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Effects of Thermal Gradients on Fracture Mechanics Parameters 
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Katarina Maksimović2) 

Dragi Stamenković3) 

A description of a model developed to examine thermal effects on fracture is presented. A special attention in this 
investigation is focused on the behavior of a thin plate with a circular hole with a radial crack, subjected to thermal loads. 
The finite element method is used for the determination of the temperature and stress distributions at the thin plate with 
a circular hole. For this structural element with a circular hole with a radial crack, the stress intensity factor (SIF) is 
considered as well. The finite element method is also used to determine stress intensity factors of this cracked structural 
element. For stress intensity factors there are two approaches used: the modified J* integral approach and the 
displacement method based on singular finite elements. Good agreement between these two approaches has been 
obtained. 
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Introduction 
 large number of structural components in aerospace and 
electronic engineering are subjected to a wide variety of 

loads of mechanical and thermal origin [1,2]. The 
phenomenon of fatigue may be induced by a cyclic thermal 
gradient from the surface to the core of structures. The 
prediction of the fatigue durability of cracked components 
involves an analysis of fatigue crack growth and requires 
accurate stress intensity factor (SIF) solutions corresponding 
to the transient temperature distribution [3,4]. 

Thermal stresses play an important role in various fields 
of industries [5,6]. Mechanical load is not the only load that 
is considered in the design of structures and components. It 
is essential to determine the magnitude and influence of 
thermal stresses to make a realistic design of such 
structures. External influences such as temperature or 
intense exposure to radiation can lead to complex behavior 
of structures. In practical applications, finite element 
method (FEM) is used to study the stress and strain fields as 
well as stress intensity factor induced by fatigue thermal 
shock [12,13]. 

The investigation of stresses in structural components is 
very important for modern engineering. During the past few 
decades, a widespread attention has been given to thermal 
stress problems in structures. The presence of thermal 
stresses and the existence of cracks and defects in many 
structures and components can lead to disastrous 
consequences. Predicting the behavior of crack growth is 
one of the main problems in various industries. Aviation 
industry [7-10], gas turbines, pressure vessels and pipelines 
are examples where cracks growth can lead to disastrous 
consequences and the loss of human lives. 

Fracture mechanics just studies the laws by which cracks 
and other defects in structures grow under the influence of a 

given load. This requires a comparison of the analytical 
expressions for crack growth and failure with experimental 
results. Analytical expressions describing the crack growth 
rate consist of determining fracture mechanics parameters 
such as the stress intensity factor under thermomechanical 
loads. 

Fracture mechanics parameters 
During the past three decades, extensive research on 

fracture mechanics has greatly enhanced the understanding 
of structural failures. Today, many high-performance 
structures and high-accuracy instruments have to consider 
thermal effects as a critical factor. This complex process 
could be realized under constant, variable and mixed 
conditions. A characteristic example for this is an aircraft 
engine running during take-off, landing and cruising [10]. 
During cruising, jet engines are exposed essentially to 
constant temperature and constant load. However, during 
take-off, a need for more power (thrust) will rise 
temperature and load levels, and it means that the 
corresponding damage due to fatigue would be greater. It is 
well known that an isotropic material plate under constant 
temperature and free to deform will be free of stresses as 
well. Meanwhile, if uniform (stress) flows in the body are 
disturbed by some opening, or shapes, or existence of some 
other material, thermal stress will occur. Some of the most 
damaging events arise during transition regimes when 
temperature, as stress, and/or deformations are changed 
independently. The thermomechanical fatigue problem is 
complex, because it is connected with changes of many 
physical-chemical parameters, which makes predicting safe 
life of structural elements more difficult. In this paper, as an 
example of many structural elements, a plate with a hole 
and an initial crack under thermal load will be considered. 

A 
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It will be treated as a two-dimensional stress/strain 
problem. The concepts of linear elastic fracture mechanics 
which lead to the plane strain toughness property, KIC, have 
already been used in engineering applications. The use of 
the J-integral and its critical value JC as a fracture criterion 
has also been developed into elastic-plastic and fully plastic 
regimes [8,9,14]. The objective of the analytical work is to 
provide the relationship between the stress intensity factor 
and thermal load conditions. 

General consideration of the thermal problem 
Thermal effects on structures can be grouped into three 

principal categories: 
1. Changes in mechanical properties of material; e.g., 

elastic modulus, fracture toughness, and yield strength 
2. Creep phenomenon associated with the time of hold, 
3. Stress and strain arising from temperature change. 

