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Detecting a Structure in Two Dimensions Combining the Voronoї 
Tessellation and a Shape Factor 
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We present a methodology to quantify the structural changes in the internal structure of granular packing. To this end, 
we use the Voronoї tessellation and a specific shape factor which is a clear indicator of the presence of different domains 
in the granular packing. Distributions of the shape factor in a 2D granular system of metallic disks are experimentally 
investigated. The analysis of disk packings at a “microscopic” level requires a precise measurement of grain positions. 
For this reason, we develop an accurate image processing technique based on the Standard Hough Transform. It is found 
that the properties of the probability distribution of the shape factor of the Voronoї cells are in accordance with the fact 
that the packings of monodisperse hard disks spontaneously assemble into the regions of local crystalline order. 
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Introduction 
ARTICLE technology spans over a range of product 
lines such as pigments, ceramics, drugs, cosmetics, coal 

and ores, minerals, herbicides, seeds, absorbents, 
explosives, etc. In the chemical industry alone, 60% of 
products are manufactured as particulates and a further 20% 
use powders as ingredients to impact specific end-use 
properties [1]. Problems with powder flowability, caking, 
compaction, physical and chemical stability, reactivity and 
efficacy, dispersability, and segregation are common for all 
industries. Clearly, particulate media pervade many other 
fields in addition to process and consumer industries, e.g. 
defence, occupational health, and the civil and 
environmental arenas. 

We see the importance of fundamental research into 
granular matter. This was appreciated very early in 
mechanical and chemical engineering; physicists have 
joined in more recently [2 – 7]. Granular materials are large 
conglomerations of discrete macroscopic particles. If they 
are non-cohesive, the forces between them are strictly 
repulsive. The particles are usually surrounded by a fluid, 
most often air, which may play a role in the dynamics of the 
systems. At the root of the unique status of granular 
materials are two characteristics: ordinary temperature 
plays no role, and interactions between grains are 
dissipative because of the existence of static friction and the 
inelasticity of collisions. There are no long-range 
interactions between individual grains or between 
individual grains and the walls of a confining container. 
Granular matter refers to particle systems in which the size 

is larger than one micron. Below one micron, thermal 
agitation is important, and the Brownian motion can be 
seen. Above one micron, thermal agitation is negligible. 
Yet despite this seeming simplicity, a granular material 
behaves differently from any of other familiar forms of 
matter – solids, liquids, or gases – and should therefore be 
considered an additional state of matter in its own right.  

An important element in the understanding of granular 
media is the description of the local arrangement of grains. 
The structure of granular materials is disordered but not 
random. Such an organisation is the consequence of several 
different mechanisms which are both physical (e.g. 
mechanical stability) and geometrical (e.g. close packing 
configurations). The one possible way of describing the 
neighbourhood and steric environment of a spherical grain 
is to build its Voronoї cell and study its size and shape, and 
the correlation to the sizes and shapes of its nearest 
neighbours. This method was initiated by Finney [8] to 
study non-crystalline molecular aggregates with a special 
attention to regular structures. The Voronoї tessellation has 
long been considered for applications in several research 
areas, such as astronomy [9], atomic physics [10], biology 
[11], metallurgy [12], materials science [13] and 
telecommunications.  

Characterisation of microstructural properties of granular 
packings is a very demanding and complex problem. The 
main reason is an inability to obtain reliable data from 
experiments [14, 15]. On the other hand, data obtained from 
simulations describes mainly the ideal cases in which 
various external influences are neglected. Our analysis of 
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granular packings is based on the Voronoї tessellation, 
which allows us to unambiguously decompose any arbitrary 
arrangement of disks (spheres in 3D) into a space-filling set 
of cells. Our aim is to characterise the structure of 
disordered disk packings and to quantify the structural 
changes associated with different densities. The Voronoї 
diagrams are used to visualise the structural order in 
packing structures. Quantitative information on the type of 
order induced can be obtained by calculating the shape 
factor of the Voronoї cells. The shape factor and its 
distribution were introduced by Moučka and Nezbeda [16] 
for tracking the change in a structure where a liquid-like 
system approaches a disordered jammed state. The shape 
factor is a dimensionless measure of deviation of the 
Voronoї cells from circularity. This method  enablesthe 
identification of the presence of different underlying 
substructures (domains) in the packing. 

