central 
equation for the mean motion of a flow, one would 
determine the distribution of the Reynolds stress.  

Generally any transportable scalar quantity, such as eddy 
viscosity, subject to the conversion laws, is transported 
according to the following equation, which is the basic 
equation: 
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Deffusion Production Destruction
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To construct a full model for a turbulent flow, each of 
diffusion, production and destruction terms should be 
defined carefully. Defining these terms and making them 
non-dimensional will result in some additional constants 
and non-dimensional functions in each term. 

The transport equation for the working variable v  is 
given by: 
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The eddy viscosity is defined as: 

 1t v tvf vμ ρ ρ= =  (3) 

In the log layer, it can be said that is v kyuτ= , therefore in 
the buffer layer and the viscous sublayer, too. 

The damping function 1vf  is defined as: 
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The vorticity magnitude S is adapted such that S  keeps 
up its log-layer conduct ( )S u kyτ= : 
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In order to obtain a faster decaying behavior of 
destruction in the outer area of the boundary layer, the 
function wf  is used: 
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where: 
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Here the value g performs as a limiter that prevents large 
values of wf  in the log-layer and decreases in the outer 
area. The above function is shown in Fig.1. 

 

Figure 1. wf  function involved in the destruction term [2] 

The results are most sensitive to the slope of wf  at r=1, 
which is controlled by 3wc . The step from g to wf  works as 
a limiter that prevents large values of wf , which could be 
problematic for numerical simulations and gives an 
underserved importance to the fact that S can fade away.  

The area r>1 is exercised only in advance pressure 
gradients. The value ( )0 0wf =  is not indispensable, since 
in free shear flows the destruction term vanishes on account 
of the d2 according to the calibration reasonable values for 

2 0.3wc =  and 3 2wc = . 

Calibration of the Spalart-Allmaras Model 
In the process of calibration, constants and functions are 

defined with a help of experimental and numerical results 
of the type of a flow that has to be modeled.  

 
Figure 2. Calibrated model constants [2]. 

The free shear flow of the model requires correct levels 
of shear stress in two dimensional mixing layers and wakes. 
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Proper values for the peak shear stress were measured to be 
0.01(ΔV)2 and 0.06(ΔV)2 for the mixing layer and the wake 
respectively, where ΔV is the peak velocity difference.  

This gave two conditions for three free constants 1bc , σ  
and 2bc , and leaves a one-dimensional relation of solutions 
presented in Fig.2, parameterized by the Prandtl number σ. 

According to the above conclusions in the numerical 
simulation results, the Spalart-Allmaras suggested values 
for the constants are given in Table 1. 

Table 1. Suggested values for the constants [2 and 3] 

1bc  2bc  σ  ( )21 bc
σ
+  1vc  2wc  3wc  

0.1355 0,622 2
3  2.4≈  7.1 0.3 2 

Finally, the only remained constant and the non-
dimensional function to be defined is the one in the 
definition of the destruction term. Spalart andAllmaras 
argued that in a classical log-layer, with friction velocity 
and turbulent kinetic energy k, the strain rate tensor and 
eddy viscosity are defined as in equation (5), and that a 
consideration of the equilibrium between the production, 
diffusion and the destruction term is possible, provided that 
the constant 1wc  in the destruction term is defined as a 
function of other constants: 

 ( )1
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where:  

0.41k =  

Spalart`s Modifications 
Specific tasks showed a poor convergence of the residual 

turbulence near reattachment. This problem, tag (traced) to 
S , is going negative which distributed r and resulted in 
blinking. Spalart anticipated the following modification: 
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It can be noticed that 0S ≥ . In spite of the fact that both 
v  and S are equal to zero, S is still zero. Spalart suggested 
to take max( χ ,10-4) as a substitute of χ and 2 5vc = . 

The modified fv2 remains along the wall. The function fv3 
varies remarkably from 1 in the vicinity of walls. 

