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Application of the Umov-Poynting Vector for Solving Heat Transfer 
Problems in Technology 

Kuts N.G.1) 

Propagation of heat fluxes has been examined taking into account atomic-molecular and cluster structures of different 
aggregate states. Heat propagation was examined not from the position of temperature conductivity but from the position 
of heat energy propagation using the Umov-Poynting vector. Heat capacity was defined making allowance for degrees of 
freedom excitation probability for each particle forming the medium. Changes in the aggregate state, the medium 
structure and its heat capacity caused by temperature change were taken into consideration in heat propagation. It was 
clarified what kinds of heat exchange processes appear at the interface of different aggregate states. The failure of the 
heat transfer equation – to describe heat propagation in different media – has been shown. The application of the Umov 
vector allows solving problems of thermal conductivity in any media specifying the medium and values of heat fluxes at 
the interface. 
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Introduction 
HE classical theory of heat transfer was developed by 
Fourier, who showed that such a phenomenon can be 

described by the equation as follows [1]: 
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where / Vl cχ ρ≅  is a temperature conductivity 
coefficient proportional to the free-path length l  and 
inversely proportional to the specific heat capacity Vc and 
to the density of the medium ρ ; i.e., the coefficient 
depends on the material and on its physical state. It can be 
purely empirically found in each particular case; therefore, 
it is not a universal constant. Besides, a solution of the 
differential equation of form (1) is only possible where 
there are boundary and initial conditions. While for 
homogeneous and isotropic materials these conditions can 
be specified and then somehow checked, for non-
homogeneous, anisotropic and particularly for multilayered 
media of different structures and  aggregate states, it is 
practically not possible. Hence, there occurs an objective: 
developing a more general model of heat propagation in 
different media taking into cosideration all physical and 
chemical properties inherent to this medium. The objective 
can be reached by solving the problems as follows: 
- at heat propagation, one should not only take into 

account the atomic-molecular structure of the particular 
medium being considered, but also its cluster structure;  

- heat propagation should be considered not from the 
viewpoint of temperature conductivity, but from the 
viewpoint of heat energy propagation through a given 
medium; 

- heat capacity should be considered with account of the 
probability of exciting the degrees of freedom for all 
particles forming the medium; 

- heat propagation should be considered with regard to 
changes – with temperature - in the medium aggregate 
state, in its structure, and in heat capacity; 

- one should find out which processes of heat exchange 
take place at the interfaces of different aggregate states.  
The purpose in hand and heat propagation problems to 

be solved– in all the aggregate states – present a challenge. 
It is obvious that for each aggregate state, one should 
consider their own specificity of the interaction of atom, 
molecular and cluster particles. Below, we will consider 
how one reaches the purpose in hand and solves the 
problems for each aggregate state.  

Gaseous medium  
When applied to gases, the heat transfer equation (1) is 

solved taking into account an empirical formula offered by 
Eken [1]:  
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where η  is a dynamic viscosity, M is a molar mass, R is a 
universal gas constant and CV – is molar heat capacities 
under a constant volume. We leave out of consideration the 
question of how the dynamic viscosity of gas medium and 
specific heat capacity vary with temperature.  On detailed 
consideration of the heat transfer process, one should be  
careful with empirical formulas.  

The general problem of heat propagation in gases – with 
the application of the molecular-kinetic theory – is solved 
rather convincingly. As a result, the heat propagation law is 

T 
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obtained in the form:  

 dTQ K Stdl= . (3) 

Here: 1
3 VK c clρ=  - isthe thermal conductivity coefficient 

depending on the gas density ρ  and the specific heat 

capacity Vc ; Б

a
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=  - is the velocity of sound 

propagation in the gas; 
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≈  is the free-path length 

which is inversely proportional to the gas particles 
concentration n and to the square of the mean diameter of 
gas particles D2; dT

dl  is the temperature gradient; S is the 

area through which heat is transferred, and t is the heat 
transfer time.  

