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Effects of Thermal Gradients on Fracture Mechanics Parameters
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A description of a model developed to examine thermal effects on fracture is presented. A special attention in this
investigation is focused on the behavior of a thin plate with a circular hole with a radial crack, subjected to thermal loads.
The finite element method is used for the determination of the temperature and stress distributions at the thin plate with
a circular hole. For this structural element with a circular hole with a radial crack, the stress intensity factor (SIF) is
considered as well. The finite element method is also used to determine stress intensity factors of this cracked structural
element. For stress intensity factors there are two approaches used: the modified J* integral approach and the
displacement method based on singular finite elements. Good agreement between these two approaches has been

obtained.
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Introduction

large number of structural components in aerospace and

electronic engineering are subjected to a wide variety of
loads of mechanical and thermal origin [1,2]. The
phenomenon of fatigue may be induced by a cyclic thermal
gradient from the surface to the core of structures. The
prediction of the fatigue durability of cracked components
involves an analysis of fatigue crack growth and requires
accurate stress intensity factor (SIF) solutions corresponding
to the transient temperature distribution [3,4].

Thermal stresses play an important role in various fields
of industries [5,6]. Mechanical load is not the only load that
is considered in the design of structures and components. It
is essential to determine the magnitude and influence of
thermal stresses to make a realistic design of such
structures. External influences such as temperature or
intense exposure to radiation can lead to complex behavior
of structures. In practical applications, finite element
method (FEM) is used to study the stress and strain fields as
well as stress intensity factor induced by fatigue thermal
shock [12,13].

The investigation of stresses in structural components is
very important for modern engineering. During the past few
decades, a widespread attention has been given to thermal
stress problems in structures. The presence of thermal
stresses and the existence of cracks and defects in many
structures and components can lead to disastrous
consequences. Predicting the behavior of crack growth is
one of the main problems in various industries. Aviation
industry [7-10], gas turbines, pressure vessels and pipelines
are examples where cracks growth can lead to disastrous
consequences and the loss of human lives.

Fracture mechanics just studies the laws by which cracks
and other defects in structures grow under the influence of a

given load. This requires a comparison of the analytical
expressions for crack growth and failure with experimental
results. Analytical expressions describing the crack growth
rate consist of determining fracture mechanics parameters
such as the stress intensity factor under thermomechanical
loads.

Fracture mechanics parameters

During the past three decades, extensive research on
fracture mechanics has greatly enhanced the understanding
of structural failures. Today, many high-performance
structures and high-accuracy instruments have to consider
thermal effects as a critical factor. This complex process
could be realized under constant, variable and mixed
conditions. A characteristic example for this is an aircraft
engine running during take-off, landing and cruising [10].
During cruising, jet engines are exposed essentially to
constant temperature and constant load. However, during
take-off, a need for more power (thrust) will rise
temperature and load levels, and it means that the
corresponding damage due to fatigue would be greater. It is
well known that an isotropic material plate under constant
temperature and free to deform will be free of stresses as
well. Meanwhile, if uniform (stress) flows in the body are
disturbed by some opening, or shapes, or existence of some
other material, thermal stress will occur. Some of the most
damaging events arise during transition regimes when
temperature, as stress, and/or deformations are changed
independently. The thermomechanical fatigue problem is
complex, because it is connected with changes of many
physical-chemical parameters, which makes predicting safe
life of structural elements more difficult. In this paper, as an
example of many structural elements, a plate with a hole
and an initial crack under thermal load will be considered.
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It will be treated as a two-dimensional stress/strain
problem. The concepts of linear elastic fracture mechanics
which lead to the plane strain toughness property, K;c, have
already been used in engineering applications. The use of
the J-integral and its critical value J¢ as a fracture criterion
has also been developed into elastic-plastic and fully plastic
regimes [8,9,14]. The objective of the analytical work is to
provide the relationship between the stress intensity factor
and thermal load conditions.

