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Analysis of Stresses in a Thin Rotating Disc With Inclusion
and Edge Loading

Pankaj Thakur

Seth’s transition theory is applied to the problems of elastic-plastic transitional stresses in a thin rotating disc with
inclusion and edge loading. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained
here are applicable to compressible and incompressible materials. If the additional condition of incompressibility is
imposed, then the expression for stresses corresponds to those arising from the Tresca yield condition. It has been
observed that, in the absence of load, a rotating disc with inclusion requires significantly higher values of angular speed
for incompressible materials as compared to compressible materials. With the introduction of edge loading, lower values
of angular speed are required to yield at the internal surface for incompressible/compressible materials. Radial stress
has the maximum value on the internal surface of the rotating disc made of incompressible materials compared to the

radial stress value of the disc made of compressible materials

Key words: stress, stress analysis, disc, rotating disc, load, elasticity, plasticity.

Nomenclature
a,b  —Inner and outer radii of the disc [m];
® —Angular velocity of rotation, [ s*];
u,v,w —displacement components, [m];
p —Density of material, [ kgm?];
C —Compressibility, [ - 1;
T;,e; —Stress[ kgm™s?]and Strain rate tensor;
Y —Yield stress, [ kgm?s?].
Greek letters
R=rlb;Ry=alb —Radiiratio,[-],
Op = To 1Y — |0ad,
Q%= pow?b?]Y —angular speed,
o, —Radial stress component (7, /Y),
[-]
oy —Circumferential stress component
(Too 1Y), []
A, Ay — Constants of integrations, [-]

Introduction

HE accurate determination of stresses in rotating discs

is important for efficient design and material usage in
engineering applications such as rotors of rotating
machinery, flywheels, shrink fits, turbines, compressors,
high speed gear engines, computer disc drives, etc. The
analysis of thin rotating discs made of isotropic material has
been discussed extensively by Timoshenko and Goodier [1]
for the elastic range and by Chakrabarty [2] and Heyman
[3] for the plastic range. Glven [4] discussed the problem
with rigid inclusion under the assumptions of the Tresca
yield condition, its associated flow rule and linear strain
hardening. To obtain the stress distribution, Giiven matched

the plastic stresses at the same radius » =z of the disc.
Perfect elagticity and ideal plagticity are two extreme
properties of the material and the use of an ad-hoc rule such
as the yield condition amounts to divide the two extreme
properties by a sharp line which is not physically possible.
When a material passes from one state to another,
qualitatively different state transition takes place. Since this
transition is non-linear in character and difficult to
investigate, researchers have taken certain ad-hoc
assumptions such as the yield condition, the
incompressibility condition and a certain law which may or
may not be valid for the problem. Seth’s transition theory
[5] does not require these assumptions and thus poses and
solves a more genera problem from which cases pertaining
to the above assumptions can be worked out. This theory
utilizes the concept of generalized strain measure and an
asymptotic solution at critical points or turning points of the
differential equations defining the deformed field and it has
been successfully applied to alarge number of problems [6-
14]. Seth [6] has defined the generalized principal strain
measure as.

A

where »n is the measure and e; is the principal Almansi
finite strain component. For n = -2, -1, 0, 1, 2 it gives
Cauchy, Green Hencky, Swainger and Almansi measures,
respectively.

The problem of analyzing stresses in a rotating annular
disc mounted on arigid circular shaft and edge load occurs
frequently in industrial applications. In this paper, the
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plastic stresses have been derived by using Seth’s transition
theory. The results have been discussed numerically and
depicted graphically.

Mathematical model

A thin disc of constant density with a central bore of the
inner radius @ and the outer radius b is considered. The
annular disc is mounted on arigid shaft with edge loading.
The disc rotates with the angular speed @ about the axis
perpendicular to its plane and passed through the center as
shown in Fig.1. The thickness of the disc is assumed to be
constant and is taken to be sufficiently small so that it is
effectively in a state of plane stress, i.e. the axial stress 7.,

is zero.

Sehematic dlagram of & roelating disk with
concenirie clreular ok

Figure 1. Geometry of the rotating disc

Boundary conditions:

The disc considered in the present study has constant
density and is subjected to load. The inner surface of the
disc is assumed to be fixed to a shaft. Mechanical load is
applied to the outer surface of the disc. Thus, the boundary
conditions of the problem are given by:

(i) r=a, u=0

(il) r=b.T, =T @

where u and 7, denote displacement and stress along the
radial direction.