The thermal conductivity coefficient in the heat transfer 
equation depends on the basic parameters which 
characterize a gas state. At a given temperature gradient, all 
these parameters depend on the temperature value which 
varies as heat propagates along a selected direction. At a 
given temperature gradient, the heat transfer equation (3) 
enables  the evaluation ofthe heat amount only in the initial 
area and at the initial instant of time. Therefore, the 
situation inside the gas medium is rather ambiguous. For 
this reason, we  will use a more general approach offered 
by Umov [2]. The Umov-Poynting vector permits  
obtaining the value of the energy flux along a selected 
direction, which is defined by the formula as follows:  

 [ ]гP wv= ,    [Wt/m2]. (4) 

For the gas medium, the energy density is defined by its 
internal heat energy. Then, neglecting the radiant energy, 
we have: 

 2 B
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and the velocity of propagation:  
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For the majority of practical problems, the pressure is 
assumed to be constant ( constP = ) and the Umov-
Poynting vector takes a form (in the absolute value):  
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Here, P is the pressure in the gas, i is the number of 
degrees of freedom, Bk  - the constant of Boltzmann and 

/P vC Cγ =  is the ratio of heat capacity under constant 
pressure and constant volume. The change of the heat 
capacity ratio with temperature can be neglected, and the 
change in the number of degrees of freedom, involved in 
the gas at a given temperature, will be considerable, since: 
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where ik is the quantity of the k-th degree of freedom, 
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= ∫  is the probability of the excitation 

of the k- th degree of freedom, and ( , )f E T  is the function 
of the Maxwell-Boltzmann distribution over energies.  

All gases – and even the He gas – are composed of 
molecules. The internal heat energy is contained in 
translational, rotational and vibrational degrees of freedom. 
The probability of excitation of translational degrees of 
freedom in gases is equal to the unit, since the particle 
coupling energy of gases is – by the definition of the gas 
state – equal to zero. The probability of excitation of 
rotational degrees of freedom in gases is also equal to zero 
owing to the absence of friction between gas particles.  
Only for vibrational degrees of freedom, the probability of 
their excitation is different from zero and is defined by the 
energy of atoms coupling in gas molecules. Therefore, for 
two-atom gases – in the neglect of excitation of vibrational 
degrees of freedom – 5i = , and 6i =  for multinuclear 
molecules.  

At low temperatures, clusters are formed and then the 
quantity of degrees of freedom being excited is obtained as:  
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and by the definition of the density of energy by Eq. (5), 
one should account for the reduction of general 
concentration of particles at the cluster formation. In this 
case: 
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Here, 3
0 .1/ cln r= ; Nζ  is the number of particles in the 

ζ -th coordination layer and 
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0

( , )
couplE

W f E T dE
ζ
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probability that a particle of the ζ -th coordination layer 
stays in the cluster. 

 

Figure 1. A water molecule and the size (in nm) of: 1 - atom of oxygen; 2 
- atom of hydrogen 

According to Eqs. (9) and (10), one obtains the number 
of degrees of freedom and the concentration of particles in 
the intermediate zone when the gas state gradually changes 
into the liquid state in a certain temperature interval. In the 
liquid state, the situation becomes more complicated.  
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Medium in the liquid state 
In the liquid state, heat transfer is also described by 

solving the equation of heat transfer (1) with the use of 
empirical formulas to define the free-path length at 
different temperatures. Such a method of analyzing heat 
transfer in liquid media is approximate and does not reflect 
the real processes taking place in liquids at heat 
propagation. The application of the Umov-Poynting vector 
to describe heat propagation in a liquid medium is thus 
more fruitful. The heat energy density is also defined by 
Eq. (5), and the number of degrees of freedom excited in 
liquids by Eq. (9). However, in Eq. (5), one should consider 
that the particle concentration in inter-cluster volumes 
sharply decreases owing to the essential growth of the 
particle number in cluster formations. Hence, in liquids 
there are two grades of particles: 1 - molecules, interacting 
among themselves by covalent and ionic coupling energy 
with due account for electron-dipole and dipole-dipole 
interactions, and 2 - cluster formations, mainly with the first 
coordination layer. *)  

In heat engineering, water is for the most part used as 
heat carrier, because it has the maximum heat capacity. For 
this reason, all necessary heat engineering calculations will 
be executed for water in the liquid state. The water 
molecule is shown in Fig. 1. The effective radius of a water 
molecule is – from the data specified in Fig. 1 – 0.0926 nm. 
The oval selects a region of increased electronic density 
between atoms of oxygen and hydrogen. In the closely-
packed state  occurring in clusters, the distance between 
water molecules is 0.0185 nm. The distance between water 
clusters in the liquid state is obtained in terms of the density 

value. For water molecules, 230 8
H Om

r
ρ

= . In normal 

conditions, r0 = 0.155 nm, and the effective radius of the 
water basic cluster is rcl. = 0.297 nm.  
According to the data from the reference guide [4], the 
ionization energy of the water molecule is 12.614 eV. 
Under the value of the effective radius and of the ionization 
energy of the first multiplicity,  the energies of ionization of 
the second and third multiplicity are obtained as well as the 
effective radiuses and effective charges of the water 
molecule of the second and third multiplicity of ionization.  

