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Objective Evaluation and Suppressing Effects of Noise in Dynamic
Image Fusion
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In this paper the results of an investigation into the effects of noise on dynamic (video) image fusion performance are
presented. We start by creating an extensive multisensor dataset of noise-corrupted videos. Then, we define an objective
metric for the evaluation of noisy dynamic fusion N-DQ**" and demonstrate its consistency with visual assessment. The
metric to evaluate a wide range of conventional and robust dynamic fusion techniques and strategies for suppressing
noise in the fused video on the created dataset is applied. We identify the characteristics of multiresolution pyramid
representations and feature selection strategies capable of mitigating the effects of noise on dynamic fusion performance.
The paper also shows some relatively simple noise suppression techniques integrated into the fusion process which can
yield performance improvements in specially challenging low SNR conditions with very little computational complexity
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Introduction

ODERN sensing modalities deliver real-time multi-

sensor imaging in defence, avionics, medical imaging
and surveillance applications to name but a few. Dynamic
image fusion, or video fusion, fuses these streams of
multisensor data into a single output stream [1-4]. In the
process, fusion algorithms generally assume their input data
arriving from the sensors to be a faithful representation of
the observed scene and attempt to transfer it without loss
into the fused stream.

In reality, this is rarely the case as noise corrupts
practically all sensed image data. It is particularly so in
challenging conditions faced by multisensor imaging
systems employing additional sensor modalities such as
infrared and light intensified cameras to compensate for
low useful signal strength in the visual range. Signal
boosting used by many cameras to compensate for low
signal power usually results in significant corruption of
their imagery by noise. This presents significant problems
for fusion algorithms [5-7] aiming to produce a single
reliable representation of the scene as noise is treated as a
true signal and merely transferred into the fused stream.

This paper presents the results of a systematic
investigation into the effects of noise on the performance of
multisensor dynamic image fusion. Noise has had
considerable research attention in research literature;
however, in the context of fusion, it is usually just an
application condition [4, 6, §]. Although a considerable
number of noise mitigation strategies have been proposed,
even in the domain of image fusion [5, 6, 8], systematic
efforts to tackle this issue are largely missing. A thorough
investigation into noise in still image fusion was performed
by the authors in [9] showing that a careful choice of fusion
strategy can yield more robust fusion performance when
inputs are corrupted by noise.

An analysis of noisy fusion performance generally relies
on visual observation of which algorithms produce the most
pleasing images [8]. Apart from being subjective, this
approach is highly inefficient as it cannot easily be used for
systematic evaluation of multiple fusion alternatives on
large datasets. Objective metrics of video fusion
performance are the most practical manner to achieve this.
In [4] an objective evaluation metric focusing on noisy
fusion was defined as the mutual information between
inter-frame differences of input and fused sequences. This
metric directly measures temporal stability [10], the
appearance of motion artifacts produced by inconsistent
fusion across the frames, but largely ignores structural
information transfer associated withconventional fusion
performance.

In this paper, we propose an objective metric to evaluate
both the spatial and temporal effects of noise on dynamic
image fusion performance. We employ a well-known
fusion evaluation framework [10, 11] based on gradient
information preservation to derive an absolute measure of
fusion performance in the presence of various levels of
input noise. We use the metric to evaluate a range of
conventional and robust dynamic fusion techniques and
strategies for suppressing noise in the fused video on an
extensive dataset of noise corrupted multisensor images.
We also use this framework to analyse noise mitigation
strategies that can be integrated with fusion and identify
techniques that improve robustness of dynamic fusion to
noise.

In the following Section 2, we introduce and analyse the
effects of noise on dynamic image fusion, describe an
extensive dataset of noisy input videos and introduce simple
noise mitigation strategies that can be used in conjunction
with fusion. In Section 3, we define an objective metric for
computational assessment of noisy dynamic fusion and an
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automated evaluation framework for testing noisy fusion.
The results of our investigation are presented in Section 4
and we give a conclusion in Section 5.