Voronoї tessellation 
The Voronoї diagram is a special kind of decomposition 

of a metric space determined by distances from the 
specified family of objects (subsets) in the space. It is also 
referred to as the Voronoї tessellation, the Voronoї 
decomposition, or the Dirichlet tessellation [17]. The 
Voronoї tessellation is one of the simplest mathematical 
models of a cellular structure. Given a set A of discrete 
points in the plane π, for almost any point x π∈  in the 
plane π , there is one specific point ai ∈A which is closest 
to x. The set of all points of the plane which are closer to a 
given point ai ∈A than to any other point aj ≠  ai, aj ∈A, 
is the interior of a convex polygon usually called the 
Voronoї cell of ai. The set of the polygons {Pi}, each 
corresponding to (and containing) one point ai ∈A, is the 
Voronoї tessellation corresponding to A, and provides a 
partitioning of the plane π . The Voronoї cells are convex 
and their edges join at trivalent vertices (i.e. each vertex is 
equidistant to three neighbouring disks.). The Voronoї 
tessellation can be defined for general N-dimensional 
Euclidean spaces. 

 
Figure 1. The “perpendicular bisector method” for constructing the 
Voronoї diagrams in 2D 

Given a set of centres, there is a relatively easy way to 
generate the corresponding Voronoї diagram. In the 
perpendicular bisectors method, used in this research, one 
starts from a given centre (P0) and detects the nearest (P1) 
centre to it (see Fig.1). A part of the perpendicular bisector 
on the 0 1P P  line will form the first edge of the Voronoї 
polygon corresponding to (P0). Then the second nearest 
centre (P2) is detected and the perpendicular bisector on 

0 2P P  is constructed. This algorithm is continued with the 
third (P3), fourth (P4), ... , n-th (Pn) nearest centre, until the 
perpendicular bisectors on 0 3P P , 0 4P P ,..., close a stable 
polygon which does not change after considering any more 
distant points. Repeating the above algorithm for all 
centres, the Voronoї tessellation of the whole space (Fig.1.) 
can be obtained. For regularly packed disks in 2D, these 
polygons are hexagons, as illustrated in Fig.2. Any 
deviation from the regular hexagonal structure leads to a 
“deformation” of the Voronoї hexagons. 

Shape factor 
The study of how space is repartitioned around the disks 

is essential for understanding the local arrangement of disks 
and their local organisation. For this purpose we use the 
Voronoї partition and a novel concept of the shape factor 
(parameter of non-sphericity) to measure the topology of 
the Voronoї cells.  

 
Figure 2. Two-dimensional hexagonal package of equal disks. Disk 
centres are vertices of regular hexagons 

The shape factor ζ  of the Voronoї cell is defined as 

 

2

4
C

Sζ
π

=  (1) 

where C is the circumference of a Voronoї cell and S is its 
surface area [16, 18]. Thus a circular structure has a shape 
factor of 1ζ = , while for a convex polygon, the more 
anisotropic the polygon, the higher 1ζ > ; e.g. for a square 

4 / 7 1.273ζ = ≈ , for a regular pentagon 

( )/ 5 tan / 5 1.156ζ π π= ≈ , and for a regular hexagon 
26 / 3 1.103ζ π= ≈ . Generally, for a regular N-sided 

polygon we have ( ) ( )/ tan /N Nζ π π= , which sets a 
lower bound for other N-sided polygons. Using the shape 
factor, we are able to identify the occurrence of different 
domains in numerically or experimentally obtained 
packings of particles. Every domain is made up of the 
grains whose Voronoї polygons have similar values of the 
shape factor. The shape factor is calculated for each 
Voronoї cell, except for the opened cells located at the 
boundaries which have infinite volumes.  

In order to clearly distinguish the domains made up of 
different Voronoї polygons, we classify the polygons 
according to their values into eight groups G1 – G8 as given 
in Table 1. The group G1 comprises near-regular hexagons, 
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while other groups include less regular figures. To 
differentiate polygons belonging to different groups G1 - G8, 
we use the colour coding in accordance with the definitions 
given in Table 1. This allows us to easily distinguish the 
local arrangements of grains for the used packings [19, 20].  