Using these data and the technique described in [5], one 
computed the coupling energies of the water molecule 
inside the cluster and the inter-cluster binary interaction. 
These values were found to be : Ecouple,1 = 0,178 eV and 
Ecouple, 2 = 0,086 eV, respectively. Free molecules of water 
in the liquid state are connected between themselves by the 
energy of 0.0647 eV. On the liquid surface, molecules are 
surrounded by six molecules in the horizontal plane and by 
one molecule in the vertical plane. Then, the resultant 
coupling energy of individual molecules on the water 
surface will be 0.45 eV which coincides with the value 
obtained from the data on saturated vapors (0.46 eV), and 
from the value of the surface tension force.  

The liquid state occurs when ,1 3couple B LE k T≥ .( LT  - 
temperature of the liquid). At the boiling temperature, the 
energy of binary coupling is decreased by a quantity of: 

 3boil B boilE k T≅ = 0.0964 eV (11) 
                                                           
 *) Previously, as applied to water, oit was believed [3] that these are splin-
ters of not thawed ice, formed by hydrogen coupling. In fact, these are 
clusters and the coupling between them is defined by dipole-dipole cou-
pling.  

and at the melting temperature by a quantity of: 

 3melt B meltE k T  = 0.0706 eV. (12) 

In the interval between the boiling temperature of 373 K 
and the ice melting temperature of 273 K, water stays in the 
liquid state. It turns out that the binary coupling between 
clusters in the liquid state is so weak that clusters practically 
do not interact among themselves and are free. In the 
temperature range where the liquid state is implemented, the 
heat energy density is defined also according to Eq.(5), but  
taking into account Eqs.(9) and (10). Then: 

 .2L B eff
iw k T n= , (13) 

where n is the total particle concentration. 
Free water molecules do translational movements; and, 

colliding with clusters, they implement the exchange 
coupling between clusters which has a spherical symmetry. 
The arising spherically symmetric forces of interaction at 
the equilibrium distance prevent volumetric compression 
and simultaneously promote free spreading out of the 
liquid. Free two-atom molecules in the liquid state have 
three translational and two rotational degrees of freedom, 
and three-atom molecules have three translational and three 
rotational degrees of freedom. Clusters in the liquid state 
have three vibrational and three torsion-and-vibrational 
degrees of freedom.  

Heat propagation in liquids (in the absence of radiant 
heat exchange) is defined by the velocity of sound 
propagation. Normally, the velocity of sound in water is 
obtained from the empirical formula Sv kρ= , where kS is 
the adiabatic coefficient of compression. For every 
particular liquid, the adiabatic coefficient of compression is 
defined empirically.  Therefore, the liquid state is not 
sufficiently investigated with regard to the formation of 
cluster structures.  

In liquids, only longitudinal sound waves propagate 
along a normally applied force. Under the action of such a 
momentum, some mass of liquid dm will start traveling at a 
velocity of v. Then:  

 Fdt dmv=  (14) 

If equality (14) is divided by the area of force action S, 
then we obtain the pressure pulse: 

 dmvPdt S= . (15) 

Expressing the mass dm in terms of density, and pressure 
in terms of the Young's modulus, we obtain, with 
consideration of Eq. (13): 

 2E vρ= . (16) 

From here, we obtain the velocity of propagation of 
longitudinal waves of compression in liquids ( )1/2/v E ρ= . 

The module of volumetric compression for a flat wave of 
compression is defined : 

 .,1 .,1 0
2 3

.,1 0 .0

[ ( ) ( )] 3 1
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E r E r k TE E r Ne rπ
−

=   

where Ncl. is the number of particles in the cluster at a 
temperature of T.  
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The mean effective radius of the water molecule is ~ 
0.926 Å, and the mean effective distance between 
molecules, obtained from the value of water density, is 
1.552 Å. From here, the fraction of free volume in water is 
~ 0.79, and, if accounting for the formation of clusters, then 
this fraction of free volume in water increases. One should 
consider that only free volume lends itself to compression. 
For this reason, at sound propagation in liquids, the 
maximum compression coefficient is:  

 
3 3

0
3 3

1

4 4 0,9261 1 15%
1,552

r
r

χ ⋅= − = − = .  