Noise in dynamic image fusion

Noise corrupts all sensor data, and through it fused
imagery. This is particularly pertinent in dynamic image
fusion. In still image fusion, noise corrupts the spatial
signal creating a random pattern over a true image
structure. People are known to be able to see “through”
noise to a certain degree and this resistance is reflected in a
certain tolerance to low noise levels in still fused images
[10]. However, in dynamic fusion, the temporal dimension
greatly alters the perception of noise signals. Noise is
usually random and independent across time and space.
Video noise patterns are not static but dynamic: they flicker
in front of the eyes of the observer triggering various
attention mechanisms of the human visual system (HVS).
This gives rise to the distracting effect of dynamic noise as
our eyes struggle to stay focused on the true scene
structures. For this reason, the effect of noise power on our
perceptual experience is greatly exaggerated in the dynamic
case and noise becomes a far more serious problem in
dynamic fusion.

Noisy Multisensor Data

Sensor noise is the result of several processes associated
with the underlying measurement physics [12-14] resulting
in several types of noise, such as additive and shot noise
that usually combine into more complex noise patterns.
Additive noise, such as that caused by the dark (leakage)
current and temperature effects in IR sensors, is typically
the predominant component. In our early investigation
presented here, we focused on this type of noise and built
models to corrupt clear videos to produce a noisy
multisensor video dataset for evaluation of noisy dynamic
fusion.

Additive noise is modeled as a random signal drawn
from a specific distribution overlaid over the true scene
image. To obtain a noise corrupted version Agyz of our
multisensor sequence 4 , we: (i) generated a noise-seed
signal » using a Gaussian distribution with zero mean and
unit variance:

n(x,y,t)=N(0,1), Vx,y,t € 4 (1)

(i1) scaled n by an appropriate factor kg to produce a
desired signal-to-noise ratio (SNR) given the signal power
S, evaluated directly from 4 and (iii) added the boosted
noise signal to 4:

Asyg = A+ksyg *¥n 2

A noise seed n was generated separately for each input
sequence and the SNR level to avoid biasing our
measurements.

We used the process above to corrupt the non-visual
(thermal) sensor input in a set of 20 spatially registered
multisensor sequences. This reflects the realistic situation
where thermal sensors are generally much more susceptible
to noise, usually boosted by their internal processing
seeking to increase signal power.

Thermal sensor sequences were corrupted at six different
levels of SNR: 30, 20, 10, 6, 3 and 1dB. They range in
content and signal power, which proportionally affects the
visibility of noise patterns in the videos. Fig.1 shows an

example of noise corruption on a frame from the infrared
sensor of the “val” sequence in the dataset. In this case,
important content remains visible even in the presence of
heavy noise corruption.

Dynamic Fusion in Noisy Input Conditions

Dynamic or video fusion has been a topic of research for
over a decade now with practical fusion systems already
used in a number of surveillance applications [1-4]. How-
ever, for a range of practical reasons such as (computational)
power considerations and low latency requirements, most
dynamic fusion methods resemble still image fusion algo-
rithms. Fusion is performed on a frame-by-frame basis, with
relatively little consideration for mutual dependence be-
tween frames, generally high even in sequences with signifi-
cant motion.

The most basic manner to fuse two sequences is to take
their average — arithmetic fusion. Yet the most prevalent and
certainly most successful approach to image fusion is the
use of multiresolution (MR) techniques. Each input frame is
initially transformed using a decomposition algorithm into
an MR pyramid representation separating information ac-
cording to scale and optionally orientation (Laplacian, steer-
able pyramids, discrete wavelet transform (DWT), dual tree
complex wavelet transform (DT-CWT) and others) [4, 5, 8§,
15-20]. Input pyramids are then combined, a sub-band at a
time, into a new, fused pyramid using a fusion rule that gen-
erally selects the most salient features from either input. The
fused pyramid is finally reconstructed to produce the fused
frame.

In the presence of noise in input images, this approach
was found to suffer compared to simpler arithmetic fusion
[10]. The feature selection stage treats noise as valid input
information and transfers it directly into the fused image.
Furthermore, certain methods, such as shift variant DWT
and orientation selectivity, produce reconstruction artifacts
as selection breaks the continuity of the sub-band signals.

