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Introduction 
HE problem of investigation of time delay systems has 
been exploited over many years. Delay is very often 

encountered in different technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, 
long transmission lines, etc. The existence of pure time 
delay, regardless if it is present in the control or/and state, 
may cause an undesirable system transient response, or 
generally, even an instability. Consequently, the problem of 
the stability analysis of this class of systems has been one 
of the main interests of many researchers. In general, the 
introduction of time lag factors makes the analysis much 
more complicated. In the existing stability criteria, mainly 
two ways of approach have been adopted. Namely, one 
direction is to contrive the stability condition which does 
not include information on the delay, and the other is the 
method which takes it into account.. 

The former case is often called the delay-independent 
criteria and generally provides nice algebraic conditions.  

Numerous reports have been published on this 
matter, with a particular emphasis on the application 
of Lyapunov’s second method, or on using the idea of 
matrix measure. 

In practice, there is not only an interest in system 
stability (e.g. in the sense of Lyapunov), but also in the 
bounds of system trajectories. A system could be stable but 
still completely useless because it possesses undesirable 
transient performances.  

Thus, it may be useful to consider the stability of such 
systems with respect to certain subsets of state-space which 

are defined a priori in a given problem. 
Besides that, it is of particular significance to consider 

the behavior of dynamical systems only over a finite time 
interval. 

These boundedness properties of system responses, i.e. 
the solution of system models, are very important from the 
engineering point of view. Realizing this fact, numerous 
definitions of the so-called technical and practical stability 
were introduced. Roughly speaking, these definitions are 
essentially based on the predefined boundaries for the 
perturbation of initial conditions and allowable perturbation 
of a system response. In the engineering applications of 
control systems, this fact becomes very important and 
sometimes crucial, for the purpose of characterizing in 
advance, in a quantitative manner, possible deviations of a 
system response. 

Thus, the analysis of these particular boundedness 
properties of solutions is an important step which precedes 
the design of control signals, when finite time or practical 
stability control is concerned. 

Chronological preview of the previous results 
In the short overview that follows, we will be 

familiarized only with the results achieved for linear 
continuous time delay systems in the area of Non - 
Lyapunov stability.  

Motivated by a “brief discussion” on practical stability in 
the monograph La Salle, Lefchet, (1961), Weiss and Infante 
(1965, 1967) have introduced various notations of stability 
over a finite time interval for continuous-time systems and 
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constant set trajectory bounds.  
Further development of these results was accredited to 

many other authors.  
In the context of finite or practical stability for a 

particular class of nonlinear singularly perturbed multiple 
time delay systems, various results were, for the first time, 
obtained in Feng, Hunsarg (1996). It seems that their 
definitions are very similar to those in Weiss, Infante (1965, 
1967), clearly addopted to time delay systems. 

In the paper of Debeljkovic et al. (1997) and Nenadic et 
al. (1975, 1997), some basic results from the area of finite 
time and practical stability were extended to the particular 
class of linear continuous time delay systems.  

Stability sufficient conditions dependent on delay, 
expressed in terms of a time delay fundamental system 
matrix, have been derived. In addition, in the circumstances 
when it is possible to establish a suitable connection 
between the fundamental matrices of linear time delay and 
non-delay systems, the presented results enable an efficient 
procedure for testing practical as well the finite time 
stability of time delay systems.  

The matrix measure approach has been, for the first time, 
applied in Debeljkovic et al. (1997) for the analysis of 
practical and finite time stability of linear time delayed 
systems. 

With the Coppel’s  inequality and the introduction of the 
matrix measure approach, one provides very simple delay-
dependent sufficient conditions of practical and finite time 
stability with no need for time delay fundamental matrix 
calculations. 

Another approach, based on a very well-known Bellman 
– Gronwall Lemma, was applied in Debeljkovic et al. 
(2000), to provide new, more efficient sufficient delay- 
dependent conditions for checking the finite and practical 
stability of continuous systems with state delay. 

An overview of all previous results and contributions 
was presented in the paper of Debeljkovic et al. (1999) with 
overall comments and a slightly modified Bellman – 
Gronwall approach. 

Finally, a modified Bellman – Gronwall principle has 
been extended to the particular class of continuous non- 
autonomous time delayed systems operating over the finite 
time interval, Debeljkovic et al. (2000.a, 2000.b, 2000.c). 

The concept of Lyapunov asymptotic stability is largely 
known to the control community.  

However, Lyapunov asymptotic stability is often not 
enough for practical applications, because there are some 
cases where large values of the state are not acceptable.  

For these purposes, the concept of finite time stability 
can be used.  

A system is said to be finite time stability if, once a time 
interval is fixed, its state does not exceed some bounds 
during this time interval.  

It is important to point out that finite time stability and 
Lyapunov stability are independent concepts: for instance, a 
system which is finite-time stable could be Lyapunov 
unstable, while a Lyapunov stable system could be finite-
time unstable if its state exceeds the prescribed bounds 
during the transient period.  

Recently, the concept of finite time stability has been 
revisited in the light of the linear matrix inequality theory, 
which has allowed to find less conservative conditions 
guaranteeing finite time stability and finite-time 
stabilization of continuous time systems.  

