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Objective Evaluation and Suppressing Effects of Noise in Dynamic 
Image Fusion 
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In this paper the results of an investigation into the effects of noise on dynamic (video) image fusion performance are 
presented. We start by creating an extensive multisensor dataset of noise-corrupted videos. Then, we define an objective 
metric for the evaluation of noisy dynamic fusion N-DQAB/F and demonstrate its consistency with visual assessment. The 
metric to evaluate a wide range of conventional and robust dynamic fusion techniques and strategies for suppressing 
noise in the fused video on the created dataset is applied. We identify the characteristics of multiresolution pyramid 
representations and feature selection strategies capable of mitigating the effects of noise on dynamic fusion performance. 
The paper also shows some relatively simple noise suppression techniques integrated into the fusion process which can 
yield performance improvements in specially challenging low SNR conditions with very little computational complexity 
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Introduction 
ODERN sensing modalities deliver real-time multi-
sensor imaging in defence, avionics, medical imaging 

and surveillance applications to name but a few. Dynamic 
image fusion, or video fusion, fuses these streams of 
multisensor data into a single output stream [1-4]. In the 
process, fusion algorithms generally assume their input data 
arriving from the sensors to be a faithful representation of 
the observed scene and attempt to transfer it without loss 
into the fused stream. 

In reality, this is rarely the case as noise corrupts 
practically all sensed image data. It is particularly so in 
challenging conditions faced by multisensor imaging 
systems employing additional sensor modalities such as 
infrared and light intensified cameras to compensate for 
low useful signal strength in the visual range. Signal 
boosting used by many cameras to compensate for low 
signal power usually results in significant corruption of 
their imagery by noise. This presents significant problems 
for fusion algorithms [5-7] aiming to produce a single 
reliable representation of the scene as noise is treated as a 
true signal and merely transferred into the fused stream. 

This paper presents the results of a systematic 
investigation into the effects of noise on the performance of 
multisensor dynamic image fusion. Noise has had 
considerable research attention in research literature; 
however, in the context of fusion, it is usually just an 
application condition [4, 6, 8]. Although a considerable 
number of noise mitigation strategies have been proposed, 
even in the domain of image fusion [5, 6, 8], systematic 
efforts to tackle this issue are largely missing. A thorough 
investigation into noise in still image fusion was performed 
by the authors in [9] showing that a careful choice of fusion 
strategy can yield more robust fusion performance when 
inputs are corrupted by noise.  

An analysis of noisy fusion performance generally relies 
on visual observation of which algorithms produce the most 
pleasing images [8]. Apart from being subjective, this 
approach is highly inefficient as it cannot easily be used for 
systematic evaluation of multiple fusion alternatives on 
large datasets. Objective metrics of video fusion 
performance are the most practical manner to achieve this. 
In [4] an objective evaluation metric focusing on noisy 
fusion was defined as the mutual information between 
inter-frame differences of input and fused sequences. This 
metric directly measures temporal stability [10], the 
appearance of motion artifacts produced by inconsistent 
fusion across the frames, but largely ignores structural 
information transfer associated withconventional fusion 
performance. 

In this paper, we propose an objective metric to evaluate 
both the spatial and temporal effects of noise on dynamic 
image fusion performance. We employ a well-known 
fusion evaluation framework [10, 11] based on gradient 
information preservation to derive an absolute measure of 
fusion performance in the presence of various levels of 
input noise. We use the metric to evaluate a range of 
conventional and robust dynamic fusion techniques and 
strategies for suppressing noise in the fused video on an 
extensive dataset of noise corrupted multisensor images. 
We also use this framework to analyse noise mitigation 
strategies that can be integrated with fusion and identify 
techniques that improve robustness of dynamic fusion to 
noise. 

In the following Section 2, we introduce and analyse the 
effects of noise on dynamic image fusion, describe an 
extensive dataset of noisy input videos and introduce simple 
noise mitigation strategies that can be used in conjunction 
with fusion. In Section 3, we define an objective metric for 
computational assessment of noisy dynamic fusion and an 
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automated evaluation framework for testing noisy fusion. 
The results of our investigation are presented in Section 4 
and we give a conclusion in Section 5. 