General consideration of the thermal problem

Thermal effects on structures can be grouped into three
principal categories:

1. Changes in mechanical properties of material; e.g.,
elastic modulus, fracture toughness, and yield strength

2. Creep phenomenon associated with the time of hold,

3. Stress and strain arising from temperature change.
Neglecting working temperature changes could lead to
wrong analysis results of the stress — deformation state.
Because of this, two main temperature effects are most
often taken into consideration:
- elastic coefficient changes in a function of temperature
changes
- occurrence of thermal deformations.
Material coefficients are generally a function of
temperature

E=E(T), v=v(T) @)

Equation (1) are valid for the steady state, i.e. in the case
when the temperature field does not change as a function of
time. Since temperature is not generally in the steady state,
equations (1) are:

‘E=E('T), v=v('T) )

The prefix (‘) means that these coefficient values are
values in a certain moment of time ¢. Equation (2) are
known functions for the known temperature in a certain
moment of time ¢

Stress — strain state

Temperature changes will produce the increase of
strains, and this strain increase will result in the appearance
of stresses. Thermally produced strains (deformations)
could be described linearly as:

gili =aq; (T Tref) 3)

Double indices in this equation mean that the
temperature field influences only normal components of
thermal strains (deformations). The symbols in this
equation are a; — the coefficient of thermal
extension/contraction, or strain, the tensor 7., — the referent
temperature value corresponding to the condition when
thermal strains are zero, and T — the chosen or working
temperature. In the case when isotropic material is
considered, a; must be a diagonal tensor of the second
order, so equation (3) becomes:

gi = (T ~Ty) “

In addition, the assumption that the temperature field, or
temperature distribution, does not depend on body strains is
introduced. Therefore, the deformation field occurs because

of mechanical and thermal activities and the total

deformation is the sum of mechanical ¢, and thermal &;’
deformations:
& =& +é&) (5)
In the expanded form for isotropic materials:
g = HTVO' Y oud;+a(T =Ty )5, (6)
Free body stress, since temperature change is zero, i.e:
o’ =0.
The inversion of expression (6) will give:
= A&y Oy +2pe; —(3A4+2u) aAT S, @)

Fori = it follows o =0 and &, =0. These equations

are well known as Duhamel — Neumann’s law for thermo
elastic behavior. The plane strain state exists in long
prismatic or cylindrical bodies, when temperature does not
change along the lines parallel to the axes of prismatic or
cylindrical bodies, but it could be variable in the cross
section. In other words, temperature is independent of the
coordinate z. The relations between stresses and
deformations in the Cartesian coordinate system for the
state of plane strain could be obtained from

(&. =y =¥,. =0) in accordance with eq.(7):

O | I-v v 0
Oy (=7 a| V l—v 0
. (1+v)(1-2v) 0 (1-2v)/2
- (3
gxx
Jg _EaAT
» 1-2v
yxy
or:
1+v)eAT =12V v 9
)oc_( +V)O.’ —T O'xx—mo'yy ( )
1—
(1+v)aAT Ev (O-”_l—vo-“)’
2(1+v
)/xy:%rxy

The plane stress state exists in a slender, thin, plate in the
case when there are not temperature changes across the
thickness. The relations between stresses and strains for the

plane stress state (o, =7,, =7,, =0) are given:

o 1y 0 (fen 1
onp=zv 10 |te, LTI (10)
o] V0 0 (1-v)2]|r, 0

or:

~(1+7)aAT = (o —va,)

2(1+v) an
E



OGNJANOVIC,0., MAKSIMOVIC,K., STAMENKOVIC,D.: EFFECTS OF THERMAL GRADIENTS ON FRACTURE MECHANICS PARAMETERS 19

If strains are expressed as a function of displacements in
equation (10), then:

__E |ou, oOv
O-xx_ |:ax+ 6)} (1+V)(ZT:|

O,y = E {6”+80—(1+v)aT},

» ox 0 (12)
R
Yoo 2(I+v)\ox oy

Equilibrium equations

The paper considers a two-dimensional body occupying
the volume Q under boundary conditions on the surface G
in the field of referent temperature and in the absence of
body forces. The equilibrium equations for the infinitesimal
thermo mechanical deformations of the elastic body in the
Cartesian coordinate system are:

ao—xx + ao_}’)’ =0
ox oy
00, 00,
e - 0 (13)

The equation of the thermal equilibrium is:

_04c %y or
ox Oy TO=pC5 ot (14)
The symbols in this equation are ¢; - the thermal flux

components in the i- axes directions, Q - the inner thermal
origin, ¢ - the specific thermal capacity, p - the specific
density, T - the temperature.