Spalart-Allmaras Governing Equation 

Integral Form of Governing Equations 
The Navier-Stokes equations are governing ones. In case 

of turbulent flows, a Reynolds averaged form is used (mass 

represents conservative variables and represents the main 
flow contribution. Considering a finite volume Ω, where 
∂ Ω is a surface with an exterior normal n , the Reynolds-
averaged Navier–Stokes equations (or RANS equations) 
can be transformed into the following form: 
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where: 
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The above system of RANS equations is stated in an 
absolute frame. Turbulence contribution is reduced to Rτ   
(the Reynolds tensor ) and to tq  (the turbulent heat 
transfer). The first term of the above equations is zero to 
remember that the turbulence equation is separated from 
RANS equations. This maneuver makes the numerical 
implementation easier and reduces time for computation.  

The next step is assuming the air as an ideal gas. The 
state equation relates the static pressure P to the 
conservative variables: 
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For a Newtonian fluid, shear stresses and related to mean 
velocity gradients. Evident turbulent stresses are related to 
mean velocity gradients. Using the Boussinesq`s 
assumption: 

( ) ( )2( ) 3
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The influence of the laminar viscosity on temperature 
Spalart-Allmaras - brings through: 
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where T0=273.15 K and μ0=1.711·10-5 kg/(ms) . 

Numerical algorithm 
The numerical method is implemented in the computer 

solver FLUENT [4]. The solver is approached on the finite 
volume and on a cell centered discretization. Calculations 
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are realized by blocks, each block being segregated in 
hexahedral cells. Discreditization of time is based on the 
second-order accurate Gear`s formulation of the fully 
implicit scheme: 
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Boundary Conditions 
The numerical solid wall boundary conditions for cell-

centered finite volume discetization procedures depend on 
the viscous and diffusive flux. More precisely, their 
computation needs the knowledge of the interface between 
primitive states and gradients. 

Gradients are defined by the average over an ample 
control volume ijkΩ  using the formulae of Green: 
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According to Ben Khelil [5], who has given two 
approximations, the first one uses staggered cells in order to 
evaluate the gradients at the cell interface and the second 
one computes the cell gradient at each cell center and 
affects an averaged value at the interface, while the use of a 
centered control volume method simplifies considerably the 
treatment of boundary conditions. Also, using this method 
leads to parasite oscillations due to a separation between 
even and odd points. For high speed flow configurations, 
this separation has no consequence.  

Turbulent variables are particularly sensitive to this 
phenomenon; therefore, wall interfaces require some 
treatments: 

The numerical properties of the Spalart-Allmaras model 
are that v ku yτ=  until the wall. A fictitious cell 0 can be 
used, (see Fig.3).  

The cell 0 extrapolates the gradient associated with real 
cells 1, 2 and 3, therefore: 

 1 1 2 2 3 30 K K K∇ = ∇ + ∇ + ∇  (17) 

where Ki are the extrapolation coefficients. They can be 
chosen as a function of a desired degree of precision.  

 
Figure 3. Real and fictitious cells of the wall 

Pechier [3] proposed another technique of giving 
gradients to fictitious cells. The first real cell 1 is divided 
into two same cells. Gradients are evaluated in the nearest 

half cell from the wall, therefore: 
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The velocity profile of a flat plate in supersonic free-stream 
conditions (see Fig.4) is presented during two different 
computational techniques for gradient calculation [2]. 

 
Figure 4. Influence of gradient calculation in fictitious cells [2] 

One can note that a 0 order extrapolation results as it can 
be expected in parasite oscillations due to a separation 
between even and odd points and in no oscillation when 
using the half volume technique or the second order 
extrapolation. The second order gradient for turbulent 
variables shows to be a proper compromise between 
precision and robustness. 

Results and Discussion 
The Spalart-Allmaras model has been implemented in the 

FLUENT software and validated program [4]. Therefore, let us 
take a look at tests for generic configurations at M=2 and a 
moderate angle of attack (a simple ogive-cylinder body and an 
ogive-cylinder body-tail configurations). 