Many valuable results have been obtained for this type 
of stability; see, for instance, Amato et al. (2001), Moulay, 

Perruquetti (2006), Moulay et al. (2008), Amato et al. 
(1998, 2003, 2006), Garcia (2009). 

Similar to systems without delay, we also need to 
investigate finite time stability and finite time stabilization 
for a class of time-delay systems. 

There are few results concerning finite time stability and 
finite time stability stabilization of time-delay systems.  

Some early results on finite time stability of time-delay 
systems can be found in Debeljkovic et al (2000), as 
mentioned before.  

The results of these investigations are conservative 
because they use the boundedness proprieties of the system 
response, i.e. of the solution of system models.  

Recently, based on the linear matrix inequality theory, 
some results have been obtained for finite time stability and 
finite-time boundedness for some particular classes of time-
delay systems, Shen et al. (2007).  

The papers Wang et al. (2010) consider the problem of 
finite-time boundedness of the delayed neural networks.  

In Lin et al. (2011), finite-time boundedness of switched 
linear systems with time-varying delay and exogenous 
disturbances are studied. Based on the average dwell-time 
technique, sufficient conditions which can ensure finite-
time boundedness, finite-time weighted 2L -gain Lin et al. 
(2011) and H∞  finite-time boundedness Liu,  Shen  (2011) 
are given. Finite time stability and the time stability 
stabilization of retarded-type functional differential 
equations are developed in Moulay et al.  (2008).  

The papers Gao et ai. (2011) and Shang et al. (2011) 
investigate the time stability stabilization problem for 
networked control systems with time-varying delay.  

In Shang et al. (2011) a particular linear transformation 
is introduced to convert the original time-delay system into 
a delay-free form.  

According to the author's knowledge, there is no result 
available yet on robust finite time stability and finite time 
stability stabilization of linear uncertain time-delay systems 
using linear matrix inequality.  

Here we present the problem of sufficient conditions that 
enable system trajectories to stay within the a priori given 
sets for a particular class of time-delay systems. 

Notations and preliminaries 
A linear, multivariable time-delay system can be 

represented by a differential equation: 

 ( ) ( ) ( ) ( ) ( )0 1 0 1 ,t A t A t B t B tτ τ= + − + + −x x x u u  (1) 

and with the associated function of the initial state: 

 ( ) ( ) ( ) ( ), , 0.x ut t t t tτ= = − ≤ ≤x φ u φ  (2) 

Equation (1) is referred to as nonhomogenous or forced 
state equation, x(t) is the state vector, ( )tu  the control 
vector, A0, A1, B0 and B1 are the constant system matrices of 
appropriate dimensions, and τ is pure time delay, τ = const. 
(τ > 0). 

Dynamical behavior system (1) with initial functions (2) 
is defined over the time interval { }0 0,t t Tℑ = + , where 
the quantity T may be either a positive real number or the 
symbol +∞, so finite time stability and practical stability 
can be treated simultaneously.  

It is obvious that ℑ∈ . 
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Time invariant sets, used as the bounds of system 
trajectories, are assumed to be open, connected and 
bounded.  

Let the index β stands for the set of all allowable states 
of the system and the index α for the set of all initial states 
of the system, such that the set S Sα β⊆ .  

In general, one may write: 

 ( ) ( ){ }2
Q: || ||S t tρ ρ= <x x , (3) 

where Q  will be assumed to be a symmetric, positive-
definite, real matrix. 

Sε  denotes the set of all allowable control actions. 
Let ( ) ( )⋅

⋅x  be any vector norm (e.g., ⋅ = 1, 2, ∞) and 

||(⋅)|| the matrix norm induced by this vector.  

Here, we use ( ) ( ) ( )( )1/2

2
Tt t t

Δ
=x x x  and 

2 = ( )1/2 *
max A Aλ .  

Upper indices * and T denote transpose conjugate and 
transpose, respectively.  

The matrix measure has been widely used in the 
literature when dealing with stability of time delay systems.  

The matrix measure ( )μ ⋅  for any matrix n nA ×∈  is 
defined as follows 

 ( )
0

||1 || 1lim AA
ε

μ
Δ

→

+℘ −
=

℘
. (4) 

The matrix measure defined in (4) can be subdefined in 
three different ways, depending on the norm used in its 
definitions, Coppel (1965), Desoer, Vidysagar (1975): 

 ( ) ( )1
1

max Re | |
n

kk ikk
i
i k

A a aμ
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , (5.a) 

 ( ) ( )2
1 max *2 ii

A A Aμ λ= + , (5.b) 

and 

 ( ) ( )
1

max Re | |
n

ii kii
k
k i

A a aμ ∞
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , (5.c) 

From Mori (1988), the following inequality holds: 

‘ ( ) ( )2 2F F F Fμ μ− ≤ − − ≤ ≤ . (5.d) 

Basic notations  
 - Real vector space 
 - Complex vector space 

F ( ) n n
ijf ×= ∈ , - real matrix 

TF  - Transpose of the matrix F  
0F >  - Positive definite matrix 
0F ≥  - Positive semi definite matrix 

( )Fλ  - Eigenvalue of the matrix F  

( ) ( )Fσ  - Singular values of the matrix F  

{ }Fσ  - Spectrum of the matrix F  

Euclidean matrix norm F ( )max
TA Aλ=  

⇒  - Follows 
 - Such that 

Time invariant time delay systems finite time 
stability 

Stability definitions 
In the context of finite or practical stability for a 

particular class of nonlinear singularly perturbed multiple 
time delay systems various results were, for the first time, 
obtained in Hsiao, Hwang (1996). 