Table 1. Classification of the Voronoї polygons into eight groups G1 – G8 
according to the values of the shape factor ζ (Eq.(1)) 

Group Range Colour 
G1 ζ < 1.108 yellow 
G2 1.108 < ζ < 1.125 magenta 
G3 1.125 < ζ < 1.130 cyan 
G4 1.130 < ζ < 1.135 red 
G5 1.135 < ζ < 1.140 green 
G6 1.140 < ζ < 1.160 blue 
G7 1.160 < ζ < 1.250 white 
G8 1.250 < ζ  black 

Applied method: description and verification 
A commonly faced problem in computer vision is to 

determine the location, number or orientation of a particular 
object in an image. For example, in the automated 
inspection of electronic assemblies, interest lies in 
analyzing images of the products with the objective of 
determining the presence or absence of specific anomalies, 
such as missing components or broken connection paths. A 
good example of military application  is the use of infrared 
imaging to detect objects with strong heat signatures, such 
as equipment and troops in motion. One problem could, for 
example, be to determine the straight roads on an aerial 
photo. This problem can be solved using the Hough 
transform for lines. Often the objects of interest have other 
shapes than lines, it could be parables, circles or ellipses or 
any other arbitrary shape. The general Hough transform can 
be used on any kind of shape, although the complexity of 
the transformation increase with the number of parameters 
needed for describing the shape. In the subsequent text, we 
will look at the Circular Hough Transform (CHT).  

The experimental study of granular packings requires a 
precise measurement of grain positions. For this reason, the 
development of an accurate image processing technique has 
been a central aspect of the design of the experimental 
setup. The images of various 2D packings are syste-
matically acquired in high resolution (at least 600×600 dpi) 
and 256 gray levels. First, image intensity values are 
adjusted in order to increase the contrast of the output 
image. Both the centre and the diameter of each grain are 
accurately determined using the image processing program 
based on the Standard Hough Transform (SHT) [21].  

The Hough transform can be described as a 
transformation of a point in the x, y-plane to the parameter 
space. The parameter space is defined according to the 
shape of the object of interest. Since objects in this research 
are circles, the Circular Hough Transform (CHT) has been 
used [22], with the parametric representation of the circle 
given by  

 
cos
sin

x a r q
y b r q
= +
= +  (2) 

where a and b are the centre of the circle in the x and y 
direction respectively and r is the radius. Thus the 
parameter space for a circle belong to R3.  

The process of finding circles in an image using the CHT 
is as follows. First we find all edges in the image by using 
an edge detection technique; one can choose between 

Canny, Sobel or Morphological operations. At each edge 
point, we draw a circle with its centre in the point with the 
desired radius. At the coordinates which belong to the 
perimeter of the drawn circle, we increment the value in our 
accumulator matrix which essentially has the same size as 
the parameter space. In this way, we sweep over every edge 
point in the input image drawing circles with the desired 
radii and incrementing the values in our accumulator. The 
accumulator now contains numbers corresponding to the 
number of circles passing through the individual 
coordinates. Thus the highest numbers (selected in an 
intelligent way, in relation to the radius) correspond to the 
centre of the circles in the image. The accumulator array, 
being three dimensional if the radius is not held constant, 
can grow large quite fast. Its size depends on the number of 
different radii and especially the image size. The 
computational cost of calculating all circles for each edge 
points increases with the number of edge points which is 
usually a function of the image size. The overall 
computation time of the CHT can therefore quickly reach 
an infeasible amount of time for large images with many 
edge points.  

 
Figure 3. Two-dimensional system of disks from numerical simulation 
(left); detection of the disks’ circumferences and associated centres (right). 

It is desirable to be able to find circles from the 
accumulator data. One approach is to find the highest peaks 
for each a, b plane corresponding to a particular radius, in 
the accumulator data. If the height of the peak is equal to 
the number of edge pixels for a circle with the particular 
radius, the coordinates of the peak do probably correspond 
to the centre of such a circle. But the centre of a circle can 
also be represented by a peak with a height less than the 
number of edge pixels, if, for example, the circle is not 
complete or is of elliptical shape. If it is difficult to locate 
exact peaks, the accumulator data can be smoothed. 

In order to verify the method, the known positions of disks 
in an image are compared to those obtained using the image 
processing technique based on the CHT. The image is 
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produced using the method of random sequential adsorption 
(RSA) of disks [23–25]. As a result of the simulation, an 
image of the 2D packing in the postscript format is produced, 
where positions and diameters of all disks are known (see 
Fig.3(a)). The image is then converted into a bitmap 
grayscale image and analysed as described above. As a 
result, a raw image with circles (red line) and their centres 
(white crosses) is produced for further comparison with the 
simulation data (see Fig.3(b)). Excellent results have been 
obtained, the error being less than 0.1%. It is also found that 
the accuracy of the circle detection depends greatly on the 
parameters controlling the CHT algorithm.  