Formulation of the Problem
The displacement components in the cylindrical polar
co- ordinate (r,0,z) are

=r(1-p4); v=0; w=dz 3)

where g is the function of »=+/x?+y? only and d is a

constant.
Thefinite strain components are given by Seth [6] as:

e =B-33) -3l-0sr)

A

eaa—%—ﬁ [1 p J @
el o]

A A A
€rg = €9z =€z = 0

where ' =df3/dr and the meaning of the superscripts “*”
isAlmansi.

By substituting eg.(4) in eq.(1),
components of strain are given by:

ey :%[]—_(”ﬂurﬂ)n]' €00 :%[1—ﬂn]:
€ :%[l_ (1_d)n:|! €9 =€p: =€; = 0 ,

the generalized

©)

The stress —strain relations for isotropic material are
given by [8]:

= A0;1, +2ue;

ij

(,/=1,23), (6)

where T; and ¢; are the stress and strain components, A

i/
and x4 are Lame's constants, I, =¢y is the first strain
invariant and ¢; isthe Kronecker delta

Eq.(6) for this problem becomes:

_ H
o A+2/u[err +e€€]+2/uerr1
21
Top = ﬁ[% +€99]+2935 , (7)
Trﬂ :Tﬁz :Tzr :Tzz =0

By substituting eq.(4) in eg.(6), the strain components in
terms of stresses are obtained as[12]:

o BB A eroar)-

_1+ (1-C
—E[Tw (2 C)Tee}

et (]
c. = %VZV—%(@W) ~1l1-a-ay]=
—E((lz_fg)[n,.—%g],

eg9=¢ey,=e, =0
where £ is Young's modulus and C is the compressibility
factor of the material. In term of Lame's constant, these are
1(34+2u) Co 2u
(A+n) A+2u’
Substituting eg. (5) in eg. (7), we get the stresses as:

givenby E =

T :27“[3— 2c-pr{1-C+(2-0)(P+1)'} |

Ty = 2—”[3-2&/}” {2-c+(1- C)(P+1)”H, 9)
To=Ty.=T,=T.=0
Equations of equilibrium are all satisfied except
d
dr
where p isthe density of the material of the disc.

Using eg.(9) in eq.(10), we get a non-linear differential
equationin g as:

(l"T,.r)—ng +,0a)21”2 =0 (10)

2.2
2_C)ngrip(p+1)ytdl _ PO

o [1-(Peay -apfi-c2-c)(pay )

where 7' =P (P is the function of g and g is the
function of ).



THAKUR,P.: ANALY SIS OF STRESSES IN A THIN ROTATING DISC WITH INCLUSION AND EDGE LOADING 11

The transition or turning points of S in equation (11)
ae P—>-1and P— +o0.

Solution Through the Principal Stress

For finding the plastic stress, the transition function is
taken through the principal stress (see Seth’s [5,6],
Hulsurkar [7], Gupta [10,11] and Thakur [12-30]) at the
transition point P — too. The transition function R is
defined as:

d(logR)__ 2-C

B (1—0)[1-<P+1)" —n(l—C)P+’w“’2r2}+(2—C)nPﬂ"

R=Ty =
:(27“)[(3—2(:)—3' {2-c+@-0)(P+1'}]

Taking the logarithmic differentiation of equation (12)
with respect to » and using equation (11), we get

(12)

2up”

dr r[3—2C—ﬂ’"{2—C+(1—C)(P+1)"”

Taking the asymptotic value of equation (13) at
P — +oo and integrating, we get
R = /) (14)

where 4, is a constant of integration which can be
determined by the boundary condition.
From equation (12) and (14), we have

21\, Ko
Tpo = (7“) a0 (15)

Substituting equation (15)
integrating, we get

[2u(2-C)) |, Foc) po*r? 4,
= B

in equation (9) and

where A4, is a constant of integration, which can be
determined by the boundary condition.

Substituting equations (15) and (16) in the second
equation of (7), we get

20-C) [ por? 4
= e

Substituting equation (17) in equation (3), we get

_ 2(1-C) | pa*r® 4
u—r—r\/l—E(z_C){—rz} (18)

2u(3-2C)

where E = (2—C)

is Young's modulus in term and is
_1-C
- 2-C
factor.