Neglecting working temperature changes could lead to 
wrong analysis results of the stress – deformation state. 
Because of this, two main temperature effects are most 
often taken into consideration: 
- elastic coefficient changes in a function of temperature 

changes 
- occurrence of thermal deformations.  

Material coefficients are generally a function of 
temperature 

 ( )Е Е Т= , ( )v v T=  (1) 

Equation (1) are valid for the steady state, i.e. in the case 
when the temperature field does not change as a function of 
time. Since temperature is not generally in the steady state, 
equations (1) are: 

 ( )t tE E T= , ( )t tv v T=  (2) 

The prefix (‘) means that these coefficient values are 
values in a certain moment of time t. Equation (2) are 
known functions for the known temperature in a certain 
moment of time t  

Stress – strain state 
Temperature changes will produce the increase of 

strains, and this strain increase will result in the appearance 
of stresses. Thermally produced strains (deformations) 
could be described linearly as: 

 ( )t
ii ii refT Tε α= −  (3) 

Double indices in this equation mean that the 
temperature field influences only normal components of 
thermal strains (deformations). The symbols in this 
equation are αii – the coefficient of thermal 
extension/contraction, or strain, the tensor Tref – the referent 
temperature value corresponding to the condition when 
thermal strains are zero, and T – the chosen or working 
temperature. In the case when isotropic material is 
considered, αii must be a diagonal tensor of the second 
order, so equation (3) becomes: 

 ( )t
ii refT Tε α= −  (4) 

In addition, the assumption that the temperature field, or 
temperature distribution, does not depend on body strains is 
introduced. Therefore, the deformation field occurs because 

of mechanical and thermal activities and the total 
deformation is the sum of mechanical εii

M and thermal εii
T 

deformations: 

 M T
ij ij ijε ε ε= +  (5) 

In the expanded form for isotropic materials: 

 ( )1
ij ij kk ij ref ij

v v T TE Eε σ σ δ α δ+= − + −  (6) 

Free body stress, since temperature change is zero, i.e: 

0Tσ = .  

The inversion of expression (6) will give: 

 ( )2 3 2ij kk ij ij ijTσ λε δ με λ μ α δ= + − + Δ  (7) 

For i = j it follows 0T
ijσ =  and 0T

ijε = . These equations 
are well known as Duhamel – Neumann’s law for thermo 
elastic behavior. The plane strain state exists in long 
prismatic or cylindrical bodies, when temperature does not 
change along the lines parallel to the axes of prismatic or 
cylindrical bodies, but it could be variable in the cross 
section. In other words, temperature is independent of the 
coordinate z. The relations between stresses and 
deformations in the Cartesian coordinate system for the 
state of plane strain could be obtained from 
( )0z xz yzy yε = = =  in accordance with eq.(7): 
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or: 
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−
 (9) 
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v
Eγ τ
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=  

The plane stress state exists in a slender, thin, plate in the 
case when there are not temperature changes across the 
thickness. The relations between stresses and strains for the 
plane stress state ( )0zz xz yzσ τ τ= = =  are given: 
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or: 

 ( ) ( )11xx xx yyv T vEε α σ σ− + Δ = −   
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If strains are expressed as a function of displacements in 
equation (10), then: 

 ( )2 1
1xx

E u v v Tx yv
σ α⎡ ⎤∂ ∂υ= + − +⎢ ⎥∂ ∂− ⎣ ⎦

  

 
( )

( )
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1

2 1
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E uv v Tx yv
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σ α

τ

⎡ ⎤∂ ∂υ= + − +⎢ ⎥∂ ∂− ⎣ ⎦
⎛ ⎞∂υ ∂= +⎜ ⎟∂ ∂+ ⎝ ⎠

 (12) 

Equilibrium equations  
The paper considers a two-dimensional body occupying 

the volume Ω under boundary conditions on the surface G 
in the field of referent temperature and in the absence of 
body forces. The equilibrium equations for the infinitesimal 
thermo mechanical deformations of the elastic body in the 
Cartesian coordinate system are: 

 0yyxx
x y

σσ ∂∂ + =
∂ ∂

  

 0xy yy

x y
σ σ∂ ∂

+ =
∂ ∂

 (13) 

The equation of the thermal equilibrium is: 

 yx qq TQ Cx y tρ
∂∂ ∂− − + =

∂ ∂ ∂
 (14) 

The symbols in this equation are iq - the thermal flux 
components in the i- axes directions, Q - the inner thermal 
origin, c - the specific thermal capacity, ρ - the specific 
density, T - the temperature. 