It seems that their definitions  are very similar to those in 
Weiss, Infante (1965, 1967), clearly addopted to time delay 
systems. 

It should be noticed that those definitions are 
significantly different from the definition presented  by the 
autor of this paper. 

Definition 1. A system is stable with respect to the set 
{ }, , , , ,Tα β τ− x  α β≤  if for any trajectory ( )tx  

condition 0 α<x  implies ( )t β<x  

[ ] max, ,t T τ∀ ∈ −Δ Δ = , Hsiao, Hwang (1996). 
Definition 2. An autonomous system is contractively 

stable with respect to the set { }, , , , ,Tα β τ− x  

γ α β< < , if for any trajectory ( )tx  condition 0 α<x  
implies:  
(i) Stability w.r.t.{ }, , , , ,Tα β τ− x  

(ii) There exists ] [0,t T∗ ∈ such that ( )t γ<x  for all 
,t t T∗⎤ ⎡∀ ∈ ⎦ ⎣  Hsiao, Hwang (1996). 

Definition 3. Autonomous system (1) satisfying initial 
condition (2) is finite time stable w.r.t. ( ){ }, ,tζ β ℑ if and 

only if ( ) ( )2
x t tζ<φ , implies: ( ) 2 ,t tβ< ∈ ℑx , 

( )tζ  being a scalar function with the property 

( )0 ,tζ α< ≤  0 ,tτ− ≤ ≤  where α  is a real positive 
number and β ∈  and β α> , Debeljkovic et al. (2001), 
Nenadic et al. (1997). 

0 τ 2τ T t-τ

||x(t)||2

||ϕx(t)||
2

ζ (t)

β

α

 

Figure 1. Illustration of the preceding definition 

Definition 4. System (1), with u(t – τ) ≡ 0, ∀t, satisfying 
initial condition (2) is finite time stable w.r.t. 

( ) ( ){ }0, , , , , 0t Aζ β ε τ μℑ ≠  if and only if 

 ( ) [ ], 0x t S tα τ∈ ∀ ∈ − ,φ ,  
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and 

 ( ) ,t S tε∈ ∀ ∈ ℑu ,   

imply 

 ( )0 0, , ,t t S tβ∈ ∀ ∈ ℑx x ,  

Debeljkovic et al. (2001)  
Definition 5. System (1) satisfying initial condition (2) 

is finite time stable w.r.t. 
( ){ }2 0, , , , , , 0Aϕα β ε ε τ μℑ ≠  if and only if 

 ( ) ( ) [ ], ,x ut S t S tα ε τ∈ ∈ ∀ ∈ − , 0φφ φ , (13) 

 ( ) ,t S tε∈ ∀ ∈ ℑu ,   

imply: 

 ( )( )0 0, , , ,t t t S tβ∈ ∀ ∈ ℑx x u ,  

Debeljkovic et al. (2001). 
Definition 6. System (6.a) satisfying given initial 

condition (6.b) is finite time stable with respect to 
{ }, ,α β ℑ , where 0 α β≤ < , if  

[ ]
( ) ( )

, 0
sup T T

x x
t

t t
τ

α
∈ −

≤φ φ  

implies ( ) 2 ,t tβ< ∈ ℑx , Stojanovic et al (2012). 

Dependent delay stability conditions 
Stability theorems 

Theorem 1. Autonomous system (1) with initial function 
(2) is finite time stable with respect to { }, , , Jα β τ  if the 
following condition is satisfied  

 ( )
1 2

/ ,
1

t t
A

β α
τ

Φ < ∀ ∈ ℑ
+

, (6) 

where ( )⋅  is the Euclidean norm and ( )tΦ  is the 
fundamental matrix of system (1), Nenadic et al. (1997), 
Debeljkovic et al. (2001). 

Theorem 2: Autonomous system (1) with initial 
function (2) is finite time stable w.r.t. { }, , , Tα β τ if the 
following condition is satisfied 

 ( )2 0

1 2

/ ,
1

A te t
A

μ β α
τ

< ∀ ∈ ℑ
+

, (7) 

where ( )⋅  denotes the Euclidean norm, Debeljkovic et 
al. (2001). 

Theorem 3. Autonomous system (1) with initial function 
(2) is finite time stable with respect to 
{ }2 0, , , , ( ) 0T Aα β τ μ ≠  if the following condition is 
satisfied  

 

( )
( ) ( )

[ ]

2 0

2 0( )1
2 0 1 2

/

1 || || 1

0,

A t

A
e

A A e

t T

μ

μ τ

β α

μ −−
<

+ ⋅ ⋅ −

∀ ∈ ℑ

 (8) 

Debeljkovic et al. (2001). 
Theorem 4. System (1), with initial function (2) is finite 

time stable w.r.t. ( ) ( ){ }2 0 1, , , , , 0, 0t A Bζ β ε τ μℑ ≠ =  
if the following condition is satisfied 

 ( )2 0 /A teμ β α
φ< , (9) 

 
( ) ( ) ( )( )( )
( ) ( )( )

2 0

2 0

1
0 0 1 2

1
0 0 2

|| || 1

|| || 1 , .