Noise in dynamic image fusion 
Noise corrupts all sensor data, and through it fused 

imagery. This is particularly pertinent in dynamic image 
fusion. In still image fusion, noise corrupts the spatial 
signal creating a random pattern over a true image 
structure. People are known to be able to see “through” 
noise to a certain degree and this resistance is reflected in a 
certain tolerance to low noise levels in still fused images 
[10]. However, in dynamic fusion, the temporal dimension 
greatly alters the perception of noise signals. Noise is 
usually random and independent across time and space. 
Video noise patterns are not static but dynamic: they flicker 
in front of the eyes of the observer triggering various 
attention mechanisms of the human visual system (HVS). 
This gives rise to the distracting effect of dynamic noise as 
our eyes struggle to stay focused on the true scene 
structures. For this reason, the effect of noise power on our 
perceptual experience is greatly exaggerated in the dynamic 
case and noise becomes a far more serious problem in 
dynamic fusion. 

Noisy Multisensor Data 
Sensor noise is the result of several processes associated 

with the underlying measurement physics [12-14] resulting 
in several types of noise, such as additive and shot noise 
that usually combine into more complex noise patterns. 
Additive noise, such as that caused by the dark (leakage) 
current and temperature effects in IR sensors, is typically 
the predominant component. In our early investigation 
presented here, we focused on this type of noise and built 
models to corrupt clear videos to produce a noisy 
multisensor video dataset for evaluation of noisy dynamic 
fusion. 

Additive noise is modeled as a random signal drawn 
from a specific distribution overlaid over the true scene 
image. To obtain a noise corrupted version ASNR of our 
multisensor sequence A , we: (i) generated a noise-seed 
signal n using a Gaussian distribution with zero mean and 
unit variance:  

 ( ) ( ), , 0,1 , , ,n x y t N x y t A= ∀ ∈  (1) 

(ii) scaled n by an appropriate factor kSNR to produce a 
desired signal-to-noise ratio (SNR) given the signal power 
SA evaluated directly from A and (iii) added the boosted 
noise signal to A: 

 SNR SNRA A k n= + ∗  (2) 

A noise seed n was generated separately for each input 
sequence and the SNR level to avoid biasing our 
measurements. 

We used the process above to corrupt the non-visual 
(thermal) sensor input in a set of 20 spatially registered 
multisensor sequences. This reflects the realistic situation 
where thermal sensors are generally much more susceptible 
to noise, usually boosted by their internal processing 
seeking to increase signal power. 

Thermal sensor sequences were corrupted at six different 
levels of SNR: 30, 20, 10, 6, 3 and 1dB. They range in 
content and signal power, which proportionally affects the 
visibility of noise patterns in the videos. Fig.1 shows an 

example of noise corruption on a frame from the infrared 
sensor of the “va1” sequence in the dataset. In this case, 
important content remains visible even in the presence of 
heavy noise corruption. 

Dynamic Fusion in Noisy Input Conditions 
Dynamic or video fusion has been a topic of research for 

over a decade now with practical fusion systems already 
used in a number of surveillance applications [1-4]. How-
ever, for a range of practical reasons such as (computational) 
power considerations and low latency requirements, most 
dynamic fusion methods resemble still image fusion algo-
rithms. Fusion is performed on a frame-by-frame basis, with 
relatively little consideration for mutual dependence be-
tween frames, generally high even in sequences with signifi-
cant motion.  

The most basic manner to fuse two sequences is to take 
their average – arithmetic fusion. Yet the most prevalent and 
certainly most successful approach to image fusion is the 
use of multiresolution (MR) techniques. Each input frame is 
initially transformed using a decomposition algorithm into 
an MR pyramid representation separating information ac-
cording to scale and optionally orientation (Laplacian, steer-
able pyramids, discrete wavelet transform (DWT), dual tree 
complex wavelet transform (DT-CWT) and others) [4, 5, 8, 
15-20]. Input pyramids are then combined, a sub-band at a 
time, into a new, fused pyramid using a fusion rule that gen-
erally selects the most salient features from either input. The 
fused pyramid is finally reconstructed to produce the fused 
frame.  