Results and discussion 
The experimental setup used in this research (see Fig.4) was 

already described in details elsewhere [19, 20] and only a brief 
description is given here. The two-dimensional granular 
packing consists of metallic cylinders contained in a 
rectangular box made of two parallel glass plates, with an inner 
gap of thickness 3.4 mm, slightly larger than the height of the 
cylinders, 3.00 0.01h = ± mm. The lateral walls of the box 
delimit a rectangular frame of a height of 340H = mm and a 
width of 300L = mm. The box is secured on a heavy plane 
that can be inclined so one could set an arbitrary inclination 
angle [ ]o0,90θ ∈

 
from the horizontal plane. The cylinders of 

diameters 4.00,5.00d = 0, and 6.00 ± 0.05 mm were used to 
prepare the monodisperse packings.  

 
Figure 4. Photograph of the experimental setup 

The experimental procedure consists of the following 
steps. The cylinders are randomly deposited onto the 
initially horizontal glass plate without contact between 
them. The box is turned into the vertical position, allowing 
the cylinders to glide on the glass plate to the bottom of the 
box forming a package. The measured packing fractions of 
these disordered packings are ρ = 0.78 − 0.86 ± 0.01 with 
densities being far from the close packing limit 

/ 2 3 0.91cpρ π= ≈ . The bitmap images of packings are 
systematically acquired by means of an HP ScanJet 3800 
fixed below the bottom glass plate of the rectangular 
container. In the output bitmap image as shown in Fig.5, the 
diameters of grains are d1 ≈ 94, 118, and 142 pixels. 

 
Figure 5. Typical snapshot of the experimentally obtained packing. 

The images are then analysed using the procedure 
explained in Sec. III. The analysis can be performed on the 
whole system or on the region of interest and it allows us to 
detect both the centres and the diameters of cylinders with a 
high resolution of 0.04 mm. Fig.6 presents snapshots of the 
CHT analysis for the experimentally obtained layer at 
density ρ=0.79. The centres of almost all grains detected by 
the image processing are marked with red cross hairs in 
Figures 6(a) and (b), and with red dots in Fig.6(c) with 
circles designated with blue lines.  

 

Figure 6. CHT analysis of the packing at density A =0.79: (a) The whole domain; (b) A part of the same snapshot with the centres. (c) Extracted disk centres 
and circles 
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Now we need to determine the Voronoї tessellation for a 
discrete set of points (centres of disks) in the plane. As already 
explained, for a given two-dimensional set of monodispersed 
disks, the Voronoї tessellation is a uniquely defined set of 
space-filling, non-overlapping and convex cells, each of which 
encloses one and only one of these disks. Fig.7 illustrates the 
resulting cell distribution for the tessellation of experimentally 
obtained packing of disks (ρ=0.79).  

Let us now analyse the microstructural properties of the 
packing configurations by exploring local neighbourhoods 
using the Voronoї tessellation. It has to be noted that for 
this purpose a frequently investigated parameter in the 
literature on granular packings is the coordination number, 
i.e. the average number of disks in contact with a given disk 
[14, 26]. This is a very simple topological quantity which 
gives important information about the local configurations 
and the packing stability and determines the cohesion of the 
material when liquid capillary bridges between particles are 
present. Its value depends on the definition of ’‘contact”, 
i.e. the minimal or cut-off distance dc between two disks 
below which they are regarded to be in contact. The 
coordination number is very sensitive to the changes of cut-
off distance dc. Although simple in its definition, such a 
number is unavoidably an ill-defined quantity for granular 
systems. Indeed, the information about the positions of all 
grains is not sufficient to determine such a number: two 
grains can be arbitrarily close, but not touching.  