Using boundary condition (11) in equations (16) and
(18), we get

w2 (b% - a® 2 3
4 ="V {bTo—i-p ( ) 4, =2 (19

v Poisson’s ratio in terms of a compressibility

3 3
Substituting equation (19) in equations (15), (16), and

(18) respectively, we get the transitional stresses and
displacement as:

y 2(p3_ 8
T%:g(g) {brﬁpw(‘lq (20)

(13)

T, ~To =
{(;)V1(1—V)To+/’3‘"r2{(;)V(bﬁ‘—aa)(l—vyr%aﬂ 23)

Initial yielding: It is seen from eq. (23) that |7, —Ty| is

maximum at the internal surface (that is at » = a), therefore,
yielding will take at the internal surface of the disc and
equation (23) gives:

‘Trr - THH‘,:Q =

(%)v_l(l—v)To +%’2(%)V (b*-a®)(1-v)

= Y(say).

where Y is yield stress and the angular speed necessary for
initial yielding is given by

v-1
3ab?| 1- 0 (1 (2) }
Q-Zzpa)izbzz { oo (1-v) b

7 (%) (b*-a®)(1-v)

(24)

where oo =T,/ Y and o, =%«/Y/p.

Fully Plastic State: The angular speed o, >, for
which the rotating disc becomes fully plastic
(v—>1/2=05) or C—0 at the external surface and
€g.(23) becomes:

&_/Loz(bs_as)

‘T;*r _TQH‘,.:b = 2 6b

=Y"(say)

where Y* is the yield stress occurring for the fully plastic
state and the angular speed required for the disc to become
fully plastic as given by:

Qf = (25)

pfb’ | (00/2)-1)
Y .1—(a3/b3)‘
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* * Q « 2
where op =T /Y™ and o, =Tf\/Y ! p. oy = }{UOJrggf(l_Rg)}
We introduce the following non-dimensional 2VR o2
. _ _ — _ 0Op f 3 3 3

components. R=r/b, Ry=alb, o,=T,1Y, ar_ﬁJr:TR[\/E(l_Ro)_R +R0J,

oy=TwlY, U=ulb, Q%=p,0°b*lY, oco=TylY 1P (28)
i 3 3

and H=Y/E. Elastic-plastic transitional stresses, Up=R-R\[1-—2" (R*-R3),

displacement and angular speed from equations (20), (21), oo

(22) and (24) in anon-dimensional form become: o2 pa)§52 6( _7)

02 Y (1R

Oy = VRV1|:O'O + 7(1_ Rg):| ’
3 . .
) Equations (26), (27) and (28) are the same as those given
o, =GR +&[Rv (1—R§)—R3 +R§], (26) by Thakur [13], when load is not applied in the rotating disc
3R with rigid inclusion.

2
U:R—R\/ —2‘”;?9" (R*-RY)

Numericaly lllustration and Discussion

For calculating the stresses, angular speed and
displacement based on the above analysis, the following
3(1_ o (1—v)R5’1) values have been taken as C = 0.00, 0.25, 0.5, E/Y = 0.2

Q2 = 27 and o =0, 0.125 and 0.2 respectively.
RyH1-R3)(1-v) @ ° sepecivey

And

Stresses, digplacement and angular speed for fully plagtic
v=0.50r C — 0 areobtained from eg. egns. (26) and (25) as.

Table 1: Angular speed required for initial yielding and afully plastic state for different load values

Percentage increasein
Load S i " A&?gﬂ[;‘?ﬁ?g a Angular Speed required An;l?lar speed
0; Compressibility of Material €q eldin for afully plastic state 5
% c Yy o 9 o2 [\/7 —1]><100
o
5 0 0 4.848732 6.8571431 18.92071 %
14 0.125 0  |Incompressible materials 4.420161 6.4285714 20.59747 %
- 0.2 0 4.163018 6.1714286 21.75553 %
S 0 0.25 4.037701 6.8571431 30.31803 %
0.125 0.25 | Compressible materials 3.609129 6.4285714 33.46151 %
0.2 0.25 3.351986 6.1714286 35.6881 %
0 0.5 3.239797 6.8571431 45.48315 %
0.125 0.5 | Compressible materials 2.811226 6.4285714 51.22004 %
0.2 0.5 2.554083 6.1714286 55.4445 %

It can also be seen from Table 1 that incompressible speed to become fully plastic as compared to arotating disc

materials require higher percentage increase in angular made of compressible materials.
LT.: = D LT.J = 0125 LT.: = D.E
6
—— =0
3 5
x4
-'l?l .
=23
13 =
032
E
5 1
-t
0