In the presence of noise in input images, this approach 
was found to suffer compared to simpler arithmetic fusion 
[10]. The feature selection stage treats noise as valid input 
information and transfers it directly into the fused image. 
Furthermore, certain methods, such as shift variant DWT 
and orientation selectivity, produce reconstruction artifacts 
as selection breaks the continuity of the sub-band signals.  

These effects are exacerbated in the dynamic fusion case 
by noise effects on a feature selection between frames. 
Flickering artifacts appear in the fused sequence as the se-
lection switches from one to the other input due to noise. 
Fig.2 illustrates this effect on the consecutive frames of a 
DWT fused sequence obtained using barely noisy inputs. 
The effect is highly distracting to observers. 

Noise Mitigation Strategies in Fusion 
Robustness to noise can be introduced into the fusion 

process in a number of ways: i) a more suitable MR 
transform space, ii) more consistent noise-aware feature 
selection strategies and iii) explicit introduction of noise 
suppression techniques in the fusion process. In the 
following, we investigate the effect of each of these 
strategies on noisy dynamic fusion performance. 

Shift invariance is a property of an MR transform space 
that lends much stability in fusion applications. Multiscale, 
non-subsampled DWT – SIDWT/DWF was shown to 
provide better fusion performance [3]. However, this 
approach is highly impractical due to its computational 
power requirements. A more efficient shift-invariant 
approach is Dual-Tree Complex Wavelet Transform (DT-
CWT) [16,17]. It produces a real and a complex pyramid 
for each image, whose magnitude at each location is a 
better indication of true signal saliency and thus better 
suited to fusion than DWT [18,19]. We test this transform 
space against more conventional ones in Section 4. 
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Figure 1. Corruption levels on “va1” sequence, visible reference top left, then from right to left noise free IR and at 10, 6, 3 and 1 dB SNR 

 
Figure 2. Consecutive frames from a fused sequence showing dynamic flickering induced by inconsistent feature selection 

Feature selection, or the pyramid fusion strategy is 
instrumental in noisy fusion performance. The benchmark 
approach: abs-max-selection rule that selects the larger of 
the two input pyramid coefficients for the fused pyramid is 
directly responsible for maximizing noise signal power in 
the fused image. More robust fusion strategies, around for a 
while [8, 18-20], tend to use wider selection support, i.e. 
they base their selection on blocks of pyramid coefficients, 
e.g. 3x3 or 5x5 and impose the majority of filtering to 
selection maps to remove noise-induced inconsistencies 
(e.g. the Li et. al. rule [8]).  

An approach specific to dynamic fusion uses an even 
broader selection space, including pyramid coefficients 

from previous and potentially subsequent frames in 
selecting the feature at each location. The selection block 
becomes a 3x3x3 which adds complexity to the fusion 
process but also directly influences the temporal dimension 
of the noise power and introduces consistency. In its 
practical, causal application, we used the local maximum in 
the 3x3x3 window of pixels around the central pixel in the 
current frame and two previous frames in the sequence to 
select which pyramid to take the fused coefficient from. We 
evaluate both the area-based selection of [8] and its 
dynamic version against the benchmark approaches in 
Section 4. 

Finally, a simple noise suppression strategy that can be 



24 PAVLOVIĆ,R., PETROVIĆ,V.: OBJECTIVE EVALUATION AND SUPPRESSING EFFECTS OF NOISE IN DYNAMIC IMAGE FUSION  

efficiently included in the fusion process is the hard and 
soft threshold method evaluated for image fusion in [9]. 
Both methods are suitable for the application in an MR 
pyramid domain and work on the premise that coefficients 
caused by noise are generally smaller than those caused by 
salient features and cluster around zero. The hard approach 
removes coefficients in the pyramid below the threshold by 
setting them to zero while coefficients above the threshold 
remain unchanged [21]. The soft threshold additionally 
reduces coefficients above the threshold by the value of the 
threshold [22]. This technique is generally restricted to 
higher resolution levels of the pyramid where noise power 
is greater compared to the useful signal. Naturally, this type 
of thresholding also causes losses in the useful parts of the 
signal which can lead to distortion and information loss. 
Another very important factor is the choice of the threshold, 
as it determines the amount of lost data and fused image 
quality. We look at the effect of these techniques supplied 
to shift-invariant DT-CWT pyramid fusion of both clear 
and noisy sequences in Section 4.  