These effects are exacerbated in the dynamic fusion case
by noise effects on a feature selection between frames.
Flickering artifacts appear in the fused sequence as the se-
lection switches from one to the other input due to noise.
Fig.2 illustrates this effect on the consecutive frames of a
DWT fused sequence obtained using barely noisy inputs.
The effect is highly distracting to observers.

Noise Mitigation Strategies in Fusion

Robustness to noise can be introduced into the fusion
process in a number of ways: i) a more suitable MR
transform space, ii) more consistent noise-aware feature
selection strategies and 1iii) explicit introduction of noise
suppression techniques in the fusion process. In the
following, we investigate the effect of each of these
strategies on noisy dynamic fusion performance.

Shift invariance is a property of an MR transform space
that lends much stability in fusion applications. Multiscale,
non-subsampled DWT — SIDWT/DWF was shown to
provide better fusion performance [3]. However, this
approach is highly impractical due to its computational
power requirements. A more efficient shift-invariant
approach is Dual-Tree Complex Wavelet Transform (DT-
CWT) [16,17]. It produces a real and a complex pyramid
for each image, whose magnitude at each location is a
better indication of true signal saliency and thus better
suited to fusion than DWT [18,19]. We test this transform
space against more conventional ones in Section 4.
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Figure 2. Consecutive frames from a fused sequence showing dynamic flickering induced by inconsistent feature selection

Feature selection, or the pyramid fusion strategy is
instrumental in noisy fusion performance. The benchmark
approach: abs-max-selection rule that selects the larger of
the two input pyramid coefficients for the fused pyramid is
directly responsible for maximizing noise signal power in
the fused image. More robust fusion strategies, around for a
while [8, 18-20], tend to use wider selection support, i.e.
they base their selection on blocks of pyramid coefficients,
e.g. 3x3 or 5x5 and impose the majority of filtering to
selection maps to remove noise-induced inconsistencies
(e.g. the Li et. al. rule [8]).

An approach specific to dynamic fusion uses an even
broader selection space, including pyramid coefficients

from previous and potentially subsequent frames in
selecting the feature at each location. The selection block
becomes a 3x3x3 which adds complexity to the fusion
process but also directly influences the temporal dimension
of the noise power and introduces consistency. In its
practical, causal application, we used the local maximum in
the 3x3x3 window of pixels around the central pixel in the
current frame and two previous frames in the sequence to
select which pyramid to take the fused coefficient from. We
evaluate both the area-based selection of [8] and its
dynamic version against the benchmark approaches in
Section 4.

Finally, a simple noise suppression strategy that can be
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efficiently included in the fusion process is the hard and
soft threshold method evaluated for image fusion in [9].
Both methods are suitable for the application in an MR
pyramid domain and work on the premise that coefficients
caused by noise are generally smaller than those caused by
salient features and cluster around zero. The hard approach
removes coefficients in the pyramid below the threshold by
setting them to zero while coefficients above the threshold
remain unchanged [21]. The soft threshold additionally
reduces coefficients above the threshold by the value of the
threshold [22]. This technique is generally restricted to
higher resolution levels of the pyramid where noise power
is greater compared to the useful signal. Naturally, this type
of thresholding also causes losses in the useful parts of the
signal which can lead to distortion and information loss.
Another very important factor is the choice of the threshold,
as it determines the amount of lost data and fused image
quality. We look at the effect of these techniques supplied
to shift-invariant DT-CWT pyramid fusion of both clear
and noisy sequences in Section 4.

Noisy dynamic fusion evaluation

Noisy fusion evaluation is a difficult task [9], made even
harder by the temporal dimension which influences human
perception greatly. Most fusion assessment metrics are
designed for still image fusion and produce reasonable
evaluation of spatial information transfer from the inputs
into a fused image. Whereas they can be applied on a
frame-by-frame basis to video fusion, this means that they
would struggle to evaluate effects such as temporal stability
and motion smoothness that are greatly affected by noise
and are thus unsuitable for our task.

A small number of video fusion assessment techniques
have been proposed [4, 10] specifically aimed at evaluating
fusion of multisensor sequences. Rockinger and Fechner
measured image sequence fusion performance based on
mutual information between inter-frame-differences of two
input and fused sequences [4]. However, this approach
overly focuses on the temporal stability, defined as the
consistency that a change in the value of fused grey levels
can only be caused by grey level changes in the input
sequences as well as a lack of motion artifacts appearing
between the frames of the fused sequences.