 
Figure 7. Voronoї tessellation of a set of point particles (centres of disks). 
Diagrams correspond to the experimentally obtained packing at density  
A =0.79: (a) Centres of disks; (b) Voronoї diagram; (c) The part of the 
same diagram. The centres of grains are marked with dots 

On the other hand,the Voronoї cell method has an 
advantage in that there are no arbitrary choices for the 
neighbouring criteria. Two disks sharing a common cell 
edge are neighbours. Nevertheless, this is also the weakness 
of the Voronoї method because neighbours which are rather 
far from the central disk (sphere in 3D) contribute to the 
shape of the cell. We measured the occurrences of cells 
with 3cn ≥  edges. The resulting distribution of Voronoї 
neighbours for packing at density 0.79ρ =  is shown in 
Fig.8. We can observe that the granular layer consists 
almost entirely of disks whose Voronoї cells are distorted 
pentagons, hexagons and heptagons. We thus get a narrow 
probability distribution of Voronoї neighbours centred at 

6cn =  (hexagons).  

 
Figure 8. Distribution of Voronoї neighbours for packing shown in Fig.7. 
The number of opened cells located on the boundaries are also indicated as 
number of cells with nc = 16 edges. 

Fig.9 allows us to easily distinguish local arrangements 
of grains for used packings. Here we show the Voronoї 
tessellation for the same disks configuration as in Fig.7. To 
differentiate polygons belonging to different groups G1 – G8 
we use colour coding in accordance with the definitions 
given in Table 1. The values of the shape factor for all 
Voronoї polygons are shown in Fig.9(b). In Fig.9 we can 
see a mixture of various Voronoї polygons. It is obvious 
that the polygons belonging to the G7 and G6 classes 
dominate, where G7 and G6 polygons are mostly distorted 
pentagons and heptagons. It means that the disks are 
distributed randomly. Furthermore, large islands of near-
regular hexagons belonging to G1 and G2 classes are found. 
Optical imaging brings evidence that disks spontaneously 
tend to form ordered hexagonal patterns. In addition, small 
domains made up of G3 – G5 polygons, respectively, can 
also be detected. One feature of Fig.9 is the fact that disks 
tend to organise themselves locally into close packing 
configurations. Such a local organisation is limited to short 
distances yielding an overall disordered packing. 

 
Figure 9. Voronoї diagram obtained from the positions of disks, for the same 
disks configurations as in Fig.7. (a) Voronoї cells are coloured according to 
their shape factor ζ (Eq. (1)). Colour coding of Voronoї polygons is defined 
in Table 1. (b) Also, a part of the same diagram is shown 

To further quantify the structural properties of the 
packings, we consider the probability distribution P(ζ) of 
the shape factor ζ. The distribution function P(ζ) is related 
to the probability of finding a Voronoї cell with the shape 
factor ζ (see Fig.10). It is normalised to unity, i.e. 

( )
0

1d Pζ ζ
∞

=∫ . The experimental results for the 

distribution P(ζ) of the shape factor ζ are given in Fig.11 for 
the packings of disks of diameters 4d =  and 6 mm at 
density 0.83 0.01ρ = ± . The packing fractions and 
distribution functions P(ζ) have been calculated from an 
average over 10 initial preparations of packing. From these 
results we observe that the distribution P(ζ) does not 
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depend on the diameter of the grains. The curves of 
distribution P(ζ) are asymmetric with a long tail on the 
right-hand side, which progressively reduces while the 
packing structure gets more compact (the Voronoї cells 
become more circular at higher values of the packing 
fraction). This narrowing of the probability distribution P(ζ) 
corresponds to the decrease of the fraction of Voronoї 
polygons belonging to G5 – G7 classes. In other words, as 
the density increases, the distribution becomes more 
localised around the lowest values of the shape factor (for a 
regular hexagon, 26 / 3 1:103ζ π= ≈ ).  

 
Figure 10. (a) Values of the shape factor for all Voronoї polygons, for the 
same disks configurations as in Fig.7; (b) The probability that the value of 
the shape factor ζ is greater than s 

 
Figure 11. Experimental results for the probability distribution P (ζ) of the 
shape factor ζ. The experimental results correspond to the packings of 
disks of diameter d =4(□) and 6 (○) mm at density ρ=0.83.  