Noisy dynamic fusion evaluation 
Noisy fusion evaluation is a difficult task [9], made even 

harder by the temporal dimension which influences human 
perception greatly. Most fusion assessment metrics are 
designed for still image fusion and produce reasonable 
evaluation of spatial information transfer from the inputs 
into a fused image. Whereas they can be applied on a 
frame-by-frame basis to video fusion, this means that they 
would struggle to evaluate effects such as temporal stability 
and motion smoothness that are greatly affected by noise 
and are thus unsuitable for our task.  

A small number of video fusion assessment techniques 
have been proposed [4, 10] specifically aimed at evaluating 
fusion of multisensor sequences. Rockinger and Fechner 
measured image sequence fusion performance based on 
mutual information between inter-frame-differences of two 
input and fused sequences [4]. However, this approach 
overly focuses on the temporal stability, defined as the 
consistency that a change in the value of fused grey levels 
can only be caused by grey level changes in the input 
sequences as well as a lack of motion artifacts appearing 
between the frames of the fused sequences. 

A video fusion evaluation metric that considers both 
spatial and temporal information preservation was proposed 
by the authors in [10]. Based on perceptual models of 
gradient preservation between input and fused signals, 
defined in detail in [10, 11] the basic evaluation approach 
of the DQAB/F metric is shown in Fig.3. We adopt this 
metric as a basis for the evaluation of noisy dynamic fusion. 

DQAB/F uses three consecutive frame blocks of all three 
sequences (2 inputs and fused) to extract spatial and 
temporal information contained in each sequence. 
Expressed in terms of gradient parameters, this information 
is compared between the inputs and the fused signal using 
perceptual gradient preservation models measuring 
perceived information loss due to the observed gradient 
differences. A contribution to the preservation of 
information is evaluated at each location m, n in each 
frame. Both sets of estimates, for the spatial and temporal 
channel, are pooled into a single preservation – 
performance score for the frame using a weighted 
summation that takes into account their local perceptual 
importance. Individual frame results are then pooled to 
obtain a single measure for the whole sequence [11]. 

 
Figure 3. Architecture of the dynamic fusion evaluation metric DQAB/F 

To evaluate noisy dynamic fusion, we need to 
understand what constitutes ideal fusion. DQAB/F evaluates 
absolute fusion performance given the input sequences as 
the accurate transfer of input content into a fused output as 
faithfully as possible. DQAB/F increases toward unity as the 
amount of information loss and artifacts in F decreases. 
However, when inputs are corrupted by noise, we are not 
interested in preserving all of the input information. A loss 
of input “noise information” in fused video is an actual 
advantage of the underlying fusion algorithm.  

In order to measure noisy dynamic fusion, we follow the 
approach defined in [9]. Direct application of the metric to 
measure preservation of information from a noisy input 
ASNR and in the fused video FSNR, DQASNRB/FSNR is therefore 
not subjectively meaningful since the loss of “noise 
information” in FSNR will yield a reduction in the 
performance score. Instead, we need to measure only the 
representation of the “true” scene information in the noisy 
fused video. The true information is contained in the noise 
free input sequence A so a meaningful noisy performance 
assessment can be achieved using the form DQAB/FSNR of the 
metric. We call this noisy dynamic fusion evaluation metric 
the N-DQAB/FSNR. The value of N-DQAB/FSNR increases when 
the fused output image is a more accurate representation of 
the noise free input videos A and B, i.e. when there is a 
reduction of noise in FSNR. N-DQAB/FSNR therefore measures 
the overall, absolute level of fusion success in representing 
the true scene information in the noisy fused video FSNR. It 
is a direct estimate of fusion performance under noisy input 
conditions and is evaluated in exactly the same manner as 
the noise free fusion metric N-DQAB/F described in the 
previous section and in [10]. Thus for decreasing the SNR 
values, N-DQAB/FSNR should describe the absolute 
degradation of fusion performance with increasing noise. 
Notice that N-DQAB/FSNR still takes into account the effects 
of artifacts and distortions introduced by the fusion 
algorithm itself. 