A

A t

A A A e

A B e t J

μ τ

μ

φ μ μ

μ γ

−−

−−

= + −

+ − ∀ ∈
 (10) 

where,  

 ( ) ( )2 0 max 0 0
1, 2

TA A Aεγ μ λα= = + , (11) 

Debeljkovic et al. (2001). 
Theorem 5. System (1), with u(t – τ) ≡ 0, ∀t, satisfying 

initial condition (2) is finite time stable w.r.t. 
( ) ( ){ }2 0 1, , , , , 0, 0t T A Bζ β ε τ μ ≠ = , if the following 

condition is satisfied 

 ( )1 2 0 21 || || || || ,A B t t Jβτ γ
α

+ + < ∀ ∈ , (12) 

where γ  is given with (33), Debeljkovic et al. (2001). 
Theorem 6. Autonomous system (1) with initial function 

(2) is finite time stable with respect to 
( ){ }0, , , , 0T Aα β τ μ =  if the following condition is 

satisfied  

 [ ]1 21 || || / , 0,A t Tτ β α+ < ∀ ∈ , (13) 

Debeljkovic et al. (2001): 
Theorem 7. System given by (1), with initial function (2) 

is finite time stable w.r.t. ( ){ }2 0, , , , , , 0Aα β ε ε τ μℑ ≠φ  
if the following condition is satisfied 

 
( )

( )
2 0

2 0
/ ,

A te t
A

μ
β α δ

μ
< ⋅ ∀ ∈ ℑ , (14) 

where  

 
( ) ( )( )(

( )( ))
2 0

2 0

2 0 1 1

2

1

1

A

A t

A a e

e

μ τ

μ

δ μ π

π

−

−

= + − +

+ −
 (15.a) 

 ( ) ( )1 1 2 0 11 ,b b bπ γ γ π γ= + + = +φ , (15.b) 

 0 0
1 1 1 0

1 1

|| || || |||| || , ,B Ba A b ba a= = = , (15.c) 

 ,
εεγ γ

α α
= = φ

φ  (15.d) 

Debeljkovic et al. (2001). 
Theorem 8 Time delayed system (1) is  finite time stable 

with respect to ( ){ }2
0 , , , ,t α βℑ ⋅ , α β< , if the following 

condition is satisfied: 

 ( )( )max 0 ,t te tβ
α

Λ Π − < ∀ ∈ ℑ , (16) 
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where: 

 ( ) ( ) ( )max 1max 2maxλ τ λΛ Π = + ⋅ . (17) 

and: 

 ( ) ( ) ( )( )1max 1max 0 0 1 1
T TA A A Aλ λ= + + +  (18) 

 
( ) ( )(

)

2max 2max 1 0 0 1 1 1 1 1

2
2

T T T TA A A A A A A A

q I

λ λ= ℘ + +

+
℘

 (19) 

with: 0℘>  and 1q > , Debeljkovic et al (2011.a). 
Proof. Let us consider the continuous linear time delay 

system described by differential delay equation (1). 
Let ( )tx , 0t ≥  be the solution of (1) if the initial 

moment  and state are 0  and ( )txφ .  

It is very well known that if the ( )tx  is continuously 
differentiable for 0t ≥ , one can write: 

   ( ) ( ) ( ) ( )( )
0

0 1t t A t A t d
τ

τ ϑ τ ϑ ϑ
−

− = − + + − +∫x x x x , (21) 

for t τ≥ , Hale (1977), so the basic system dynamics in (1) 
can be rewritten as: 

 
( ) ( ) ( )

( ) ( )( )

0 1
0

1 0 1

t A A t

A A t A t d
τ

ϑ τ ϑ ϑ
−

= + −

− + + − +∫
x x

x x
 (20) 

for an arbitrary continuous initial function ( )tφ  on the time 

interval [ ]2 , 0t ϑ∈ − . 
It is stated in Hale (1977) that the asymptotic stability of 

(20) can assure the asymptotic stability of the original 
system (1), since  the basic system (1) is only a spacial case 
of a system whose dynamics is described by (20).  

This important fact will be directly used in the second 
part of this investigation, namely when the attractive  
practical stability is considerd. 

In this section, for the sake of simplicity, we will use 
(20) to obtain a sufficient condition of finite time stability 
of (1) since the conditions to be fulfilled are less severe 
than to achive asymptotic stability, 

Let us define the tentative aggregation function as: 

 ( )( ) ( ) ( )TV t t t=x x x . (21) 

The total time derivative ( )( )V tx  along the trajectories 
of the system yields: 

 

( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

0 0 1 1
0

1 0 12

T T T

T

V t t A A A A t

t A A t A t d
τ

ϑ τ ϑ ϑ
−

= + + +

− + + − +∫

x x x

x x x
 (22) 

Now, we follow  Su (1994). 
Following the Ruzumikhin-type theorem, Hale (1977), 

we assume that for some real constant 1q >  the following 
inequality holds: 

 ( )( ) ( )( )2 , 2V q V t t tξ ϑ ξ< − ≤ ≤x x . (23) 

Furthermore, by using the following inequality, for any 
real constant 0℘>  and any symmetric, positive definite 

matrix Ξ ,  0TΞ = Ξ > : 