Boundary conditions 
The mechanical boundary conditions (for forces and 

displacements) are given by the expressions: 

 u u= , υ = υ  on uG  (15) 

     xx x xy y xn n fσ σ+ =  and xy x yy y yn n fσ σ+ =  on fG  (16) 

where u  and υ  are the specified displacement components 
on Gu in the x and y directions, respectively; fx and fy are the 
prescribed force components on Gf in the x and y directions, 
respectively; and the vector x yn n= +n i J  is a unit outward 
vector which is normal to the boundary Gf. The initial 
condition and the boundary conditions for the thermal 
equilibrium in the solid are specified as: 

( ) ( )0, ,0 ,T x y T x y=  T=T  on Gt  

 x x y yq n q n q− − =  on Gq (17) 

 ( ) 0x x y yq n q n h T T∞− − + − =  on Gc  

where h is the convection coefficient, T∞ is the prescribed 
temperature of the surrounding medium near the boundary 
Gc, ( )0 ,T x y  is the specified temperature everywhere in the 
solid body when time equals zero, q  is the prescribed heat 
flux on the boundary Gq and T is the prescribed temperature 
on the boundary Gt 

Consideration of the thermal state  
The relation between the thermal flux vector and the 

temperature field is given by the Fourier law heat 
conduction equation:  

 x
Tq k x
∂= −
∂

 and y
Tq k y
∂= −
∂

 (18) 

so, when relation (18) is substituted in equation (14), and 
after the rearrangement, equation (14) becomes  

 ( )div 0Tc k Ttρ ∂ − ∇ =
∂

 (19) 

If the problem is considered as linear, equation (14) 
could be solved using Galerkin’s residual method. In this 
case, it is necessary to introduce the virtual field TV, so 
equation (14) becomes: 

 ( )( )divV
TT c k T Q dtρ

Ω

∂ − ∇ − Ω
∂∫  (20) 

Applying the divergence theorem using the boundary G 
if G = (Gt U Gq U Gc) equation (20) becomes: 

 
( )V V

V V

G

TT c d T div k T dt

T Qd T k T ndG

ρ
Ω Ω

Ω

∂ Ω + ∇ Ω =
∂

= Ω+ ∇ ⋅

∫ ∫
∫ ∫

 (21) 

In order to solve equation (21) numerically, it is 
necessary to introduce a discretization of the domain Ω and 
choose appropriate test functions. 

Determination of the stress intensity factor under 
thermal loads 

For the fairly complicated geometry and load conditions 
in the specimens of this work, the finite element technique 
is used to calculate both the temperature distribution and 
the stress intensity factor. Once a finite element solution 
has been obtained, the values of the stress intensity factor 
can be extracted from it. Three approaches to the 
calculation of the stress intensity factor can be used: the 
direct method, the indirect method and the J-integral 
method. The direct method is based on the use of 
specialized crack-tip elements that contain KI and KII (mode 
I and II stress intensity factors) directly as additional 
unknowns. This has been discussed in references [5,11]. In 
this work, the J-integral method is used. 

Wilson and Ainsworth [3] proposed the two-dimensional 
thermal J*-integral for linear thermo elastic materials which 
can be expressed in a simple form: 

  2
1 1

* * 1 2
i

ij j ii
u EJ W dX n dS dAX X

α θσ ε
ν

Γ

∂⎛ ⎞ ∂= − +⎜ ⎟∂ − ∂⎝ ⎠∫ ∫  (22) 

 ( )*
2 1 2 ii

EW W αθ ε
ν

= −
−

 (23) 

 2 1 2ij ii ij ij ij
Eασ λε δ με θδ
ν

= + −
−

 (24) 

 1
2 ij ijW σ ε=  (25) 
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where μ and λ are the Lame constants, θ is the temperature 
and α is the coefficient of thermal expansion. The physical 
interpretation of J is the energy release rate, and hence in 
the case of a linear thermo-elastic material  

 ( )2 2* 1 IJ K Eν= −  (26) 

in which KI is the stress intensity factor (SIF). The FEM 
applications together with the J*-integral approach in 
thermo-elastic fracture mechanics, including the behavior 
of a cracked structure subjected to transient thermal 
singularities, are illustrated in references [5-10]. The values 
of KI for various examples were calculated in accordance 
with equation (26). 

Numerical validation 
To illustrate the thermal stress analysis, a plate with a 

hole is considered here, Fig.1. This case is selected to 
examine the multi-connected effects of a hole when a 
thermal gradient crosses the width of the plate. Since loads 
and geometries are symmetrical with respect to the x-axis, 
only the upper half of the model is analyzed. The Finite 
Element Method (FEM) is used to determine temperature 
distribution. The finite element models for two different 
hole sizes, 0.25W and 0.35W, are considered. The results of 
the temperature distribution along the x-axis and the 
boundary of the holes are shown in Figures 2 and 3. 