To measure the effects of noise on dynamic fusion 
performance in a systematic manner, we built an integrated 
noisy fusion evaluation framework, illustrated in Fig.4. The 
framework takes as an input a pair of clear input video 
sequences and measures signal power of the thermal 
sequence. It creates a noise seed signal n (1) which is 
linearly scaled to boost noise power to a set SNR level 
before it is added to the clear video. The noisy video 
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sequence ASNR is then fused with the other input using the 
specified fusion method. The resulting noisy fused video 
FSNR is compared to the original, noise free inputs, using the 
N-DQAB/FSNR metric. 

An automated evaluation can be performed by the 
framework where a matrix of noisy video fusion 
performance scores is obtained for a whole range of noise 
corruption levels (σ) including noise free cases, σ = 0. 

Finally, an important and often overlooked aspect of 
dynamic fusion evaluation is computational requirements of 
algorithms. However, measuring it accurately requires 
actual real-time implementations of different fusion 
algorithms usually not available. At this early stage of our 

investigation, we will provide a broad overview of relative 
complexity of the evaluated fusion methods in Section 4. 

Results 
We applied the noisy fusion evaluation framework on 

the 20 multisensor video sequences in our database using 
the six defined noise power (SNR) levels. Here we show 
visual examples of fused noisy sequences and provide the 
mean objective results for the alternative fusion noisy 
fusion algorithms obtained on the entire multisensor 
dataset. 

 
Figure 4. Noisy fusion performance evaluation framework 

 
Figure 5. Noisy fusion example: source frames top; averaging and laplacian pyramid fusion middle; DWT and DT-CWT fusion with abs max selection 
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Fig.5 shows the example frames from the “Fight” 
sequence at 6 dB SNR. The arithmetic fusion (middle left) 
produces lowest contrast but also, by the same method, low 
noise power in the fused frame. The positive effect of shift 
invariance is visible in the lack of “ringing” artifacts visible 
in the DWT (bottom left) compared to the DT-CWT space 
fusion (bottom right), note the halo around the van in the 
background. Laplacian fusion produces perhaps the clearest 
fused image with good contrast and low artifacts all over 
the scene, even if it maintains relatively high noise power. 

The objective N-DQAB/FSNR metric reveals how the 
performance of the different fusion approaches is affected 
by varying levels of noise. Fig.6 shows the mean N-
DQAB/FSNR scores of five different fusion algorithms over the 
dataset described corrupted to 6 different levels of SNR. At 
no noise corruption, arithmetic fusion is the worst as 
expected, see Fig.5. Laplacian pyramid fusion and DT-
CWT are the best; however, their performance degrades 
significantly along that of the other methods as SNR 
decreases. Even though the advantage in performance of 
these two methods gets smaller, it persists across the noise 
corruption range showing that the MR space has an effect 
on noisy dynamic fusion performance. At low SNR, 
arithmetic fusion catches up with other methods as its 
inherent noise power halving makes more of an effect. In 
fact, at very low SNR, fusion performance of all the 
methods converges and no method provides significantly 
better performance. 

 

Figure 6. Absolute noisy fusion performance of standard video fusion for 
a range of noise corruption levels on the 20 multisensor video sequences 

A wider support feature selection, using Li et al’s 
method [8], produces an improvement in DWT fusion 
performance in the noise-free and high SNR case. 
However, as the noise power increases, even such an area-
based selection and majority filtering are overwhelmed and 
its performance advantage over benchmark DWT select-
abs-max fusion disappears. 

Fusion integrated noise suppression techniques and noise 
mitigation pyramid fusion strategies were evaluated on both 
noise-free and noisy sequences. Noise-free dynamic fusion 
using these approaches is illustrated on the “mso1” 
sequence in Fig.7. Soft and hard thresholding applied on the 
DT-CWT pyramids produce clear detail rich images (top 
row). Dynamic 3x3x3feature selection on the Laplace 
pyramid is compared to the benchmark select-abs-max 
along the bottom row of Fig.7. DT-CWT methods using 
soft and hard thresholds produce images with lower overall 
contrast much like the dynamic feature selection fusion 

(bottom right). A significant result of the dynamic selection 
that cannot be illustrated easily in still figures is added 
temporal stability that this sequence exhibits, in particular 
when noise corruption is present in the inputs. 

