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Mechanical Load in a Circular Rotating Disk With a Shaft for 
Different Materials Under Steady-State Temperature 
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It has been observed that thermal effects increase the value of angular speed required to yield at the internal surface for 
incompressible/compressible materials. Radial stresses have a maximum value at the internal surface of the rotating disc 
made of incompressible materials as compared to compressible materials. With the introduction of thermal effects, radial 
as well as circumferential stresses must be decreased in the absence of mechanical load but when mechanical load is 
applied, radial as well as circumferential stresses must be increased at the internal surface of a rotating disc with a shaft. 
A rotating disc is likely to fracture at the bore of the radius. 
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Nomenclature 
a,b - Inner and outer radii of the disc 
ω  - Angular velocity of rotation 
u,v,w - displacement components 
ρ  - Density of material 
C - Compressibility 

,ij ijT e  - Stress and Strain rate tensor 
Y - Yield stress 

0T  - Load 
E - Young’s modulus 

,λ μ  - Lame’s constant 
kke  - first strain invariant 
ijδ  - Kronecker’s delta 

P - function of β  
β  - function of r 

1 2 1 2, , , ,k k K K d  - constants 

Non dimensional quantities: 
0/ ; /R r b R a b= = - Radii ratio; 

0 0 /T Yσ =   - load; 
2 2 2 /b YρωΩ = - angular speed; 

rσ  = /rrT Y  - Radial stress component; 

θσ = YT /θθ  - Circumferential stress component; 
YE /01 Θ=Θ α  - Temperature in Kelvin 

Introduction 
OTATING disks subjected to mechanical and thermal 
loads have been studied in both linear and nonlinear 

forms. In the linear analysis, researchers mainly used the 

infinitesimal elasticity theory [1] for the study of isotropic 
or anisotropic disks of uniform thickness profiles. In 
nonlinear cases, scientific literature mainly focused on three 
aspects, namely nonlinear geometry, material and analysis. 
Although many earlier studies on rotating disks [2] 
considered disks with uniform thickness, lately several 
authors [3-6] considered the nonlinear geometry of rotating 
disks, emphasizing the importance of variable thickness. 
Recent studies [7, 8] indicated that stresses in rotating disks 
(annular or solid) with variable thickness were much lower 
than those in uniform thickness disks at the same angular 
velocity. Unlike these studies where disks were subjected to 
mechanical loads only, many studies can be seen in the 
literature [9-13] with disks subjected to thermal load only. 
The accurate determination of stresses in rotating disks is 
important for an efficient design and material usage in 
engineering applications such as rotors of rotating 
machinery, flywheels, shrink fits, turbines, compressors, 
high speed gear engine and computer disc drives, etc. 
Pankaj Thakur [14] analyzed  stresses in a thin rotating disc 
with inclusion and edge by using Seth’s transition theory. 
The analysis of thin rotating discs made of isotropic 
materials has been discussed extensively by Timoshenko 
and Goodier [15] in the elastic range and by Chakrabarty 
[16] and Heyman [17] for the plastic range. Güven [18] 
discussed the problem with rigid inclusion under the 
assumptions of Tresca’s yield condition, its associated flow 
rule and linear strain hardening. To obtain the stress 
distribution, Güven matched the plastic stresses at the same 
radius r z=  of the disc. Perfect elasticity and ideal 
plasticity are two extreme properties of the material and the 
use of an ad-hoc rule like yield condition amounts to divide 
the two extreme properties by a sharp line which is not 
physically possible. When a material passes from one state to 
another, a qualitatively different state transition takes place. 
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Since this transition is non-linear in its character and difficult 
to investigate, researchers have taken certain ad-hoc 
assumptions like yield condition, incompressibility condition 
and a certain law which may or may not be valid for the 
problem. Seth’s transition theory [19] does not require these 
assumptions and thus poses and solves a more general problem 
from which cases pertaining to the above assumptions can be 
worked out. This theory utilizes the concept of the generalized 
strain measure and an asymptotic solution at critical points or 
turning points of the differential equations defining the 
deformed field and it has been successfully applied to a large 
number of problems [6-14]. Seth [20] has defined the 
generalized principal strain measure as: 
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where n  is the measure and 
A

iie  is the principal Almansi 
finite strain components. For n = -2, -1, 0, 1, 2 it gives 
Cauchy, Green Hencky, Swainger and Almansi measures 
respectively. 

The problem of analyzing mechanical load in a circular 
rotating disc with a shaft in a rotating annular disk mounted 
on a rigid circular shaft occurs frequently in industrial 
applications. In this paper, the plastic stresses have been 
derived by using Seth’s transition theory. The results have 
been discussed numerically and depicted graphically. 

