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This paper gives a detailed overview of the work and the results of the authors of this paper in the area of Non-Lyapunov
(finite time stability, technical stability, practical stability, final stability) for a particular class of linear continuous time

delays systems.

This survey covers the period since 2000 and has a strong intention to present the main concepts and contributions that
have been derived during the mentioned period, published in the international journals or presented at respectable

workshops or prestigious conferences.
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Introduction

HE problem of investigation of time delay systems has

been exploited over many years. Delay is very often
encountered in different technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes,
long transmission lines, etc. The existence of pure time
delay, regardless if it is present in the control or/and state,
may cause an undesirable system transient response, or
generally, even an instability. Consequently, the problem of
the stability analysis of this class of systems has been one
of the main interests of many researchers. In general, the
introduction of time lag factors makes the analysis much
more complicated. In the existing stability criteria, mainly
two ways of approach have been adopted. Namely, one
direction is to contrive the stability condition which does
not include information on the delay, and the other is the
method which takes it into account..

The former case is often called the delay-independent
criteria and generally provides nice algebraic conditions.

Numerous reports have been published on this
matter, with a particular emphasis on the application
of Lyapunov’s second method, or on using the idea of
matrix measure.

In practice, there is not only an interest in system
stability (e.g. in the sense of Lyapunov), but also in the
bounds of system trajectories. A system could be stable but
still completely useless because it possesses undesirable
transient performances.

Thus, it may be useful to consider the stability of such
systems with respect to certain subsets of state-space which

are defined a priori in a given problem.

Besides that, it is of particular significance to consider
the behavior of dynamical systems only over a finite time
interval.

These boundedness properties of system responses, i.e.
the solution of system models, are very important from the
engineering point of view. Realizing this fact, numerous
definitions of the so-called technical and practical stability
were introduced. Roughly speaking, these definitions are
essentially based on the predefined boundaries for the
perturbation of initial conditions and allowable perturbation
of a system response. In the engineering applications of
control systems, this fact becomes very important and
sometimes crucial, for the purpose of characterizing in
advance, in a quantitative manner, possible deviations of a
system response.

Thus, the analysis of these particular boundedness
properties of solutions is an important step which precedes
the design of control signals, when finite time or practical
stability control is concerned.

Chronological preview of the previous results

In the short overview that follows, we will be
familiarized only with the results achieved for linear
continuous time delay systems in the area of Non -
Lyapunov stability.

Motivated by a “brief discussion” on practical stability in
the monograph La Salle, Lefchet, (1961), Weiss and Infante
(1965, 1967) have introduced various notations of stability
over a finite time interval for continuous-time systems and
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constant set trajectory bounds.

Further development of these results was accredited to
many other authors.

In the context of finite or practical stability for a
particular class of nonlinear singularly perturbed multiple
time delay systems, various results were, for the first time,
obtained in Feng, Hunsarg (1996). It seems that their
definitions are very similar to those in Weiss, Infante (1965,
1967), clearly addopted to time delay systems.

In the paper of Debeljkovic et al. (1997) and Nenadic et
al. (1975, 1997), some basic results from the area of finite
time and practical stability were extended to the particular
class of linear continuous time delay systems.

Stability sufficient conditions dependent on delay,
expressed in terms of a time delay fundamental system
matrix, have been derived. In addition, in the circumstances
when it is possible to establish a suitable connection
between the fundamental matrices of linear time delay and
non-delay systems, the presented results enable an efficient
procedure for testing practical as well the finite time
stability of time delay systems.

The matrix measure approach has been, for the first time,
applied in Debeljkovic et al. (1997) for the analysis of
practical and finite time stability of linear time delayed
systems.

With the Coppel's inequality and the introduction of the
matrix measure approach, one provides very simple delay-
dependent sufficient conditions of practical and finite time
stability with no need for time delay fundamental matrix
calculations.

Another approach, based on a very well-known Bellman
— Gronwall Lemma, was applied in Debeljkovic et al.
(2000), to provide new, more efficient sufficient delay-
dependent conditions for checking the finite and practical
stability of continuous systems with state delay.

An overview of all previous results and contributions
was presented in the paper of Debeljkovic et al. (1999) with
overall comments and a slightly modified Bellman —
Gronwall approach.

Finally, a modified Bellman — Gronwall principle has
been extended to the particular class of continuous non-
autonomous time delayed systems operating over the finite
time interval, Debeljkovic et al. (2000.a, 2000.b, 2000.c).

The concept of Lyapunov asymptotic stability is largely
known to the control community.

However, Lyapunov asymptotic stability is often not
enough for practical applications, because there are some
cases where large values of the state are not acceptable.

For these purposes, the concept of finite time stability
can be used.

A system is said to be finite time stability if, once a time
interval is fixed, its state does not exceed some bounds
during this time interval.