In gases, the compression of free volume of molecules 
can reach 100 %, and in liquids it is 7 times less (for water 
15 %). With respect to this parameter, the liquid  
corresponds to the gas. For water, such compression is 
generally not reachable. In reality, at sound propagation in 
water, pulse compression occurs, which depends on the 
amplitude of a sound wave. To obtain the dependence of 
sound velocity  on temperature, one should regard the 
compression coefficient as a variational parameter.  

Table 1 shows the pulse compression values at which the 
velocities of sound wave propagation correspond to 
experimental data. With respect to the compression module, 
water approaches the solid. 

Table 1. The magnitude of the volumetric module of compression, the 
velocity of propagation of sound, and the coefficient of volumetric 
compression of water versus temperature 

Temperature, K Parameters 
273 283 293 303 350 373 

Е·10-9, Pa 1.96 2.09 2.20 2.26 2.64 2.86 
v, m/s 1401 1446 1482 1503 1625 1692 
χ , % 9.80 9.60 9.50 9.55 9.60 9.60 

 

Figure 2. A diagram of heat propagation in a medium in a one-
dimensional approximation 

The liquid state is a complicated system of interacting 
particles which – under the influence of an external 
disturbance – can come nearer and diverge to sufficiently 
large distances. For this reason, the molecules in the liquid 
state execute random translational movements inside the 
liquid. 

On the basis of Eqs. (5) and (16), the heat transfer in 
liquids is defined by the value of the Umov-Poynting 
vector.  
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A general diagram of heat propagation in a one-
dimensional case is given in Fig. 2. Under the action of the 
heat flux РL,1, the surface A of the considered flat layer of 
the liquid medium is heated up to the temperature Т1. The 
heat flux РL,2 from the surface B affords the temperature Т2. 
When not taking into account the processes of heating up 
and cooling of bonding surfaces, then one can apply the 
heat transfer equation (1). But such a case is not really 
implemented in Nature. Besides, when solving an equation 
of the second order, it is necessary to establish boundary 
and initial conditions which one cannot formulate without 
the reasons of their occurrence in each particular case. We 
will consider some different cases.  

 At РL,1 > РL,2, the medium will heat up. In a time of 
t, the medium will heat up to a temperature of:  

 ,1 ,2
0

L L

V

P Р
T T tdcρ

−
= + . (18) 

The process of heating up works continuously. 
At ,1 ,2L LP P< , the medium being considered should be 

cooled continuously under the law (18).  

Solids 
The solid is a crystal. In the solid crystal lattice, the 

internal heat energy is formed by longitudinal and 
transverse vibrations of clusters. Besides, one should 
account for the energy of random translational moving of 
particles in inter-cluster free volumes, and for the energy of 
torsion vibrations of clusters with respect to their own 
centre of gravity.The resultant internal heat energy is 
represented as:  

 .
3 3
2 2j j B eff

j

Q W E k T= =∑ , (19) 

where j = 1 corresponds to the energy of translational 
degrees of freedom Е1 with the probability of their 
excitation W1; j = 2, 3, and 4 correspond to the energy and 
probability of their excitation for torsional, longitudinal and 
transverse vibrations of clusters inside the crystal lattice. If 
in the medium being considered, a temperature difference is 
created in some direction, then energy transfer occurs. In 
the most general case, energy transfer is defined – 
according to Eq. (4) – by the Umov-Poynting vector.  

The heat energy density should be found as:  

 .3
.

3 3
24 B eff

cl
w k T

rπ
= . (20) 

Earlier, while considering the classical theory of heat 
capacity, one assumed that the internal energy in solids was 
only defined by harmonic oscillations of individual atoms 
or molecules with respect to their equilibrium. As a result, 
the internal energy of solids was only presented – according 



14 KUTS,N.G.: APPLICATION OF THE UMOV-POYNTING VECTOR FOR SOLVING HEAT TRANSFER PROBLEMS IN TECHNOLOGY  

to the law of uniform distribution of heat energy over 
degrees of freedom –  through the vibrational degrees of 
freedom as 3·kBТ/2 [6]. To agree with the Dulong and Petit 
law, such oscillations were attributed two more degrees of 
freedom, conditioned by  the fact that the oscillative mode 
of motion contains two kinds of energy – kinetic and 
potential – which continuously convert to one another in 
equal quantities.  