A video fusion evaluation metric that considers both
spatial and temporal information preservation was proposed
by the authors in [10]. Based on perceptual models of
gradient preservation between input and fused signals,
defined in detail in [10, 11] the basic evaluation approach
of the DQ*®* metric is shown in Fig.3. We adopt this
metric as a basis for the evaluation of noisy dynamic fusion.

DQ"*®¥ uses three consecutive frame blocks of all three
sequences (2 inputs and fused) to extract spatial and
temporal information contained in each sequence.
Expressed in terms of gradient parameters, this information
is compared between the inputs and the fused signal using
perceptual gradient preservation models measuring
perceived information loss due to the observed gradient
differences. A contribution to the preservation of
information is evaluated at each location m, n in each
frame. Both sets of estimates, for the spatial and temporal
channel, are pooled into a single preservation -
performance score for the frame using a weighted
summation that takes into account their local perceptual
importance. Individual frame results are then pooled to
obtain a single measure for the whole sequence [11].
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Figure 3. Architecture of the dynamic fusion evaluation metric DQ*?*

To evaluate noisy dynamic fusion, we need to
understand what constitutes ideal fusion. DQ*®" evaluates
absolute fusion performance given the input sequences as
the accurate transfer of input content into a fused output as
faithfully as possible. DQ*®" increases toward unity as the
amount of information loss and artifacts in F decreases.
However, when inputs are corrupted by noise, we are not
interested in preserving all of the input information. A loss
of input “noise information” in fused video is an actual
advantage of the underlying fusion algorithm.

In order to measure noisy dynamic fusion, we follow the
approach defined in [9]. Direct application of the metric to
measure preservation of information from a noisy input
Asng and in the fused video Fsng, DQASN“B/ Fs\r ig therefore
not subjectively meaningful since the loss of “noise
information” in Fgyg will yield a reduction in the
performance score. Instead, we need to measure only the
representation of the “true” scene information in the noisy
fused video. The true information is contained in the noise
free input sequence 4 so a meaningful noisy performance
assessment can be achieved using the form DQ"?F\* of the
metric. We call this noisy dynamic fusion evaluation metric
the N-DQ"PF"_ The value of N-DQ*®F** jncreases when
the fused output image is a more accurate representation of
the noise free input videos 4 and B, i.e. when there is a
reduction of noise in Fgng. N-DQPFS™ therefore measures
the overall, absolute level of fusion success in representing
the true scene information in the noisy fused video Fsnr. It
is a direct estimate of fusion performance under noisy input
conditions and is evaluated in exactly the same manner as
the noise free fusion metric N-DQ™®" described in the
previous section and in [10]. Thus for decreasing the SNR
values, N-DQ*PF* gshould describe the absolute
degradation of fusion performance with increasing noise.
Notice that N-DQ"PFs™* sti]] takes into account the effects
of artifacts and distortions introduced by the fusion
algorithm itself.

To measure the effects of noise on dynamic fusion
performance in a systematic manner, we built an integrated
noisy fusion evaluation framework, illustrated in Fig.4. The
framework takes as an input a pair of clear input video
sequences and measures signal power of the thermal
sequence. It creates a noise seed signal n (1) which is
linearly scaled to boost noise power to a set SNR level
before it is added to the clear video. The noisy video
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sequence Agng is then fused with the other input using the
specified fusion method. The resulting noisy fused video
Fsnr is compared to the original, noise free inputs, using the
N-DQAPFs™ metric.

An automated evaluation can be performed by the
framework where a matrix of noisy video fusion
performance scores is obtained for a whole range of noise
corruption levels (o) including noise free cases, o = 0.

Finally, an important and often overlooked aspect of
dynamic fusion evaluation is computational requirements of
algorithms. However, measuring it accurately requires
actual real-time implementations of different fusion
algorithms usually not available. At this early stage of our

investigation, we will provide a broad overview of relative
complexity of the evaluated fusion methods in Section 4.