Mathematical model 
A thin annular disc of constant density with a central 

bore of the radius a and the outer radius b is considered. 
The disc, produced of material of constant density, is 
mounted on an edge loading. The disc is rotating with the 
angular speed ω  about the central axis perpendicular to its 
plane. The disc thickness is assumed to be constant and is 
taken to be sufficiently small so that the disc is effectively 
in a state of plane stress, that is, the axial stress zzT  is zero. 
The temperature at the central bore of the disc is Θ .  

Boundary conditions: 
The rotating disc considered in the present study is 

subjected to a temperature gradient field and mechanical 
load. The inner surface of the disk is assumed to be fixed to 
a shaft so that isothermal conditions prevail on it. The outer 
surface of the disk is subjected to mechanical load and 
maintained at a uniform temperature gradient. Thus, the 
boundary conditions of the problem are given by: 

 r = a 0u = ;  r = b, 0rrT T=  (2) 

where u, rrT  and 0T  denote displacement, stress along the 
radial direction and load applied at the external surface. 

Formulation of the Problem 
The displacement components in the cylindrical polar 

co-ordinate are given by [20]: 

 (1 )u r β= − , v = 0, w = dz (3) 

where β  is the position function, depending on 
2 2r x y= +  only, and d is a constant. 

The finite strain components are given by Seth [20] as: 
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where /d drβ β′ =  and the meaning of the superscripts “A” 
is Almansi. 

By substituting eq. (4) in eq. (1), the generalized 
components of strain become: 
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The stress–strain relations for isotropic materials are 
given by [21]: 

 ( )1 2 , , 1, 2,3tj i j ij ijT I e i jλδ μ ξ δ= + − Θ = , (6) 

where ijT  is the stress components, λ  and μ  are Lame’s 
constants and 1 kkI e=  is the  first  strain invariant, ijδ  is  

the Kronecker’s delta and ( )3 2ξ α λ μ= + , α  being the 
coefficient of thermal expansion and Θ  is the temperature. 
Further, Θ  has to satisfy 
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which has the solutions:  
 ( )1 2logk r kΘ = +  (7) 

where 1k  and 2k are the constant of integration and can be 
determined from the boundary condition.  

Equations (6) for this problem become: 
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Substituting eq. (5) in eq. (8), the strain components in 
terms of stresses are obtained as [25]: 
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where E is the Young’s modulus and C is the 
compressibility factor of the material. In term of Lame’s 
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constant, these are given by 
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Substituting equation (5) in equation (8), one gets 
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where C is the compressibility factor of the material in term 

of Lame’s constant, given by 2
2C μ

λ μ
=

+
. Equations of 

equilibrium are all satisfied except 

 ( ) 2 2 0rr
d rT T rdr θθ ρω− + = , (11) 

where ρ  is the density of the material of the rotating disc. 
The temperature satisfies the Laplace equation (7) with 

the boundary condition 0Θ = Θ  at r = a, 0Θ =  at r = b, 

where 0Θ  is constant, given by [21] 
( )1 log

k
a b
Θ=  and 

2 logk b= − . Substituting 1k  and 2k  from equation (7), 
one gets  
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Using equations (10) and (12) in equation (11), one gets 
a non- linear differential equation in β  as: 
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Where 
( )

0
0 log a b

ΘΘ =  and r Pβ β′ =  (P is a function of 

β  and β  is a function of r). 
From equation (13), the turning points of β  are 1P = −  

and ±∞ .  

Solution Through the Problem 
For finding the plastic stress, the transition function is 

taken through the principal stress (see Seth [19, 20] , Gupta 
et al. and Thakur [22, 42]) at the transition point P → ±∞ . 
The transition function ϒ  is defined as: 
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Taking the logarithmic differentiation of equation (14) 
with respect to r and using equation (13), one gets 
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Taking the asymptotic value of equation (15) at 
P →±∞  and integrating it, one gets  
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where 1K  is a constant of integration which can be 
determined by the boundary condition. 

From equation (14) and (16), we have 
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Substituting equation (17) in equation (11) and 
integrating it, one gets 
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where 2K  is a constant of integration, which can be 
determined by the boundary condition. 