Such an approach contradicts the law of uniform 
distribution over degrees of freedom, as the temperature is 
defined by the maximum energy contained in one degree of 
freedom rather than by the energy contained in its fraction. 
One should consider that any absorption of energy is 
conditioned by the excitation of a definite degree of 
freedom with respect to its energy of coupling. At 
considerable energy of coupling between particles inside 
solids, their excitation is practically excluded.  

The contradictions between the classical theory of heat 
capacity at low temperatures, near the absolute zero, and 
the experimental data were removed by the quantum theory 
which assumed that the crystal as a unit executed 
oscillations. Then the crystal at low temperatures was to 
have executed elastic vibrations, and the sound was to have 
propagated in the environment. However, such a 
phenomenon is not observed. 

Therefore, the internal energy of solids is not defined by 
the oscillations of the individual particles composing it or 
of the whole crystal relative to equilibrium, but by the 
behavior of individual clusters and by their interaction with 
different particles in the solid. At low temperatures, the 
internal energy is conditioned by the value of coupling 
energy of the particles – of the third coordination sphere – 
with the basic cluster. In this case, all contradictions are 
removed, as it has been shown in [7].  

In solids, the individual free atoms, molecules or clusters 
are in the inter-cluster volume. The total number of 
particles in each free inter-cluster volume is:  

 . .( , )
i

coupl i eff
i E

N N f E T dE
∞

=∑ ∫ . (21)  

If only translational degrees of freedom are excited, then 
one particle is fallen at the internal energy 3kBТeff/2Ncoupl.. 
Similarly, one defines the energy – fallen at one particle – 
for rotational and vibrational degrees of freedom.  

The heat propagation process in solids should be 
considered as successive excitation – from a cluster to a 
cluster – of all degrees of freedom defining the internal heat 
energy according to Eq. (20). At that, one should consider 
that the heat flux action is not carried out on the pure 
material directly, but through an intermediate layer of 
oxides of the given material and through a layer of 
adsorbed atoms, molecules of the environment, and, in each 
case, with its own velocity of heat flux propagation.  

In solids, in the process of  temperature decrease and 
owing to atoms interaction with each other, stable two-atom 
molecules are created, and then the interaction of atoms 
with two-atom molecules creates three-atom molecules. 
The resulting molecules interact among themselves, with 
each other and with individual atoms. At that, the creation 
of three-atom molecules cannot occur owing to triple 
collisions of atoms with each other, but such molecules are 
created at binary interaction of atoms with two-atom 
molecules. 

 
Figure 3. A general diagram of heat propagation in solids 

The obtained coupling energies of the binary interaction 
of particles in molecular structures and of their relative 
disposition in the process of cluster structure creation 
testify that  cluster structures are only created owing to the 
binary interaction of individual atoms with each other, and 
such a cluster structure is considered in [6]. At temperatures 
near the absolute zero, in the third coordination layer, 
complicated structural formations can occur, leading to the 
increase in energy of coupling between crystal particles 
which should inevitably change the physical and 
mechanical properties of the solid at low temperatures.  

Clusters are not only formed by the binary interaction 
between individual atoms, but also through the creation of 
structures around three-atom molecules. As a result, there 
are implemented complex allotropic changes in the solid, 
according to the growth or reduction of the crystal 
temperature [3]. All this should be considered when 
defining the volumetric density of heat energy in the  solid.  

Let us consider heat propagation in the solid. A general 
diagram of heat supply and suction applied to the solid is 
given in Fig. 3. On the solid surface, there are oxide layers 
or adsorbed atoms/molecules. These surface layers define 
the interaction withthe heat flux falling on the solid 1Q  and 

with that, going out 2Q . The falling heat flux heats up the 
surface layer to the temperature Т1, and the outgoing heat 
flux maintains the temperature Т2.  In these circumstances, 

1 2T T> . Inside the solid, the heat flux ,1ТP  occurs, and the 

flux 2,ТР  moves in the opposite direction. Both fluxes are 
defined by the Umov-Poynting vector: 

1 2
,1 1 ,2 23 ; 3Т B Т B

E EP k T n P k T n
ρ ρ

= = . 

In a time of dt, the solid will heat up and its temperature 
will increase by a quantity dT. On the basis of the heat-
balance equation, we obtain: 

 ,1 ,2( )Т Т VP Р Sdt c Sl dTρ− = .  