 ( ) ( ) ( ) ( ) ( ) ( )1 12 T T Tt t t t t t−− ≤℘ Ξ + Ξ
℘

u v u u v v , (24) 

we obtain: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0

1 0

0

1 0 0 1

2

1 0 0 1

2

max 1 0 0 1

2

1

T

T T T T

T T T

T T T

t A A t d

t A A A A t t t d

qt A A A A I t

qA A A A I t t

τ

τ

ϑ ϑ

ϑ ϑ ϑ

τ

τ λ

−

−

− + ≤

⎛ ⎞≤ ℘ + + +⎜ ⎟℘⎝ ⎠

⎛ ⎞
< ℘ +⎜ ⎟℘⎝ ⎠

⎛ ⎞
< ℘ +⎜ ⎟℘⎝ ⎠

∫

∫

x x

x x x x

x x

x x

, (25) 

and in the same way: 

 
( ) ( )

( ) ( )

0

1 1

2

max 1 1 1 1

2 T

T T T T

t A A t d

qA A A A I t t

τ

τ ϑ ϑ

τ λ

−

− − + <

⎛ ⎞
< ℘ +⎜ ⎟⎜ ⎟℘⎝ ⎠

∫ x x

x x

. (26) 

Using (25) and (26), one may have: 

( )( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1max 0 0 1 1

2

2max 1 0 0 1 1 1 1 1

max

2

T T T T

T T T T T T

T T

V t

A A A A t t

qA A A A A A A A I t t

t t

λ

τ λ

<

< + + +

⎛ ⎞
+ ℘ + +⎜ ⎟⎜ ⎟℘⎝ ⎠

< Λ Π

x

x x

x x

x x

(27) 

( ) ( ) ( ) ( )max max 0 1 1max 2max, ,A A τ λ τ λΛ Π = Λ = +  (28) 

From (27) one can get: 

 
( ) ( )( )

( ) ( )
( )max

T

T

d t t
d t

t t
λ< Π

x x

x x
 ,(29) 

or: 

 
( ) ( )( )

( ) ( )
( )

0 0

max

t tT

T
t t

d t t
d t

t t
λ< Π∫ ∫

x x

x x
, (30) 

and: 

 ( ) ( ) ( ) ( ) ( )( )max 0
0 0

t tT Tt t t t eλ Π −<x x x x . (31) 

Finally, if one uses the first condition of Definition 3, 
then: 

 ( ) ( ) ( )( )max 0t tT t t eλα Π −< ⋅x x , (34) 

and finally by (16), yields to: 
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 ( ) ( ) ,T t t tβα βα< ⋅ < ∀ ∈ ℑx x , (35) 

which has to be proved. Q.E.D. 
Theorem 9. System (1) is finite time stable with respect 

to ( ), ,Tα β , α β< , if there are nonnegative scalar ℘  and 
positive define symmetric matrices P  and Q  such that the 
following conditions hold 

 0 0 1

1
0

T

T
A P PA Q P PA

A P Q
⎛ ⎞+ + −℘Ω = <⎜ ⎟−⎝ ⎠

, (36) 

 ( ) ( ) ( )( )max max
min

1 ,TP Q e
P

βλ τ λ
αλ

℘+ ⋅ <  (37) 

Stojanovic, Debeljkovic, Antic (2012) 
Proof. Let us consider the following Lyapunov-like 

function 

 ( )( ) ( ) ( ) ( ) ( )
t

T T

t

V t t P t Q d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x  (38) 

Then, the time derivative of ( )( )V tx  along the solution 
of (1) gives 

    
( )( ) ( )( ) ( )

( ) ( ) ( ) ( )
0 0

12
( ) ( )

T T

T T

T

V t t A P PA Q t
t PA t t Q t

t t
τ τ τ

= + +

+ − − − −
= Γ

x x x
x x x x
ξ ξ

 (39) 

where 

 
( ) ( ) ( )

0 0 1

1

,
TT T

T

T

t t t
A P PA Q PA

A P Q

τ⎡ ⎤= −⎣ ⎦
⎛ ⎞+ +Γ = ⎜ ⎟−⎝ ⎠

ξ x x
 (40) 

Hence 

 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

0
0 0

0
0 0

0
0 0

T T

T T

T T

t
T T

t

PV t t t t t

Pt t t t

Pt t t P t

t P t Q d

V t
τ

ϑ ϑ ϑ
−

−℘⎛ ⎞⎛ ⎞= Γ = Ω − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
℘⎛ ⎞< Ω + ⎜ ⎟

⎝ ⎠
℘⎛ ⎞< =℘⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟<℘ +
⎜ ⎟
⎝ ⎠

<℘

∫

x ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ x x

x x x x

x

(41) 

Multiplying (41) by te−℘⋅ , we can obtain 

 ( )( )( ) 0td e V tdt
−℘⋅ <x  (42) 

Integrating (42) from 0 to t , with [0, ]t T∈ , we have  

 ( )( ) ( )( )0tV t e V℘⋅<x x  (43) 

Then 

 

( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )( )

0

max max

max max

0 0 0T TV P Q d

P Q
P Q

τ

ϑ ϑ ϑ

λ α λ τ α
α λ α λ τ

−

= +

≤ + ⋅
= +

∫x x x φ φ

 (44) 