The influence of fυ functions is conducted for α=0 
degree. The flow is forced turbulent near the body nose and 
the Reynolds number based on the diameter is 1.2·106. 

Let us see Fig.5,where the convergence history of the 
friction drag coefficient is presented. The modified 
functions (f2 and f3) shift the laminar-to-turbulent transition 
backward and still do not modify the convergent value of 
the normal force coefficient. Furthermore, let us notice a 
slight difference of speed convergence.  

   
                  a)                                                    b) 

Figure 5. а) Convergence history [6], b) Sketch of the flow field α=10 deg 
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An experimental study of an ogive-cylinder for α=10 
degrees, with oil flow visualizations, flow field figure, 
pressure distributions, boundary layer profiles, and skin 
friction values has been carried out at the ONERA, French 
wind tunnels, at M=2 [3]. The flow structure includes a 
primary vortex and a secondary one, Fig.5. This test 
demonstrated that the intensity of the vortex flow is 
sensitive to the laminar or turbulent nature of the boundary 
layers. First experiments were carried out with 
Re=0.16·106, by [6]. This permitted to switch from the 
laminar to turbulent boundary layer when transition was 
free or triggered on the body apex. 

Free stream conditions are M=2 and α=10; laminar 
calculations are performed with Re=0.16·106 and 
Re=0.12·106 for all other turbulent calculations. 

The grid has 400,000 points (61 in axial, 85 in radial and 
73 in circumferential directions with ΔΦ=2.5 deg.). A 
normal size cell in the axial direction leading to Y+<1 is 
assumed around the whole body.  

The numerical validation is completed with the K-
epsilon model computation (Jones and Launder [7]). 

 

 
Figure 6. Total pressure (pi/pi0) contours in the cross section X/D=7 at 
α=10 deg. 

The computed skin friction lines are presented by a 
developed view in Fig.5. We can notice a good position of 
the primary separation line, observed in both models. The 
second separation line is sufficiently visible. 

At the station X/D=7, the main vortex on the upper side of 
the body, see Fig.6, is developed, while the secondary vortex is 
built-in in the boundary layer, and therefore cannot be clearly 
seen. The computational results are sensitive to viscous effects 
and turbulent modeling. Moreover, the Spalart-Allmaras 
model and the K-epsilon give very close results for total 
pressure and eddy viscosity, see Fig.7. 

  

  
Figure 7. Eddy viscosity field (Spalart-Allmaras and K-eps). 

The cumulated normal force coefficient calculated by the 
integration of pressure distributions along the body is 
presented in Fig.9. Both models give the same normal force 
coefficients. 

The second test case is in order to get an insight into the 
effect of vortices on the overall aerodynamics of a body-tail 
configuration. The Spalart-Allmaras model solutions are 
computed for M=2 and α = 22.5o steady flow. Fig.8 shows 
the fore-body vortices acting on the fins. 

 
Figure 8. Total pressure contours. 

If the results are compared to the Euler solutions for the 
prediction of the normal force, Fig.9, it can be noticed that 
they are similar. 
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Figure 9. Normal force coefficient. 

This reality can be explained by the fact that, with an 
inviscid solution the body lift is underestimated, whereas 
the fin lift is overestimated, without or with a very small 
effect of the vortices. 

According to S. Deck [3], generic configurations have 
been studied for supersonic flows and moderate angles of 
attack, body alone and body-tail. For body alone, none of 
the models is really satisfactory - the Spalart-Almaras 
model and the K-epsilon model give very close results, but 
remotely overestimate the eddy viscosity. The CN induced 
by the vertical flow has no tangible effect on the global 
longitudinal characteristics. 

Conclusion 
The Spalart-Allmaras turbulence model has been 

developed and designed for subsonic flows around airfoils, 
additionally to subsonic and transonic flows around aircraft 
configurations. 

An annex of its formulation to compressible flows and 
its application to three dimensional supersonic flows have 
been achieved. A greater care has to be taken relating to the 
definition of the model damping functions and 
discretization of viscous gradients near boundary layers. 
The usefulness of this model for supersonic flows is the 
ability to compute the ogive leeward side vortices as an 
influence for the evaluation of external flows. 