Hence it follows that the solid will be heated up from Т2 
to Т1. The time, during which the process continues, is:  

 
( )

1

2

3/2

1 1 1 13 1 /

T
V

BT

c l dTt
k T E T E T E

ρ
=

−∫ . (22) 

If we account for the arising heat fluxes, absorbed by 
solid, and the value of heat rejection, then integral (22) 
becomes more complicated, as the temperature on the 
borders varies, and we have a non-stationary heat transfer 
problem. In each particular case, it is quite a solvable 
problem. Specifically, such a problem has been solved in [5]. 
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Conclusion 
The heat transfer problem has not been considered from 

the viewpoint of solving the differential equation of the 
second order offered by Fourier, but from a more general 
viewpoint to apply the Umov-Poynting vector. In this 
approach, heat propagation in different media is considered 
from a unified position. Boundary conditions follow from 
the statement of the problem itself, and they should not be 
prescribed. In order to obtain the heat propagation flux, one 
should establish the medium and the heat flux values on the 
borders. 
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Primena Umov-pointnog vektora pri rešavanju problema prenosa 
toplote u tehnici 

Razmatra se problematika prostiranja toplotnog fluksa uzimajući u obzir atomsko-molekularnu i klaster (oblik čestica) 
strukturu različitih agregatnih stanja materije. Prostiranje toplote se ne razmatra sa aspekta termičke provodljivosti, već 
u kontekstu toplotnog prostiranja koristeći pri tome Umov-Pointni vektor. Toplotni kapacitet je definisan na osnovu 
verovatnoće ekscitacije (pobuđivanja) različitih stepena slobode za svaku od čestica formirane sredine. Pri prostiranju 
toplote uzima se uobzir promena agregatnog stanja, struktura sredine i toplotni kapacitet u funkciji od temperature. 
Objašnjen je proces razmene toplote u graničnom podruju različitih agregatnih stanja. Pokazana je nemogućnost 
primene jednačine toplotne provodljivosti pri prostiranju toplote kroz različita agregatna stanja. Primenom Umov-
Pointnog vektora rešava se problem prenosa toplote i toplotnog fluksa u graničnom području bilo koje sredine. 

Ključne reči: toplotna provodnost, prenos toplote, toplotni fluks, toplotni kapacitet, jednačina prenosa toplote, Umov-
Pointni vektor, agregatno stanje. 

Применение вектора Умова для решения теплопроводных  
задач в технике 

Рассмотрено распространение тепловых потоков с учетом атомно-молекулярной и кластерной структуры 
разных агрегатных состояний. Распространение тепла рассмотрено не с позиций температуропроводности, а с 
позиций  распространения тепловой энергии, используя вектор Умова-Пойнтинга. Теплоемкость определена с 
учетом вероятности возбуждения разных степеней свободы для каждых частиц, формирующих среду. При 
распространении тепла учитывалось изменение агрегатного состояния, структуры среды и ее теплоемкости от 
температуры. Выяснены, какие процессы теплообмена возникают на границе раздела разных агрегатных 
состояний. Показана несостоятельность применения уравнения теплопроводности для получения 
распространения тепла в разных средах. Применение вектора Умова позволяет решать теплопроводные задачи 
в любых средах, задавая среду и величины потоков тепла на границах раздела. 

Ключевые слова: теплопроводность, теплопередача, тепловой поток, теплоемкость, уравнение теплопроводности, 
вектор Умова-Пойнтинга , агрегатные состояния. 
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Application du vecteur Um Point pour la résolution du problème de 
transfert thermique dans la technique 

Dans ce papier on étudie le problème de la diffusion de flux thermique en  considérant la structure atomique moléculaire 
et le cluster (formes des particules) de différents états de matière. La diffusion de la chaleur n’est pas examinée du point 
de vue la conductance thermique mais dans le contexte de la diffusion en utilisant le vecteur Um Point. La capacité 
thermique se définit en partant de la probabilité d’excitation de divers degrés de liberté pour chaque particule du milieu 
formé. Pendant la diffusion de la chaleur on tient compte du changement de l’état,de la structure du milieu et de la 
capacité thermique en fonction de la température . On a expliqué le processus de l’échange de chaleur dans la région 
limite de différents états de matière. On a démontré aussi l’impossibilité d’emploi de l’équation de la conductance  
thermique au cours de la diffusion de la chaleur à travers les divers états de matière. A l’aide du vecteur Um Point on 
résout le problème du transfert de la chaleur et du flux thermique dans la région limite de chaque milieu.  

Mots clés: conductance thermique, transfert de chaleur, flux thermique, capacité thermique, équation du transfert de 
chaleur, vecteur Um Point, état de matière. 

 