Results

We applied the noisy fusion evaluation framework on
the 20 multisensor video sequences in our database using
the six defined noise power (SNR) levels. Here we show
visual examples of fused noisy sequences and provide the
mean objective results for the alternative fusion noisy
fusion algorithms obtained on the entire multisensor
dataset.

Qriginal
Inputs

Fusion Method

Fusion

MNoisy
Fusion |—a NOiS)’ Fusion
Metrics Performance

MNoisy Inputs

Noisy Fused

Figure 4. Noisy fusion performance evaluation framework

Figure 5. Noisy fusion example: source frames top; averaging and laplacian pyramid fusion middle; DWT and DT-CWT fusion with abs max selection
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Fig.5 shows the example frames from the “Fight”
sequence at 6 dB SNR. The arithmetic fusion (middle left)
produces lowest contrast but also, by the same method, low
noise power in the fused frame. The positive effect of shift
invariance is visible in the lack of “ringing” artifacts visible
in the DWT (bottom left) compared to the DT-CWT space
fusion (bottom right), note the halo around the van in the
background. Laplacian fusion produces perhaps the clearest
fused image with good contrast and low artifacts all over
the scene, even if it maintains relatively high noise power.

The objective N-DQ*Fs** metric reveals how the
performance of the different fusion approaches is affected
by varying levels of noise. Fig.6 shows the mean N-
DQ*P s\t scores of five different fusion algorithms over the
dataset described corrupted to 6 different levels of SNR. At
no noise corruption, arithmetic fusion is the worst as
expected, see Fig.5. Laplacian pyramid fusion and DT-
CWT are the best; however, their performance degrades
significantly along that of the other methods as SNR
decreases. Even though the advantage in performance of
these two methods gets smaller, it persists across the noise
corruption range showing that the MR space has an effect
on noisy dynamic fusion performance. At low SNR,
arithmetic fusion catches up with other methods as its
inherent noise power halving makes more of an effect. In
fact, at very low SNR, fusion performance of all the
methods converges and no method provides significantly
better performance.
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Figure 6. Absolute noisy fusion performance of standard video fusion for
a range of noise corruption levels on the 20 multisensor video sequences

A wider support feature selection, using Li et al’s
method [8], produces an improvement in DWT fusion
performance in the noise-free and high SNR case.
However, as the noise power increases, even such an area-
based selection and majority filtering are overwhelmed and
its performance advantage over benchmark DWT select-
abs-max fusion disappears.

Fusion integrated noise suppression techniques and noise
mitigation pyramid fusion strategies were evaluated on both
noise-free and noisy sequences. Noise-free dynamic fusion
using these approaches is illustrated on the “msol”
sequence in Fig.7. Soft and hard thresholding applied on the
DT-CWT pyramids produce clear detail rich images (top
row). Dynamic 3x3x3feature selection on the Laplace
pyramid is compared to the benchmark select-abs-max
along the bottom row of Fig.7. DT-CWT methods using
soft and hard thresholds produce images with lower overall
contrast much like the dynamic feature selection fusion

(bottom right). A significant result of the dynamic selection
that cannot be illustrated easily in still figures is added
temporal stability that this sequence exhibits, in particular
when noise corruption is present in the inputs.

Figure 7. Hard and soft thresholding on the DT-CWT pyramid (top row)
and dynamic 3x3x3-max and select-abs-max feature selection on the
Laplacian pyramid (bottom row) applied to noise free images

Noise suppression performance of the two thresholding
approaches is illustrated on the frame from the “Visitor
Parking” sequence in Fig.8. There are no thresholding
predictable results in considerable noise power in the fused
frame (top right). Hard threshold produces a limited
improvement while soft threshold (bottom left) clearly
suppresses noise in the fused signal. Note that the baseline
select-abs-max feature selection is used to fuse the two
pyramids prior to thresholding. In both thresholding cases,
we used a fixed threshold value of 0.05 applied to two
highest resolution levels. This corresponded to about 15%
of the dynamic range of the coefficients in the pyramid.
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Figure 8. Input noisy thermal image at 1dB SNR and fused images using DT-CWT with select-abs-max feature selection followed (clockwise) by no, hard

and soft thresholding

The visual findings from Fig.8 are confirmed by the
objective scores of the N-DQ"P""* metric applied to the
fused sequences produced using these methods on the
multisensor dataset corrupted to various SNR levels, Fig. 9.
As a reference these methods the figure includes the scores
obtained using benchmark select-abs-max feature selection
on DT-CWT pyramids, equivalent fusion on the Laplacian
pyramid and strategies for suppressing effects of noise in
video fusion.