 

 

 

 
Figure 7. Hard and soft thresholding on the DT-CWT pyramid (top row) 
and dynamic 3x3x3-max and select-abs-max feature selection on the 
Laplacian pyramid (bottom row) applied to noise free images 

Noise suppression performance of the two thresholding 
approaches is illustrated on the frame from the “Visitor 
Parking” sequence in Fig.8. There are no thresholding 
predictable results in considerable noise power in the fused 
frame (top right). Hard threshold produces a limited 
improvement while soft threshold (bottom left) clearly 
suppresses noise in the fused signal. Note that the baseline 
select-abs-max feature selection is used to fuse the two 
pyramids prior to thresholding. In both thresholding cases, 
we used a fixed threshold value of 0.05 applied to two 
highest resolution levels. This corresponded to about 15% 
of the dynamic range of the coefficients in the pyramid. 
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Figure 8. Input noisy thermal image at 1dB SNR and fused images using DT-CWT with select-abs-max feature selection followed (clockwise) by no, hard 
and soft thresholding 

The visual findings from Fig.8 are confirmed by the 
objective scores of the N-DQAB/FSNR metric applied to the 
fused sequences produced using these methods on the 
multisensor dataset corrupted to various SNR levels, Fig. 9. 
As a reference these methods the figure includes the scores 
obtained using benchmark select-abs-max feature selection 
on DT-CWT pyramids, equivalent fusion on the Laplacian 
pyramid and strategies for suppressing effects of noise in 
video fusion.  

Performance advantage gained from integrating noise 
suppression into pyramid fusion is realized even for 
relatively high SNR. Both thresholding methods outperform 
other fusion algorithms for SNR of 20 dB and below. This 
advantage remains constant throughout the SNR range. Out 
of the two approaches, the soft threshold clearly gives the 
best noisy dynamic fusion results. It outperforms the hard 
threshold significantly over all SNR levels, confirming the 
visual example in Fig.8.  

 
Figure 9. Absolute noisy fusion performance of standard and fusion 
integrated  noise suppression methods for video fusion for a range of noise 
corruption levels on the multisensor dataset 

Finally, in terms of computational complexity,  threshold 
methods, particularly the soft threshold, clearly provide the 
best noisy performance advantage for the additional 
computational cost. They require a marginal increase, 
basically a thresholding operation and perhaps a subtraction 
on only one, fused pyramid. The DT-CWT space, however, 
has an additional computational cost and is twice as 
expensive as the simpler but more noise susceptible 
standard DWT pyramid. 

Conclusion 
This paper presented the results of an investigation into 

the effects of noise on dynamic (video) image fusion. We 
created an extensive, varied multisensor dataset of noise 
corrupted videos at 6 levels of SNR and used it to evaluate 
a wide range of conventional and dynamic noisy fusion 
techniques. We defined an objective metric for the 
evaluation of noisy dynamic fusion N-DQAB/F and showed 
it produces objective fusion performance scores consistent 
with a less practical visual assessment. We used the metric 
as a basis for an automated noisy fusion evaluation 
framework, which we used to investigate a number of 
processing concepts and fusion strategies aimed at reducing 
the effects of noise on performance of dynamic image 
fusion. 

We found that the multiresolution analysis strategy has 
an effect on noisy dynamic fusion performance. The shift-
invariant representation (DT-CWT) provides an advantage 
over shift-variant methods such as DWT at a cost of 
additional computational complexity. A wider spatial 
support feature selection used in pyramid fusion is also 
capable of mitigating the effects of noise on fusion 
performance but only at high SNR levels. We also found 
that at low SNR, fusion performance converges and no 
method provides significantly better performance. 

Nevertheless, improved fusion performance can be 
achieved even at low SNR by integrating relatively simple 
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noise suppression techniques into the fusion process. Both 
soft and hard thresholding of pyramid coefficients at a cost 
of a small complexity increase and drop in performance at 
no-noise levels provide better performance at low SNR 
with soft thresholding producing the highest N-DQAB/F 
scores and kinder looking fused images. 