The main conclusion is that the Spalart-Allmaras model 
does a good job near wake where the vorticity is 

domination strain rate, which means that the Spalart-
Allmaras model takes a good care of the overproduction of 
eddy viscosity.  

In comparison with the K-epsilon model, the Spalart-
Allmaras model gives the same results, but the dissipation 
rate is much faster than with the Spalart-Allmaras  model. 

The characteristics of the Spalart-Allmaras model in 
studying flow conditions can be seen in this work. On the 
other hand, unsteady flows bring time (t) as a momentous 
variable. Therefore, future work will extend the domain of 
its application to unsteady flows. 
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Prikaz Spalart-Almaras turbulentnog modela i njegovih modifikacija 
za trodimenzionalne nadzvučne konfiguracije 

Spalart-Almaras je turbulentni model za modelovanje različitih tipova turbulentnog strujanja, naročito se koristi u 
aerodinamici. Još od 1992.godine, kada je objavljen od strane Spalarta i AlmaraSpalart-Allmaras , modifikovani su razni 
delovi glavne jedniačine (predvidjanje, difuzija i destrukcija). U ovom radu se obrađuje glavna jedničina modela i 
objašnjava uloga svakog dela iste. Model je implementiran u trodimenzionalna compresibilna nadzvučna strujanja i 
testirana za dva različite konfiguracije. Prvo simulacija balističkog projektila a potom i rakete sa stabilizatorima u obliku 
krsta pokazuju mogućnost ovog modela da primeni interakciju trupa letelice i krmila pravca. 

Ključne reči: aerodinamika, numerička dinamika fluida, modelovanje procesa, turbulentno strujanje, supersonično 
strujanje, numerička simulacija, aerodinamika projektila. 
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Показ турбулентной модели Spalart-Allmaras и её модификаций 
для трёхмерных сверхзвуковых конфигураций 

Spalart-Allmaras есть турбулентная модель для моделирования различных типов турбулентного потока и  
особенно пользуется в аэродинамике. Ещё с 1992 года, когда её публиковали Spalart и Allmaras, 
модифицированы разные части основного уравнения (предусмотрение, диффузия и разрушение). В настоящей 
статье обрабатывается основное уравнение модели и объясняется роль каждой части этого уравнения. Модель 
использована в трёхмерных сжимающихся сверхзвуковых потоках и опробована на двух различных 
кофигурациях. Во-первых,  симуляция баллистического снаряда, а потом и ракеты с оперениями в форме креста 
указывают на возможность и способность настоящей модели применить взаимодействие фюзеляжа и руля 
направления. 

Ключевые слова: аэродинамика, вычислительная гидродинамика, моделирование процессов, турбулентный 
поток, сверхзвуковой поток, численное моделирование, аэродинамика снаряд. 

Présentation du modèle de turbulence Spalart-Almaras et de ses 
modifications pour les configurations supersoniques à trois 

dimensions  
Spalart-Almaras est un modèle de turbulence pour la modélisation de différents types d’écoulements turbulents utilisé 
spécialement dans l’aérodynamique. Depuis 1992 quand il a été publié de la part de Spalart et Almara Spalart 6Almaras 
on a modifié différents partie de l’équation principale  (prévision, diffusion et destruction ). Dans ce papier on considère 
la principale équation du modèle et on explique le rôle de chacune de ses parties. Le modèle est mis en œuvre dans 
l’écoulement compressible à trois dimensions supersoniques et testé pour deux différentes configurations. D’abord la 
simulation du missile balistique , ensuite du missile à ailette en croix démontrent la capacité de ce modèle d’utiliser 
l’interaction entre le fuselage de l’aéronef et de ses ailettes.  

Mots clés: aérodynamique, dynamique numérique des fluides, modélisation du processus, écoulement turbulent, 
écoulement supersonique, simulation numérique, aérodynamique des projectiles  

 