Performance advantage gained from integrating noise
suppression into pyramid fusion is realized even for
relatively high SNR. Both thresholding methods outperform
other fusion algorithms for SNR of 20 dB and below. This
advantage remains constant throughout the SNR range. Out
of the two approaches, the soft threshold clearly gives the
best noisy dynamic fusion results. It outperforms the hard
threshold significantly over all SNR levels, confirming the
visual example in Fig.8.
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Figure 9. Absolute noisy fusion performance of standard and fusion
integrated noise suppression methods for video fusion for a range of noise
corruption levels on the multisensor dataset

Finally, in terms of computational complexity, threshold
methods, particularly the soft threshold, clearly provide the
best noisy performance advantage for the additional
computational cost. They require a marginal increase,
basically a thresholding operation and perhaps a subtraction
on only one, fused pyramid. The DT-CWT space, however,
has an additional computational cost and is twice as
expensive as the simpler but more noise susceptible
standard DWT pyramid.

Conclusion

This paper presented the results of an investigation into
the effects of noise on dynamic (video) image fusion. We
created an extensive, varied multisensor dataset of noise
corrupted videos at 6 levels of SNR and used it to evaluate
a wide range of conventional and dynamic noisy fusion
techniques. We defined an objective metric for the
evaluation of noisy dynamic fusion N-DQ*®*" and showed
it produces objective fusion performance scores consistent
with a less practical visual assessment. We used the metric
as a basis for an automated noisy fusion evaluation
framework, which we used to investigate a number of
processing concepts and fusion strategies aimed at reducing
the effects of noise on performance of dynamic image
fusion.

We found that the multiresolution analysis strategy has
an effect on noisy dynamic fusion performance. The shift-
invariant representation (DT-CWT) provides an advantage
over shift-variant methods such as DWT at a cost of
additional computational complexity. A wider spatial
support feature selection used in pyramid fusion is also
capable of mitigating the effects of noise on fusion
performance but only at high SNR levels. We also found
that at low SNR, fusion performance converges and no
method provides significantly better performance.

Nevertheless, improved fusion performance can be
achieved even at low SNR by integrating relatively simple
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noise suppression techniques into the fusion process. Both
soft and hard thresholding of pyramid coefficients at a cost
of a small complexity increase and drop in performance at
no-noise levels provide better performance at low SNR
with soft thresholding producing the highest N-DQ*P*
scores and kinder looking fused images.

Producing dynamic fusion algorithms robust to noise
using these suppression principles but also able to adapt to
noise levels encountered in the input data is the natural
extension of the work presented in this paper, in addition to
currently running subjective trials on noisy dynamic fusion
aimed at better understanding of perceptual effects of noise
in dynamic fusion.
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Objektivna procena i smanjenje efekta Suma u dinamickom
sjedinjavanju slika

U radu smo predstavili istraZivanje vezano za uticaj Suma na sjedinjavanje dinamickih (video) slika. Na samom pocetku
rada napravljena je baza multisenzorskih video sekvenci, koja je proSirena sa dodavanjem razli¢itih nivoa Suma na

izvorne video sekvence. Definisali smo objektivhu meru za procenu uspesnosti sjedinjavanja u prisustvu Suma N-DQ

AB/F »
1

dali njenu usaglaSenost sa vizuelnom predstavom. Mera za procenu uspesnosti sjedinjavanja primenjena je na veem
broju metoda za sjedinjavanje dinamickih slika i strategija za smanjenje efekta Suma u video sjedinjavanju na kreiranoj
bazi. Prepoznate su karakteristike multirezolucione piramide i mogucnosti smanjenja efekta Suma u dinami¢kom
sjedinjavanju slika. Prikazali smo i veoma jednostavne tehnike za smanjenje Suma ugradene u sam proces fuzije koje
daju dobre rezultate pri malim vrednostima SNR uz veoma malo uvec¢anje ra¢unarske zahtevnosti.