Boundary conditions

The mechanical boundary conditions (for forces and
displacements) are given by the expressions:

u=u,v=v on G, (15)

Ol +OyN, = f. and Oyl +0,1, =]7y on G, (16)

where u and U are the specified displacement components
on G, in the x and y directions, respectively; f; and f, are the
prescribed force components on Gyin the x and y directions,
respectively; and the vector n=n,i+n,J is a unit outward

vector which is normal to the boundary G, The initial
condition and the boundary conditions for the thermal
equilibrium in the solid are specified as:

T(x,,0) =7_z)(x,y) =T on G,
—q.h, —qyn, =q on G, (17)

—qxhy — qyNy, +h(T-T,)=0 onG.

where % is the convection coefficient, 7., is the prescribed
temperature of the surrounding medium near the boundary

G,, Ty(x,y) is the specified temperature everywhere in the
solid body when time equals zero, g is the prescribed heat

flux on the boundary G, and T is the prescribed temperature
on the boundary G,

Consideration of the thermal state

The relation between the thermal flux vector and the
temperature field is given by the Fourier law heat
conduction equation:

—_por __por
k o and g, =—k o (18)

so, when relation (18) is substituted in equation (14), and
after the rearrangement, equation (14) becomes

pelL—div(kvT)=0 (19)

If the problem is considered as linear, equation (14)
could be solved using Galerkin’s residual method. In this
case, it is necessary to introduce the virtual field T, so
equation (14) becomes:

ITV ( pc%—div(kvr)—g)dg (20)

Q

Applying the divergence theorem using the boundary G
if G=(GtU G, U G,) equation (20) becomes:

ITVpc T dQ+JTVdiv(kVT)dQ -

_ ITVQdQ+JTVkVT~ndG
Q G

In order to solve equation (21) numerically, it is
necessary to introduce a discretization of the domain € and
choose appropriate test functions.

Determination of the stress intensity factor under
thermal loads

For the fairly complicated geometry and load conditions
in the specimens of this work, the finite element technique
is used to calculate both the temperature distribution and
the stress intensity factor. Once a finite element solution
has been obtained, the values of the stress intensity factor
can be extracted from it. Three approaches to the
calculation of the stress intensity factor can be used: the
direct method, the indirect method and the J-integral
method. The direct method is based on the use of
specialized crack-tip elements that contain K; and K;; (mode
I and II stress intensity factors) directly as additional
unknowns. This has been discussed in references [5,11]. In
this work, the J-integral method is used.

Wilson and Ainsworth [3] proposed the two-dimensional
thermal J*-integral for linear thermo elastic materials which
can be expressed in a simple form:

Ou; Ea
* *
J I(W X, oy gt de Lo "aX 0 44 (22)
r
Eab
wr=w —_Lat . 23
G = Ay + 2ue; — L2065, (24)
y = A0y P2 0
w=1oe, (25)
PR AL
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where p and A are the Lame constants, 8 is the temperature
and a is the coefficient of thermal expansion. The physical
interpretation of J is the energy release rate, and hence in
the case of a linear thermo-elastic material

J*=(1-v?)K} [E (26)

in which Kj is the stress intensity factor (SIF). The FEM
applications together with the J*-integral approach in
thermo-elastic fracture mechanics, including the behavior
of a cracked structure subjected to transient thermal
singularities, are illustrated in references [5-10]. The values
of K; for various examples were calculated in accordance
with equation (26).

Numerical validation

To illustrate the thermal stress analysis, a plate with a
hole is considered here, Fig.1. This case is selected to
examine the multi-connected effects of a hole when a
thermal gradient crosses the width of the plate. Since loads
and geometries are symmetrical with respect to the x-axis,
only the upper half of the model is analyzed. The Finite
Element Method (FEM) is used to determine temperature
distribution. The finite element models for two different
hole sizes, 0.25W and 0.35W, are considered. The results of
the temperature distribution along the x-axis and the
boundary of the holes are shown in Figures 2 and 3.
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Figure 2. Temperature distribution along the x-axis and the boundary of
the hole
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Figure 3. Temperature distribution along the x-axis and the boundary of
the hole
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Figure 4. SIFs versus temperature gradients for the traction-free boundary
conditions

Fig.4 shows the results of the stress intensity factors
versus the temperature gradients for two different sizes of the
hole. The stress intensity factors are derived from the values
of the J-integral approach (Eq.22) and the crack opening
displacement method. The values of the stress intensity
factors evaluated by two different approaches agree well.
Therefore, for the condition a+R=0.25w=cons, the SIF values
are lower for the higher values of the hole size.