On the other hand, 

 ( )( ) ( ) ( ) ( ) ( ) ( )min
T TV t t P t P t tλ> ≥x x x x x  (45) 

Combining (43), (44) and (45), we get 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) [ ]

max max
min

max max
min

, 0,

T t

t

t t P Q e
P

P Q e t T
P

α λ τ λ
λ

α λ τ λ
λ

℘⋅

℘⋅

< + ⋅

< + ⋅ ∀ ∈

x x
(46) 

If 

 ( ) ( ) ( )( )max max
min

tP Q e
P

α λ τ λ β
λ

℘⋅+ ⋅ <  (47) 

then 

 ( ) ( ) [ ], 0,T t t t Tβ< ∀ ∈x x . (48) 

Q.E.D. 
Remark 1 It should be pointed out that the condition in 

Theorem 9 is not standard LMIs condition with respective 
to ℘  and P . However, once we fix ℘ , it can be turned 
into an LMIs based feasibility problem which can be solved 
via existing software.  

Theorem 10. Suppose that the certain matrix 
( )0 0 1 1

T TA A A A I+ + +  is positive definite.  
Then the autonomous system (6.a) with initial function 

(6.b) is finite time stable with respect to { }, , , Tα β τ , if 
α β< , such that the following conditions hold: 

 ( ) ( )max1 teλ βτ
α

Π ⋅+ < , (49) 

Proof: Let us consider the following Lyapunov-like 
aggregation function: 

 ( )( ) ( ) ( ) ( ) ( )
t

T T

t

V t t t d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x , (50) 

Denote by ( )( )V tx  the time derivative of ( )( )V tx  
along the trajectory of system (1), so one can obtain: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 12

t
T T T

t

T T T

T T

dV t t t t t ddt

t A A t t A t

t t t t

τ

ϑ ϑ ϑ

τ

τ τ

−

= + +

= + + −

+ − − −

∫x x x x x x x

x x x x

x x x x

 (51) 

Based on the well-known inequality1 and with the 
particular choice: 

 ( ) ( ) ( ) ( ) ( )0,T Tt t t I t t βΓ = > ∀ ∈x x x x x S , (52) 

                                                           
1 ( ) ( ) ( ) ( ) ( ) ( )12 , 0T T Tt t t t t tτ τ τ−− ≤ Γ + − Γ − Γ >u v u u v v  
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so that: 

 
( )( ) ( )( ) ( )

( ) ( )
( ) ( )

0 0 1 1

max

T T T

T

T

V t t A A A A I t
t t

tλ

≤ + + +

≤ Π
≤ Π

x x x
x x

x x
, (53) 

under the assumption given by Theorem 10. 
Moreover, it is easy to see that: 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

max max

max

max

t
T T

t
t

T T

t

V t t d

t d

V t

τ

τ

λ λ ϑ ϑ ϑ

λ ϑ ϑ ϑ

λ

−

−

< Π + Π

⎛ ⎞
⎜ ⎟< Π +
⎜ ⎟
⎝ ⎠

< Π

∫

∫

x x x x x

x x x x

x

,(54) 

since ( ) ( ) 0
t

T

t

d
τ

ϑ ϑ ϑ
−

>∫ x x  and ( )max 0λ Π > . 

Multiplying (54) by ( )max te λ− Π ⋅ , we can obtain: 

 ( ) ( )( )( )max 0td e V t
dt

λ− Π ⋅ <x . (55) 

Integrating (22) from 0 to t, with t ∈ ℑ , we get: 

 ( )( ) ( ) ( )max 0tV t e Vλ Π ⋅< ⋅x . (56) 

From (50) it can be seen: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0

0

0 0 0 0 0

0 0 0 0

1

T T

T T

V d

d

τ

τ

ϑ

ϑ

α α τ α τ

−

−

= +

≤ +

≤ + ⋅ = +

∫

∫

x x φ φ

x x φ φ , (57) 

in the light of  Definition 6. 
Combining (56) and (57) leads to: 

 ( )( ) ( ) ( )max1 tV t eλα τ Π ⋅< + ⋅x  (58) 

On the other hand: 

 ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )max1

t
T T T

t
t

t t t t d

V t e
τ

λ

ϑ ϑ ϑ

α τ
−

Π ⋅

< + =

= < + ⋅

∫x x x x x x

x

, (59) 

Condition (50) and the above inequality imply: 

 ( ) ( ) ( ) ( )max1 ,tT t t e tλα τ βΠ ⋅< + ⋅ < ∀ ∈ ℑx x , (60) 

which has to be proved. 
In the case of a non-delay system, e.g., when 0τ =  

or 1 0A = , the result given in (49) is reduced to Angelo 
(1974). 

Independent delay stability conditions 
The results that will be presented in the sequel enable the 

checking of finite time stability of the autonomous system 
to be considered, namely the system given by (1) and (2), 
without finding the fundamental matrix or corresponding 
matrix measure. 