Substituting equations (17) and (18) in the second 
equation of (9), one gets 
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Substituting equation (19) in equation (3), one gets 
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passion’s ratio in terms of a compressibility 

factor. Using the boundary condition (3) in equations (18) 
and (20), one gets 
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Substituting the values of the constants 1K  and 2K  
from equations (17), (18), and (20), respectively, one gets 
the transitional stresses and displacement as: 

( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )

2 3 3 1

0 0

0

23

1 ln /
2 ln( / )2 ln /

b a r r a rT Er b b r b
T

C b a r brE C b a br C a b

ν ν

ν

ν

θθ

ρω ν
ν α

α

−⎧ ⎫−⎪ ⎪+ − Θ⎪ ⎪⎪ ⎪=⎨ ⎬
⎪ ⎪⎡ ⎤− −⎪ ⎪+ Θ − −⎢ ⎥−⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

(21) 

( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( )

2 1
3 3 3 3

0

0

0

3

2

2
ln / 1

ln /

rr

r rb a r a Tr b b

E a a rT r r b

E C b a r ar b r b ra b

ν

ν

ν νρω

α
ν

α

−⎧ ⎫⎡ ⎤⎪ ⎪− − + +⎢ ⎥⎪ ⎪⎣ ⎦
⎪ ⎪
⎪ ⎪⎡ ⎤⎪ Θ ⎪= + −⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦
⎪ ⎪
⎪ ⎪⎡ ⎤Θ − −⎪ ⎪+ + + −⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

(22) 

( ) ( )( )
( )

( )
( )

( )
( )

2 3 3
0

0

2
 +3 ln /

21
2 2 ln /

1 ln /

r a E C r a
r r a b

u r r E C E r b a
rC a b

ρω α

ν

α

⎡ ⎤− Θ − −
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− Θ ⎡ ⎤⎢ ⎥+ −⎢ ⎥−⎢ ⎥⎣ ⎦⎣ ⎦

(23) 

( ) ( )( ) ( ) ( )

( ) ( ) ( )
( )
( ) ( )
( )( ) ( )

2 1
3 3 3 3

0

0

1 13
1 22

1

.ln /
1

log 1

rr

r rb a r a Tr b b
a a r
r bC rT T

b a rE br a b
a r

ra b

ν ν

ν

θθ ν

ρω ν ν

ν

α

ν

−⎡ ⎤− − − + + −⎢ ⎥⎣ ⎦
⎡ ⎤−⎢ ⎥−

− = ⎢ ⎥
−⎢ ⎥+ Θ +⎢ ⎥

⎢ ⎥−+⎢ ⎥
−⎢ ⎥⎣ ⎦

(24

) 

Initial yielding: It is seen from Fig.2 that rrT Tθθ−  is 
maximum at the internal surface (i.e. at r = a); therefore, 
yielding will take place at the internal surface of the disc 
and equation (24) gives: 
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 where Y is yielding stresses. And the angular speed 
necessary for the initial yielding is given from equation 
(25): 
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and / .H Y E=  Thermo elastic-plastic transitional stresses, 
displacement and angular speed from equations (21)-(23) 
and (26) in a non-dimensional form become: 
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Figure 1. Graph between rrT Tθθ− and / .r b  

Fully plastic state: The angular speed of the rotating 
disc becomes fully plastic ( )1/ 2 0.5ν → =

 
at the external 

surface and eq. (24) becomes:  
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where Y ∗  is yielding stresses which occur for the fully 
plastic state. The angular speed required for the disc to 
become fully plastic is given by equation (31): 
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where 0 0 /T Yσ ∗ ∗=  and /f
f Ybω ρ∗Ω
= . 

Stresses, displacement and the angular speed for the 
fully plastic state ( 1 / 2ν → =0.5)

 
are obtained from eqs. 

(27)-(29) and eq. (32) as: 
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Numerical Illustration and Discussion 
Hasan Callioglu et al. [43] analyzed the problems of the 

stress analysis of functional graded material discs under 
mechanical and thermal loads. After that, Nitin Chandel et 
al. [44] investigated the thermo-elastic behavior of a thin 
circular Functionally Graded Material (FGM) Disk 
subjected to thermal loads. But in this paper we discuss an 
isotropic material circular disc subjected to mechanical 
loads and thermal effects by using Seth’s theory. 

For calculating the thermal stresses, the angular speed 
and the displacement based on the above analysis, the 
following values have been taken numerically: 0.5v =  
(incompressible material e.g. rubber material), 0.42857 
(compressible material e.g gold), 0.333 (compressible 
material e.g. copper or brass material), E/Y = 2 and 1/2, 

0Θ =0 and 5811 K, α = 255 K (for methyl methacrylate) 
[45], respectively. The curves have been drawn in Fig. 2 
between the angular  speed 2

iΩ required for  the initial 
yielding and various radii ratios R0 = a/b. for 0.5v = , 
0.4285, 0.333, L = 0σ =  0, 0.3, 0.6 and different values of 

the temperature 1Θ = 0, 62.9 10× .  

 

 
Figure 2. Angular speed required for the initial yielding at the internal 
surface of the rotating disc with a shaft for v = 0.5, 0.428, 0.333 and 
different values of load (L) = 0, 0.3, 0.6 along the radii 0 /R a b= . 
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It has been observed that, in the absence of mechanical 
load, a rotating disc with a shaft required much higher 
angular speed for incompressible materials (e.g. rubber) as 
compared to compressible materials (e.g. copper or gold). 
Mechanical load for rotating discs decreases the angular 
speed value for incompressible as well as compressible 
materials. 