Producing dynamic fusion algorithms robust to noise 
using these suppression principles but also able to adapt to 
noise levels encountered in the input data is the natural 
extension of the work presented in this paper, in addition to 
currently running subjective trials on noisy dynamic fusion 
aimed at better understanding of perceptual effects of noise 
in dynamic fusion. 
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Objektivna procena i smanjenje efekta šuma u dinamičkom 
sjedinjavanju slika 

U radu smo predstavili istraživanje vezano za uticaj šuma na sjedinjavanje dinamičkih (video) slika. Na samom početku 
rada napravljena je baza multisenzorskih video sekvenci, koja je proširena sa dodavanjem različitih nivoa šuma na 
izvorne video sekvence. Definisali smo objektivnu meru za procenu uspešnosti sjedinjavanja u prisustvu šuma N-DQAB/F i 
dali njenu usaglašenost sa vizuelnom predstavom. Mera za procenu uspešnosti sjedinjavanja primenjena je na većem 
broju metoda za sjedinjavanje dinamičkih slika i strategija za smanjenje efekta šuma u video sjedinjavanju na kreiranoj 
bazi. Prepoznate su karakteristike multirezolucione piramide i mogućnosti smanjenja efekta šuma u dinamičkom 
sjedinjavanju slika. Prikazali smo i veoma jednostavne tehnike za smanjenje šuma ugrađene u sam proces fuzije koje 
daju dobre rezultate pri malim vrednostima SNR uz veoma malo uvećanje računarske zahtevnosti. 

Ključne reči: obrada slike, kvalitet slike, sjedinjavanje slike, merenje šuma, filtriranje šuma, potiskivanje šuma. 
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Объективная оценка и снижение эффекта шума в динамическом 
слиянии изображений 

В этой статье мы представили исследование о влиянии шума на слияние динамических (видео) изображений. В 
самом начале работы произведена база мультисенсорных видеорядов, которая была расширена с добавлением 
различных уровней шума на исходные видео-последовательности. Мы определили объективную меру для 
оценки успешного слияния в присутствии шума N-DQAB/F и дали её соответствие с визуальным 
представлением. Мера по оценке успешного слияния была применена в ряде методов для слияния динамических 
изображений и стратегий по снижению влияния шума в видео унификации на созданной базе данных. Признаны 
характеристики кратномасштабной пирамиды и возможности уменьшения влияния шума в динамическом 
слиянии изображений. Мы представили очень простые методы для снижения уровня шума, встроенные в 
процесс слияния, которые дают хорошие результаты при низких значениях SNR с очень малым  увеличением 
вычислительной требовательности. 

Ключевые слова: обработка изображения, качество изображения, слияние изображений, измерение шума, 
фильтрация шума, подавление шумов. 

Evaluation objective et suppression des effets du bruit dans la fusion 
dynamique des images  

Dans ce papier on a présenté la recherche liée à l’effet du bruit sur la fusion des images dynamiques (vidéo). Au tout 
début du travail on a créé une base de séquences multi sensorielles vidéo qui a été complétée par les différents niveaux de 
bruit ajoutés aux séquences vidéo originales. On a défini la mesure objective pour l’évaluation de la réussite de fusion en 
présence du bruit N-DQAB /F et on a présenté son accord avec la représentation visuelle. La mesure pour l’estimation de 
la fusion a été appliquée chez un grand nombre de méthodes pour la fusion des images dynamiques et des stratégies pour 
la diminution des effets de bruit dans la fusion vidéo sur la base créé. On a identifié les caractéristiques de la pyramide 
multi résolution ainsi que les possibilités de diminuer les effets de bruit dans la fusion dynamique des images. On a 
présenté aussi les techniques très simples pour la suppression du bruit intégré dans le processus même de la fusion qui 
donnent bons résultats lorsque les valeurs de SNR sont petites et avec une petite augmentation de l’exigence 
informatique.  

Mots clés: traitement d’image, qualité d’image , fusion d’image, mesurage de bruit, filtrage de bruit, suppression de bruit. 

 