Eq. (2) can be rewritten in its general form as: 

 ( ) ( ) ( ) [ ]0 , , 0
0

x xt ϑ ϑ ϑ τ
τ ϑ

+ = ∈ −
− ≤ ≤

x φ φ C , (61) 

where 0t  is the initial time of observation of system (1) and 

[ ], 0τ−C  is the Banach space of continuous functions 
over a time interval of length τ , mapping the interval 
( )[ ],t tτ−  into n  with the norm defined in the 

following manner: 

 ( )
0

max
τ ϑ

ϑ
− ≤ ≤

=φ φC . (62) 

It is assumed that the usual smoothness conditions are 
present so that there is no difficulty with questions of 
existence, uniqueness, and continuity of solutions with 
respect to the initial data. 

Moreover, one can write: 

 ( ) ( )0 xt ϑ ϑ+ =x φ ,  (63) 

as well as: 

 ( ) ( )( )0 0 , xt t ϑ=x f φ . (64) 

Theorem 11 The autonomous system given by (1) with 
initial function (2) is finite time stable w.r.t. { }0 , , ,t α βℑ  if 
the following condition is satisfied 

 ( )( ) ( )0 max2 2
0 max1 ,t tt t e tσ βσ

α
−+ − < ∀ ∈ ℑ , (65) 

( )maxσ ⋅  being the largest singular value of the matrix ( )⋅ , 
namely 

 ( ) ( )max max 0 max 1A Aσ σ σ= + . (66) 

Debeljkovic et al. (2001). 
Theorem 12. The autonomous system given by (1) with 

initial function (2) is finite time stable w.r.t. { }0 , , ,t α βℑ  if 
the following condition is satisfied 

 ( )0 max2 ,t te tσ β
α

− ⋅ < ∀ ∈ ℑ , (67) 

where ( )maxσ ⋅  is defined in (66), Debeljkovic et al. 
(2001). 

Remark 2. In the case when in Theorem 11 1 0A = , e.g. 

1A  is null matrix, we have the result similar to that 
presented in Angelo (1974). 

Practical stability 

Delay dependent  stability conditions 

Stability definitions 
Definition 7. System (6.a) with initial function (6.b), is 

attractive practically stable w.r.t. { }0 , , ,t α βℑ S S , if:  

 ( ) 2 2
0 0t α= <x x ,  

implies: 
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 ( ) 2 ,t tβ< ∀ ∈ ℑx ,  

with a property that: 

 ( ) 2lim 0
k

t
→∞

→x .  

Stability theorems 
Theorem 13. System (6.a) with initial function (6.b), is 

attractive practically stable with respect to 

( ){ }2
0 , , , ,t α βℑ ⋅ , α β< , if there exists the matrix 

0TP P= >  being a solution of: 

 00 ,TA P PA Q+ = −  (68) 

with the matrice 0TQ Q= > , and if the following 
conditions  are satisfied: 

 
1 1
2 21

1 min maxA Q Q Pσ σ
−−⎛ ⎞ ⎛ ⎞< ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (69) 

and: 

 ( )( )max 0 ,t te tβ
α

Λ Σ − < ∀ ∈ ℑ , (70) 

where: 

 ( ) ( ) ( )max 1 max 2 maxλ τ λΛ Ξ = + . (71) 

with ( )1 maxλ  and ( )2 maxλ  given by (18) and (19) with 
0℘>  and 1q > ,  Debeljkovic et al  (2011.b) 

Remark 3. The asymptotic stability of (1) is quaranted 
by (68) and (69). 

Theorem 14. System (1) with initial function (2), is 
attractive practically stable with respect to 

( ){ }2
0 , , , ,t α βℑ ⋅ , α β< , if there exists the matrix 

0TP P= >  being a solution of: 

 00 2 ,TA P PA I+ = −  (72) 

and if the following conditions  are satisfied: 

 ( )1
max

1A
Pλ

< , (73) 

and: 

 ( )( )max 0 ,t te tβ
α

Λ Σ − < ∀ ∈ ℑ , (74) 

where: 

 ( ) ( ) ( )max 1 max 2 maxλ τ λΛ Σ = + . (75) 

with ( )1 maxλ  and ( )2 maxλ  given by (18) and (19) and 

0℘>  and ( )1
max

1

11 q P
A

λ−< < , Debeljkovic et al (2011.a). 

Proof. Define the tentative aggregation function as: 

 ( )( ) ( ) ( )TV t t P t=x x x . (76) 

The proof of the asymptotic properties of the system 
under consideration is identical to that presented in Xu, Liu 
(1994) for the particular case when: 

 ( )( )( ) ( )1,t t t A tτ τ− = −f x x . (77) 

It is clear that the asymptotic stability of (6) is quaranted 
by (72) and (73), based on the results presented in Xu, Liu 
(1994) and the additional corrections in Mao (1997). Q.E.D 

Theorem 15. System (1) with initial function (2), is 
attractive practically stable with respect to 

( ){ }2
0 , , , ,t α βℑ ⋅ , α β< , if there exists the matrix 

0TP P= >  being the solution of: 

 00 ,TA P PA Q+ = −  (78) 

with the matrix 0TQ Q= > , and if the following conditions 
are satisfied: 

 
1 1
2 21

1 min maxA Q Q Pσ σ
−−⎛ ⎞ ⎛ ⎞< ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (79) 

and: 

 ( )2 0

1 2

/ ,1 || ||
A te tA

μ β α
τ< ∀ ∈ ℑ

+
, (80) 

( )02 Aμ  being any matrix measure, Debeljkovic et al 
(2011.a). 