Kljucne reci: obrada slike, kvalitet slike, sjedinjavanje slike, merenje Suma, filtriranje Suma, potiskivanje Suma.
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O0bekTHBHAS OLICHKA U CHUKeHHUe dPdexTa myma B JTMHAMUAYECKOM
CJMSIHMM U300paKeHU

B 3T10ii cTaTbe MBI NPEACTABUIN HCCIeJ0BAHUE O BIMSIHHM IIyMa HA CIUsHHe JHHAMHYECKHX (BUe0) u3o0paxenuii. B
caMoM HayaJsie padoThl NpPou3BeaAeHa 6a3a MYJIbTHCEHCOPHBIX BU/IEOPSI0B, KOTOPas ObliIa paclIMpeHa ¢ 100aBjIeHHeM
Pa3JMYHbIX YPOBHeil IIyMa HAa MCXOAHBbIC BHIEO-TIOCIEA0BATEILHOCTH. Mbl onpeaeniii 00beKTHBHYIO Mepy AJIst
OLIEHKM YycnemHoro ciausHusi B mnpucyrerBun myma N-DQAB/F u jnanm eé coorBercTBHE € BH3YalIbHBIM
npejcTaBjieHneM. Mepa 110 olleHKe YCIeIHOro CIMsIHHS ObL1a NPHMeHeHAa B Psijie MeTO0B JIsl CIMSIHHS IHHAMMYECKHX
H300paskeHuii M cTpaTeruii N0 CHHXKEHUIO BIMSHHS LIYMa B BUAe0 YHH(UKAIIMH HA cO3JaHHOii 0a3e qanHbIX. [Ipu3Hanbl
XapaKTePHCTHKH KPATHOMACIUTAOHOH NMHpaMHIbI M BO3MOKHOCTH YMeHbIIEHHsI BJIMSIHHSI IIyMa B JMHAMHYECKOM
CAMSIHUN U300paskeHuii. Mbl NpeACTaBH/IM OYeHb MPOCTbIe METOAbI ISl CHHKEHHsl YPOBHS LIyMa, BCTPOCHHbIC B
npomece CJIUSHUSA, KOTOPbIE AaI0T XOPOLIHe Pe3yJbTAThI NIPH HU3KHX 3HaYeHHsAX SNR ¢ oueHb MajlbIM yBeaHueHHEM
BBIYHC/IHTEIbHOH TPeOOBATEILHOCTH.

Knrouegvie cnosa: o0paboTka H300pakeHHsi, Ka4ecTBO H300pakeHHUs, CIMsIHHMEe M300paskeHMii, M3MepeHHe IIyMa,
(uabTpanus myma, nogaBjieHHe MWYyMOB.

Evaluation objective et suppression des effets du bruit dans la fusion
dynamique des images

Dans ce papier on a présenté la recherche liée a I’effet du bruit sur la fusion des images dynamiques (vidéo). Au tout
début du travail on a créé une base de séquences multi sensorielles vidéo qui a été complétée par les différents niveaux de
bruit ajoutés aux séquences vidéo originales. On a défini la mesure objective pour I’évaluation de la réussite de fusion en
présence du bruit N-DQAB /F et on a présenté son accord avec la représentation visuelle. La mesure pour I’estimation de
la fusion a été appliquée chez un grand nombre de méthodes pour la fusion des images dynamiques et des stratégies pour
la diminution des effets de bruit dans la fusion vidéo sur la base créé. On a identifié les caractéristiques de la pyramide
multi résolution ainsi que les possibilités de diminuer les effets de bruit dans la fusion dynamique des images. On a
présenté aussi les techniques trés simples pour la suppression du bruit intégré dans le processus méme de la fusion qui
donnent bons résultats lorsque les valeurs de SNR sont petites et avec une petite augmentation de I’exigence
informatique.

Mots clés: traitement d’image, qualité d’image , fusion d’image, mesurage de bruit, filtrage de bruit, suppression de bruit.