0 o1 02 03 04 05 o 01 02 03 04 05 O 01 02 03 04 05
R,=alb

Figure 2. Angular speed required for initial yielding at theinternal surface of the rotating disc with inclusion for C = 0, 0.25, 0.5 at different values of load
aong theradii ratio Ry=alb
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The curves have been drawn in Fig.2 between the the absence of load, the rotating disc with inclusion requires
angular speed required for initial yielding and various radii significantly higher values of angular speed for
ratio R, =alb for C =0, 0.25, 0.5 and o,= 0, 0.125. 0.2 incompressible materials as compared to compressible
of the disc with rigid inclusion. It has been observed that, in materials. With the introduction of edge loading, lower

Meaning: sigmatheta o, (circumferential stress); Ssgmar- o, (Radial stress) and displacement-U, Load- oq

2 999999912 ——Load =0, Bigma Theta

1.8 ——Load =0, Sigmar

) —#&—Load =0, displacement
1.6 ——Load =0.125,31igma Theta
—#—Load =0.125,31gmar

14 Load =0.125,displacernent
1.2 - —+—Load =0.2,3igma Theta
Load=0.2, Sigmar
Load=0.2, displacement

C =0 (Incompressible material)

0.8
0.6
0.4
0.2

Stresses distribution a nd displacernent
[

0.4 0.5 0.6 R=v10-7 0.8 0.9 1

1.8
16
1.4
1.2

750000183

C=0.25 ( Compressible material)
0.8

0.6
0.4 e

0.2 =

Stresses distribution a nd displacernent
[

0.4 0.5 0.6 R=107 0.8 0.9 1

1.8

16 1.500000007
14

1.2

0.8 C=0.5 (Compressible material)

0.6
0.4
0.2 * =

Stresses distribution a nd displacernent
[

0.4 0.5 0.6 R =107

Figure 3. Stresses distribution and displacement at the elastic-plastic transitional state of the rotating disc with inclusion and different values of load aong
theradii ratio R=r/b.
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Stressges distribution and

Figure 4.

R=rlb.

Meaning: sigmatheta o, (circumferential stress); sigmar- o, (Radial stress) and displacement-Uy, Load- o,

0'0:0
3 .
- 2.8 2.828427142 —4#— Sigma Theta
= %g Sigmar
g = 2.2 =—d—displacement
=5 2
=z 138
=3 16
2 & 14
= = 1.2
5= 1 " Py
w 0.8 & it
o 0.6 e
& 0.4
0.2 —,
0 - ==
0.4 0.5 0.6 R Q'Z.-"b 0.8 0.9 1
0'0:0.125
3
2.8
E 26 740038765
s 24
£5 20
=0 =
v 2
48 18
w16
n=2 14
% 1.% B
0.8 . —
0.6 v
0.4
0.2
0 A& e
0.4 0.5 0.6 R= 1'.-"110'7 0.8 0.9 1
0'0:0.2
3
2.8
26 68700578
2.4
2.2
4: 2
g 18
5 16
2 14
12
0.8 ; b
0.6
0.4
0.2
0 & &
0.4 0.5 0.6 RQ'Z.-"h 0.8 0.9 1

Stresses distribution and displacement for the fully plastic state of the rotating disc with inclusion and different values of load along the radii ratio
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values of angular speed are required to yield at the internal

surface for incompressible/compressible materials. In
Figs.3-4, the curves have been drawn for stresses

distribution and displacement with respect to the radius R =
r/b for the elastic-plastic transitional state and afully plastic
state respectively. It has been seen that the radia stress has
the maximum value at the interna surface of the rotating
disc made of incompressible materials as compared to
compressible materials. With the effect of edge loading,
radial stresses must be decreased with the increased values
of edge load at the elastic-plastic and fully plastic state.

Conclusion

It has been observed that, in the absence of load, the
rotating disc with inclusion requires significantly higher
values of angular speed for incompressible materials as
compared to compressible materias. With the introduction
of edge loading, lower values of angular speed are required
to yiedd a the internal surface for incompre-
ssible/compressible materials. It has been seen that the
radial stress has the maximum value at the internal surface
of the rotating disc made of incompressible materias as
compared to compressible materials. With the effect of
edge loading, radial stresses must be decreased with
increased values of edge load at the elastic-plastic and fully
plastic state.
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Analiza napona u tankom rotiraju¢em disku sa ukljucivanjem
opterecenja na ivicama

Setovi prelazne teorije su primenjeni na problem elastoplasti¢nih prelaznih napona kod problema tankog rotirajuceg
diska sa optereéenim ivicama. U ovom razmatranju nije pretpostavljen kriterijum tecenja niti drugi konvencionalni
zakon. Prezentovani rezultati su primenljivi na stisljive i nestiSljive materijale.