Proof. The asymptotic stability of (1) is guaranteed by 
(78) and (79), based on the ideas presented in Tissir, 
Hmamed (1996).  

To prove finite time stability, one should start with the 
solution of (1) with the given initial function (2) and the 
approach given in Debeljkovic et al  (2011.a). 

A detailed overview of different contributions in the area 
of finite time stability for particular classes of time delay 
and singular – descriptor time delay systems can be found 
in papers Debbbeljkovic et al. (2010.a,2010b, 2011.c, 
2011.d, 2012.a, 2012.b) 

APPENDIX A 

Some additional results 
Lemma 1. Let ( )Q t  be an n × n characteristic matrix 

for autonomous system (1) with initial function (2), also 
continuous and differentiable in [ ]0, τ and zero elsewhere.  

Define the following vector: 

 ( ) ( ) ( ) ( )
0

t t Q t t d
τ

θ θ= + −∫y x x ,  (A.1) 

where the matrix Q(t) satisfy the following matrix 
equation: 

 ( ) ( )( ) ( )0 0 , [0, ]Q A Q Q Qθ θ θ τ= + ⋅ ∈ , (A.2) 

with the boundary value: 

 ( ) 1Q Aτ = , (A.3) 

Lee, Diant (1981). 
If 

 ( )( ) ( ) ( )TV t t t=y y y , (A.4) 
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is the aggregation function for system (1), then 

 ( )( ) ( )( ) ( )TV t t R t= −y y y , (A.5) 

where: 

 ( )( ) ( )( )0 00 0TR A Q A Q− = + + + , (A.6) 

The proof is omitted, for the sake of brevity and can be 
found in Lee and Diant (1981). 

Theorem A.1 If λM  is the maximum eigenvalue of the 
matrix ( )R−  being defined by (A.6), then 

( ) ( ) ( ) ( )2

0 0

|| || || 0 || || ||
M

Q t d Q e t d
τ τ λ θ

θ θ θ θ θ− ≤ −∫ ∫x x  (A.7) 

Debeljkovic et al. (2001). 
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Praktična stabilnost i stabilnost na konačnom vremenskom intervalu 
linearnih kontinualnih sistema sa čistim vremenskim kašnjenjem - 

klasičan i moderan pristup: Pregled rezultata  

Ovaj rad daje detaljan pregled radova i rezultata autora ovog članka na polju neljapunovske stabilnosti (stabilnost na 
konačnom vremenskom intervalu, tehnička stabilnost, praktična stabilnost, krajnja stabilnost) posebne klase linearnih 
kontinualnih sistema sa čistim vremenskim kašnjenjem u stanju. 
Ovaj pregled obuhvata period posle 2000.godine, pa sve do današnjih dana i ima snažnu nameru da predstavi glavene 
koncepte i doprinose koji su stvoreni u pomenutom periodu  a koji su publikovani u međunarodnim časopisima ili 
prezentovani repektabilnim workshop-ovima na prestižnim međunarodnim konferencijama. 

Ključne reči: kontinualni sistem, sistem sa kašnjenjem, sistem na konačnom vremenskom intervalu,  stabilnost sistema, 
neljapunovska stabilnost, praktična stabilnost. 

Стабильность в практике и стабильность на конечном 
интервале времени линейных непрерывных систем с 

запаздывающим аргументом – классический и современный 
подход: Обзор результатов 

Эта статья содержит подробный обзор работ и результатов автора этой статьи на поле неляпуновской 
устойчивости (стабильность на конечном интервале времени, техническая стабильность, практическая 
стабильность, высокая стабильность) специального класса линейных непрерывных систем с запаздывающим 
аргументом в состоянии. Этот обзор охватывает период после 2000 года и по сей день и имеет сильное намерение 
представить основные понятия и взносы, которые созданы в этот период, а которые были опубликованы в 
авторитетных международных журналах или представлены на престижных международных конференциях, а 
некоторые из них и на престижных мировых семинарах.  

Ключевые слова: непрерывная система, система с запаздыванием, система на конечном интервале времени, 
устойчивость системы, неляпуновская стабильность, практическая стабильность. 



 DEBELJKOVIĆ,D. etc.: FINITE TIME AND PRACTICAL STABILITY OF LINEAR CONTINUOUS TIME DELAY SYSTEMS ... 35 

 

Stabilité pratique et stabilité sur l’intervalle temporelle finie des 
systèmes linéaires continus à délai temporel pur – approche classique 

et approche moderne: Tableau des résultats  
Ce papier donne un tableau détaillé des travaux et des résultats de l’auteur de cet article réalisés dans le domaine de la 
stabilité de non Lyapunov (stabilité sur l’intervalle temporelle finie, stabilité technique, stabilité pratique, stabilité finale) 
de classe particulière des systèmes linéaires continus à délai temporel pur. Ce  tableau comprend la période après l’an 
2000 jusqu’à nos jours et son intension est de présenter les concepts principaux et les contributions réalisés pendant la 
période citée et publiés dans des revues internationales ou bien exposés aux ateliers de renom, lors des conférences 
internationales de prestige.  

Mots clés: système continu, système à délai, système sur l’intervalle temporelle finie, stabilité de système, stabilité de non 
Lyapunov, stabilité pratique. 

 

 

 
 