Conclusions

This paper considers the problem of thermal loads founded
on theoretical equations, primarily for the plane state. The
paper discusses the steps needed to study the problem of
thermo mechanical loading to the numerical one. The Finite
Element Method (FEM) is used to determine thermally
induced stresses in cracked structural components. Two
computation approaches are used to determine stress intensity
factors of damaged structural elements under thermal loads:
the J-integral approach and the crack opening displacement
method. The values of the stress intensity factors evaluated by
two different approaches and the FEM agree well.
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Uticaj temperature na parametre mehanike loma

Razvijen je kompletan model za odredivanje uticaja termickih optereenja na vrednosti faktora intenziteta napona.
Posebna paznja bila je usmerena na ponasanje polja oplate sa kruZnim otvorom i inicijalnom prskotinom pod dejstvom
termickih opterecenja. Za odredivanje raspodele temperature i naponskog stanja u polju oplate sa otvorom koriséen je
metod konacnih elemenata. Za ovaj strukturalni element sa kruZnim otvorom i radijalnom prskotinom razmatran je i
faktor intenziteta napona (FIN). Za odredivanje faktora inteziteta napona KoriS¢ena su dva pristupa i to: metod kona¢nih
elemenata u sprezi sa modifikovanim J* integral pristupom i metod konatnih elemenata sa singularnim kona¢nim

elementima oko vrha prskotine.

Kljucne reci: mehanika loma, termicko opterecenje, uticaj temperature, naponsko stanje, struktura letelice, metoda

konacnih elemenata.

BiusiHue TeMnepaTypbl Ha mapaMeTpbl MEXaHUKH Pa3pyllleHUus

3nech pasBUTa IOJHAsE MoOAedb JJIsl ONpeJejeHHs] BJIMSIHUSI TeIUIOBOHl HArpy3KH Ha 3HayeHHe Kod(duuueHToB
HHTEHCUBHOCTH HanpsikeHui. Ocofoe BHUMaHHe ObLIO COCPEJOTOYEHO HA MOBEJACHHM MOJIeH OMalIy0KM ¢ KpyriibIM
OTBEPCTHEM M € HAYAJILHOI TPEIMHON MO/ JeiicTBHEM TepMHYecKoil Harpy3ku. UToGbl onpenesuTh pacnpeaejieHue
HArpy3KH U HaNpsDKEHHOE COCTOsIHME B 00J1aCTH ONAJy0KH € 0TBEPCTHEM, HCIO0/IbL30BAaH METOJ KOHEYHBIX 3JIeMEHTOB.
Jlist 3TOro CTPYKTYPHOrO 3j1eMeHTa ¢ KPYIJbIM OTBePCTHEM H pagHaibHbIMu Tpemmunamu Kommrter pacemorpen n
K03ppuuneHT nuTeHcuBHOcTH Hanpsixenuii (KMH). [ns onpeaeienusi K03p(UUNEHTOB HHTEHCHBHOCTH HANPSKeHUit
HCIO/Ib30BAH METO/J KOHEYHBIX 3JICMEHTOB B COUYETAHHH ¢ MOAU(PULIMPOBAHHBLIM J* HHTErPAJbHBIM MOIXO0OM H METO]
KOHEYHBIX 3JIeMEHTOB ¢ IPHMeHeHHeM 0CO0bIX CHHIYJISIPHBIX KOHEYHbIX 371eMEeHTOB.

Kniouesvie cnosa: MexaHuKa paspyllieHHsl, TepMHYECKHe HATPY3KH, BIHsSIHUEe TeMIIepPaTyphl, HANPSKEHHOE COCTOsIHHE,

CTPYKTYpa caMoJ1éTa, MeTO/l KOHEUHBIX JIeMEHTOB.

Les effets de la température sur les parametres de la mécanique
de la fracture

Le modéle complet, développé pour la détermination des effets des charges thermiques sur les valeurs du facteur de
I’intensité de tension, est présenté dans cet article. L’attention particuliére a été prétée au comportement du champ de
revétement a ’ouverture circulaire et a la rupture initiale sous I’effet des charges thermiques. Pour déterminer la
distribution de la charge et ’état de tension dans le champ de revétement a I’ouverture on a utilisé la méthode des
€léments finis. On a considéré aussi le facteur de ’intensité de tension (FIT) pour cet élément structural a ’ouverture
circulaire et a la rupture radiale. La méthode des éléments finis a été utilisée pour déterminer le facteur d’intensité couplé
a Pintégrale J* modifiée. Cette méthode a été appliquée en utilisant les éléments singuliers finis.

Mots clés: mécanique de fracture, charge thermique, effet de température, état de tension, structure d’aéronef, méthode

des éléments finis.