With the introduction of thermal effect increase, the angular 
speed value is required to yield at the internal surface for 
incompressible/compressible materials. In Figures 3 and 4, the 
curves have been drawn for the thermal stresses distribution 
and the displacement with respect to the radius R = r/b for the 
elastic-plastic transitional state and the fully plastic state, 
respectively. From Figures 3 and 4, it has been seen that the 
radial stresses have the maximum value at the internal surface 
of the rotating disc made of incompressible material as 
compared to that made of compressible material. With the 
introduction of a thermal effect, radial as well as 
circumferential stresses must be decreased in the absence of 
mechanical load but when mechanical load is applied, the 
applied radial as well as circumferential stresses must be 
increased at the internal surface of the rotating disc with a 
shaft. The rotating disc is likely to fracture by cleavage close to 
the inclusion at the bore. 

Conclusion: 
It has been observed that thermal effects increase the value 

of the angular speed required to yield at the internal surface for 
incompressible/compressible materials. Radial stresses have 
the maximum value at the internal surface of rotating discs 
made of incompressible materials as compared to those made 
of compressible materials. With the introduction of thermal 
effects, radial as well as circumferential stresses must be 
decreased in the absence of mechanical load but when  
mechanical load is applied, the applied radial as well as 
circumferential stresses must be increased at the internal 
surface of the rotating disc with inclusion. 
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Mehaničko opterećenje u kružno obrtnom disku sa osovinom za 
različite materijale pri stabilnoj temperaturi 

Uočeno je da uvođenje temičkog efekta povećava zahtevanu vrednost ugaone brzine za tečenje na unutrašnjoj površini za 
nestišljive/stišljive materijale. Radijalni naponi imaju maksimalnu vrednost na unutrašnjoj površini obrtnog diska 
izrađenog od nestišljivog materijala u poređenju sa stišljivim materijalom. Radijalni naponi imaju maksimalnu vrednost 
na unutrašnjoj površini obrtnog diska izrađenog od nestišljivog materijala u poređenju sa stišljivim materijalom. Sa 
uvođenjem temičkog efekta radijalni isto kao i tangencijalni naponi moraju se smanjiti kada nema mehaničkog 
opterećenja, ali kada dejstvuje mehaničko opterećenje tada se radijalni kao i tangencijalni naponi moraju povećati na 
unutrašnjoj površini obrtnog diska s osovinom. Lom obrtnog diska je verovatan u blizini centralnog otvora. 

Kljućne reči: opterećenje, naponsko stanje, termičko opterećenje, analiza napona, disk, rotacioni disk, tečenje materijala, 
elastičnoplastičnost. 

Механические напряжения в круглых вращающихся дисках с 
валом для различных материалов при постоянной температуре 

Было отмечено, что введение теплового эффекта увеличивает требуемое значение угловой скорости потока на 
внутренней поверхности для несжимаемых / сжимаемых материалов. Радиальные усилия имеют максимальное 
значение на внутренней поверхности вращающегося диска, изготовленного из несжимаемого материала по 
сравнению с сжимаемым материалом. Со введением теплового эффекта должны быть уменьшены радиальные 
напряжения, а также и касательные напряжения, если нет механических напряжений, но когда действуют 
механические нагрузки, то и радиальные и касательные напряжения необходимо увеличить на внутреннюю 
поверхность вращающегося диска с валом. Лом вращающегося диска, скорее всего и чаще всего происходит 
рядом с центральным отверстием. 

Ключевые слова: нагрузка, напряжённое состояние, тепловая нагрузка, анализ напряжений, диск, вращающийся 
диск, поток материала, упругая пластичность. 

Charge mécanique dans le disque rotatif circulaire avec l’axe pour les 
différents matériaux à température stable  

On a constaté que l’introduction de l’effet thermique augmentait la valeur exigée de la vitesse d’angle pour le cédage sur 
la surface intérieure chez les matériaux  incompressibles / compressibles. Les tensions radiales ont la valeur maximale sur 
la surface intérieure du disque rotatif qui est produit en matériau incompressible en comparaison avec le matériau 
compressible. Avec l’introduction de l’effet thermique les tensions radiales ainsi que celles tangentielles doivent décroître 
quant il n’y a pas de charge mécanique mais quand la charge mécanique est appliquée les tensions radiales et 
tangentielles doivent augmenter sur la surface intérieure du disque rotatif avec l’axe. La fracture du disque rotatif est 
probable à proximité de l’ouverture centrale.  

Mots clés: charge, état de tension, charge thermique, analyse de tension, disque, disque rotatif, cédage du matériau, 
élasticité plastique. 