 
Figure 1. Sheet with the traction-free boundaries 

 
Figure 2. Temperature distribution along the x-axis and the boundary of 
the hole 

 
Figure 3. Temperature distribution along the x-axis and the boundary of 
the hole 

(Case 1: R=a=0.125w and Case 2: R=0.175w; a=0.075w) 

 
Figure 4. SIFs versus temperature gradients for  the traction-free boundary 
conditions 

Fig.4 shows the results of the stress intensity factors 
versus the temperature gradients for two different sizes of the 
hole. The stress intensity factors are derived from the values 
of the J-integral approach (Eq.22) and the crack opening 
displacement method. The values of the stress intensity 
factors evaluated by two different approaches agree well. 
Therefore, for the condition a+R=0.25w=cons, the SIF values 
are lower for the higher values of the hole size. 

Conclusions  
This paper considers the problem of thermal loads founded 

on theoretical equations, primarily for the plane state. The 
paper discusses the steps needed to study the problem of 
thermo mechanical loading to the numerical one. The Finite 
Element Method (FEM) is used to determine thermally 
induced stresses in cracked structural components. Two 
computation approaches are used to determine stress intensity 
factors of damaged structural elements under thermal loads: 
the J-integral approach and the crack opening displacement 
method. The values of the stress intensity factors evaluated by 
two different approaches and the FEM agree well. 
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Uticaj temperature na parametre mehanike loma 
Razvijen je kompletan model za određivanje uticaja termičkih opterećenja na vrednosti faktora intenziteta napona. 
Posebna pažnja bila je usmerena na ponašanje polja oplate sa kružnim otvorom i inicijalnom prskotinom pod dejstvom 
termičkih opterećenja. Za određivanje raspodele temperature i naponskog stanja u polju oplate sa otvorom korišćen je 
metod konačnih elemenata. Za ovaj strukturalni element sa kružnim otvorom i radijalnom prskotinom razmatran je i 
faktor intenziteta napona (FIN). Za određivanje faktora inteziteta napona korišćena su dva pristupa i to: metod konačnih 
elemenata u sprezi sa modifikovanim J* integral pristupom i metod konačnih elemenata sa singularnim konačnim 
elementima oko vrha prskotine. 

Ključne reči: mehanika loma, termičko opterećenje, uticaj temperature, naponsko stanje, struktura letelice, metoda 
konačnih elemenata. 

Влияние температуры на параметры механики разрушения  
Здесь развита полнaя модель для определения влияния тепловой нагрузки на значение коэффициентов 
интенсивности напряжений. Особое внимание было сосредоточено на поведении полей опалубки с круглым 
отверстием и с начальной трещиной под действием термической нагрузки. Чтобы определить распределение 
нагрузки и напряжённое состояние в области опалубки с отверстием, использован метод конечных элементов. 
Для этого структурного элемента с круглым отверстием и радиальными трещинами Комитет рассмотрел и 
коэффициент интенсивности напряжений (КИН). Для определения коэффициентов интенсивности напряжений 
использован метод конечных элементов в сочетании с модифицированным J* интегральным подходом и метод 
конечных элементов с применением особых сингулярных конечных элементов. 

Ключевые слова: механика разрушения, термические нагрузки, влияние температуры, напряжённое состояние, 
структура самолёта, метод конечных элементов. 

Les effets de la température sur les paramètres de la mécanique  
de la fracture 

Le modèle complet, développé pour la détermination des effets des charges thermiques sur les valeurs du facteur de 
l’intensité de tension, est présenté dans cet article. L’attention particulière a été prêtée au comportement du champ de 
revêtement à l’ouverture circulaire et à la rupture initiale sous l’effet des charges thermiques. Pour déterminer la 
distribution de la charge et l’état de tension dans le champ de revêtement à l’ouverture on a utilisé la méthode des 
éléments finis. On a considéré aussi le facteur de l’intensité de tension (FIT) pour cet élément structural à l’ouverture 
circulaire et à la rupture radiale. La méthode des éléments finis a été utilisée pour déterminer le facteur d’intensité couplé 
à l’intégrale J* modifiée. Cette méthode a été appliquée en utilisant les éléments singuliers finis. 

Mots clés: mécanique de fracture, charge thermique, effet de température, état de tension, structure d’aéronef, méthode 
des éléments finis. 