Conclusions 
The organisation of grains at a local level has been 

studied by analysing the geometrical characteristics of the 
local volumes associated with a natural way of subdividing 
the volume into local parts - the Voronoї partition. The 
shape factor ζ has been a quantifier of the circularity of the 
Voronoї cells associated with the individual particles. It 

gives a clear physical picture of the competition between 
less and more ordered domains of grains. We found that 
disks tend to organise themselves locally into ordered 
hexagonal patterns. The probability distribution P (ζ) of the 
shape factor ζ is very sensitive to small structural changes 
of the packing. The narrowing of the distribution P(ζ) 
corresponds to the increase in the fraction of the near-
regular Voronoї cells. In particular, unlike in three-
dimensional cases, these distributions have two peaks 
which clearly indicate the existence of local configurations 
with hexagonal and quadratic symmetry. Recent 
experiments have indicated that the same type of structural 
organisation may occur in a quasi-two-dimensional driven 
system of hard spheres [27] where regions of crystalline 
order are interspersed by relatively disordered grain-
boundary regions.  

The results presented here provide the starting point for 
further investigations. Further experiments are needed to 
understand various factors that influence the 
microstructural properties of packing such as particle 
anisotropy, particle shape and frictional properties of 
grains. The promising direction of research concerns the 3D 
extension of this investigation. It is known that the 
tendency towards a crystalline order is much less 
spontaneous in three dimensions than in the two-
dimensional case [14]. Furthermore, the dimensionality of 
the packing determines the nature of the tail of the 
probability density of contact forces inside the packing 
[28], which is also relevant to the process of granular 
compaction. 
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Detekcija strukture u dve dimenzije kombinacijom Voronojieve 
teselacije i faktora oblika  

Prezentirana je metodologija za kvantifikovanje strukturalnih promena granularnog pakovanja. U tu svrhu koristimo 
Voronojievu teselaciju i faktor oblika koji predstavlja indikator prisustva različitih domena u granularnom pakovanju. 
Eksperimentalno su izučavane distribucije faktora oblika u dvodimenzionalnom granularnom sistemu metalnih diskova. 
Analiza pakovanja diskova na "mikroskopskom" nivou zahteva precizno merenje položaja granula. Zato smo razvili 
preciznu tehniku analize slika koja je bazirana na standardnoj Hough−ovoj transformaciji. Nađeno je da su svojstva 
distribucije verovatnoće faktora oblika Voronojievih poligona u saglasnosti sa činjenicom da se pakovanja jednakih 
diskova spontano organizuju u regione kristalne uređenosti. 

Ključne reči: granulisani materijali, granularna kompaktifikacija, pakovanja, faktor oblika, eksperimentalni rezultati, 
vojna primena. 

Обнаружение структуры в двух измерениях, сочетающих 
тесселяции Вороноия и форм -факторов 

Мы представляем методологию количественной оценки структурных изменений в гранулированной упаковке. 
Для этой цели мы пользовались тесселяцией Вороноия и форм-фактором который образует показатель 
присутствия различных областей в гранулированной упаковке. Экспериментально мы изучали распределение 
форм-факторов в двумерной зернистой системе металлических дисков. Анализ упаковки дисков на 
"микроскопическом" уровне требует точного измерения положения гранул. Таким образом мы разработали 
методику точного анализа изображения, основанного на стандартной Хью-трансформации. Было установлено, 
что свойства распределения вероятностей форм-факторов полигонов Вороноия находятся в соответствии с 
фактом, что упаковки из равных дисков спонтанно организуются в области кристаллических заказов. 

Ключевые слова: гранулированный материалы, гранулированная компактность, упаковки, форм-факторы, 
экспериментальные результаты, военные применения. 
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Détection de la structure à deux dimensions en combinant la 
tessellation de Voronoï et le facteur de la forme  

La méthodologie pour la quantification des changements structuraux chez les emballages granulés est présentée dans ce 
papier. On utilise dans ce but la tessellation de Voronoï et le facteur de la forme qui est l’indicateur de la présence de 
différents domaines dans l’emballage granulé. On a examiné expérimentalement la distribution du  facteur de la forme 
dans le système granulé des disques en métal à deux dimensions. L’analyse de l’emballage de ces disques exige le 
mesurage précis de la position des granulés au niveau „microscopiques”. Pour ce faire on a développé une technique 
précise de l’analyse d’image. Cette technique est basée sur la transformation ordinaire de Hough. On a constaté que les 
propriétés de la distribution de probabilité du facteur de la formes des polygones de Voronoï étaient en bon accord avec 
le fait que les emballages des disques identiques étaient organisés spontanément en régions des ordres cristallines.  

Mots clés: matériaux granulés, compactage granulé, emballage, facteur de la forme, résultats expérimentaux, application 
militaire. 

 
 