AKo je dodatni uslov nekompresibilnosti postavljen, onda izraz za naponsko stanje proistice iz Treskinog uslova tecenja.
Uoceno je da je u prisustvu opterecenja kod diska koji se obrée u podrudju visokih vrednosti ugaonih brzina neophodno
da se razmatra uticaj kompresibilnosti materijala. Sa uvodenjem ivi¢nog optereéenja, niZe vrednosti ugaone brzine su
potrebne za nekompresione/kompresione materijale.

Radijalni naponi imaju maksimalne vrednosti na unutra$njoj povrSini rotirajuéeg diska napravljenog od
nekompresibilnog materijala kao i poredeni sa kompresibilnim materijalom.

Kljucne reci: naponsko stanje, analiza napona, disk, rotacioni disk, opterecenje, elastinoplasti¢nost.

AHAJIU3 HANIPSIZKEHUH B TOHKOM BPAaLaK0IIEeMCs JUCKeE ¢
BKJIIOYEHHEM HArPYy3KHM Ha Kpasix

IlpencraBieHHast mepexofHas Teopusi ObL1a MPUMeHEeHA HA MPo0JjieMe YNPYToIIACTHYECKHX HePeXOIHbIX HANPSKeHH
y mpod/eM TOHKOI0 BPAILAIOIIErocsl JUCKA ¢ KPOMKAMH I0J HAarpy3koii. B JToii cratbe He mpeaycMOTpeH H He
paccMATpHBAaH KpPUTepHii MOTOKAa, HO Aa’ke HHU APyrHe OObIYHBbIE KOHBEHIIMOHAJIBHBIE 3aKoHbI. IlpencraBieHHBIE
Pe3yJbTAThl HPHMEHHMBI K C:KHMaeMbIM U HeC:KHMaeMbIM MaTepuajaM. Eciin ycTaHoB/IeHO 10MOTHHTEIbHOE YCI0BHE
HEC)KHMAEMOCTH, TO BbIPasKeHHe JJIsi HANPSI’KeHHOr0 COCTOSIHMSI NPOMCXOAMT B pe3yJbTaTe moroka Tpecku. Beuio
00HApPY:KEeHO, YTO B MPUCYTCTBHH HATPY3KH Y BPAIIAIOLIErocs MCKA B 00,1aCTH BHICOKHX 3HAYEHMIl YIJIOBOIi CKOpocTH
He00X0AMMO YYHTBIBAThL BJIMSIHHE CKHMMaeMOCTH MaTepuaia. C BBeleHHeM HArpy3KH HAa KPOMKaX, HU3KHe 3HAYCHHsS
VIJIOBO# CKOPOCTH HEO0XOTMMBI /Il HeCKHMaeMbIX / CKHMaeMbIX MaTepHaJIoB. PagnanbHble HANpsKEHHs] MMEIOT
MAaKCHMA/IbHbIE 3HAYEHHs] HA BHYTPeHHel MOBEPXHOCTH BPALIAIOINETOCsl AMCKA, M3TOTOBJIEHHOI0 M3 HeC:KHMAeMOro
MaTepHaJa, 2 OHH CPABHHBAHBI U C 3HAYEHHSIMH Ha JUCKAX M3 CKHMaeMoro MarepHaa.

Kniouesvie cnogéa: HanpsiKeHHOe COCTOSIHME, AHAJIW3 HANPSUKeHWH, [AMCK, BpAIIAIOLIMiCS [HCK, HAarpy3ka,
YIPYIronIacTHYHOCTD.

Analyse de la tension dans le mince disque rotatif avec inclusion
de la charge sur les bords

La théorie transitoire de Seth a été appliquée au probléme des tensions transitoires chez le disque mince rotatif ayant les
bords chargés. Dans cette considération le critére du courant ainsi que d’autres lois conventionnelles n’ont pas été
supposés. Les résultats présentés peuvent s’appliquer aux matériaux compressibles et incompressibles. Si la condition
additionnelle de la non compressibilité est posée, ’expression pour I’état de tension provient de la condition du courant
de Tesca. On a remarqué que dans la présence de charge chez le disque rotatif tournant dans le domaine de hautes
valeurs de la vitesse d’angle il était nécessaire de prendre en considération I’influence de la compressibilité des matériaux.
Si I’on introduit la charge de bord, la plus petite vitesse d’angle est nécessaire pour les matériaux incompressibles ou
compressibles. Les tensions radiales ont les valeurs maximales sur la surface interne du disque rotatif produit en matiére
incompressible ainsi comparé avec le matériau compressible.

Mots clés: état de tension, analyse de tension, disque, disque rotatif, charge, élasticité plastique.