It is important to point out that finite time stability and
Lyapunov stability are independent concepts: for instance, a
system which is finite-time stable could be Lyapunov
unstable, while a Lyapunov stable system could be finite-
time unstable if its state exceeds the prescribed bounds
during the transient period.

Recently, the concept of finite time stability has been
revisited in the light of the linear matrix inequality theory,
which has allowed to find less conservative conditions
guaranteeing finite time stability and finite-time
stabilization of continuous time systems.

Many valuable results have been obtained for this type
of stability; see, for instance, Amato et al. (2001), Moulay,

Perruquetti (2006), Moulay et al. (2008), Amato et al.
(1998, 2003, 2006), Garcia (2009).

Similar to systems without delay, we also need to
investigate finite time stability and finite time stabilization
for a class of time-delay systems.

There are few results concerning finite time stability and
finite time stability stabilization of time-delay systems.

Some early results on finite time stability of time-delay
systems can be found in Debeljkovic et al (2000), as
mentioned before.

The results of these investigations are conservative
because they use the boundedness proprieties of the system
response, i.e. of the solution of system models.

Recently, based on the linear matrix inequality theory,
some results have been obtained for finite time stability and
finite-time boundedness for some particular classes of time-
delay systems, Shen et al. (2007).

The papers Wang et al. (2010) consider the problem of
finite-time boundedness of the delayed neural networks.

In Lin et al. (2011), finite-time boundedness of switched
linear systems with time-varying delay and exogenous
disturbances are studied. Based on the average dwell-time
technique, sufficient conditions which can ensure finite-
time boundedness, finite-time weighted L, -gain Lin et al.

(2011) and H_, finite-time boundedness Liu, Shen (2011)

are given. Finite time stability and the time stability
stabilization of retarded-type functional differential
equations are developed in Moulay et al. (2008).

The papers Gao et ai. (2011) and Shang et al. (2011)
investigate the time stability stabilization problem for
networked control systems with time-varying delay.

In Shang et al. (2011) a particular linear transformation
is introduced to convert the original time-delay system into
a delay-free form.

According to the author's knowledge, there is no result
available yet on robust finite time stability and finite time
stability stabilization of linear uncertain time-delay systems
using linear matrix inequality.

Here we present the problem of sufficient conditions that
enable system trajectories to stay within the a priori given
sets for a particular class of time-delay systems.

Notations and preliminaries

A linear, multivariable time-delay system can be
represented by a differential equation:

X(t) = Ax(1)+ Ax(t—7)+Bou(t)+ Bu(t—7), (1)
and with the associated function of the initial state:
x(t)=0,(t), u(t)=9,(t), —v<r<0. )

Equation (1) is referred to as nonhomogenous or forced
state equation, x(7) is the state vector, u(¢) the control

vector, Ay, A1, By and B are the constant system matrices of
appropriate dimensions, and 7 is pure time delay, 7= const.
(z>0).

Dynamical behavior system (1) with initial functions (2)
is defined over the time interval 3 ={t,,  +7}, where

the quantity 7 may be either a positive real number or the
symbol +oo, so finite time stability and practical stability
can be treated simultaneously.

It is obvious that IR .
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Time invariant sets, used as the bounds of system
trajectories, are assumed to be open, connected and
bounded.

Let the index £ stands for the set of all allowable states
of the system and the index « for the set of all initial states
of the system, such that the set S, < Sg.

In general, one may write:

S, ={x(0): Ix(1)llG<p} (3)

where Q will be assumed to be a symmetric, positive-
definite, real matrix.
S, denotes the set of all allowable control actions.

Let |x(-) H(') be any vector norm (e.g., - = 1, 2, o) and
|(-)|] the matrix norm induced by this vector.

(), =(<" ()x(1))"  and

Here, we use

[, = A (4°4).

Upper indices * and T denote transpose conjugate and
transpose, respectively.

The matrix measure has been widely used in the
literature when dealing with stability of time delay systems.

The matrix measure x(-) for any matrix 4eC"™ is
defined as follows

2 1+ pdf -1
u(A)=lim = )

The matrix measure defined in (4) can be subdefined in
three different ways, depending on the norm used in its
definitions, Coppel (1965), Desoer, Vidysagar (1975):

,Ul(A)Zm/le Re(akk)+Z|aik| ) (5.a)
ok
yz(A):%max}L,-(A*+A), (5.b)
and
s (4)=max| Re(a;)+ Y Jag||.  (50)
k=1
k#i

From Mori (1988), the following inequality holds:
‘ [ Fl, <-u(-F)<u(F)<|F],. (5.d)

Basic notations

R - Real vector space

C - Complex vector space

F =(f;)eR™, - real matrix

FT - Transpose of the matrix F
F>0 - Positive definite matrix

F=>0 - Positive semi definite matrix
A(F) - Eigenvalue of the matrix F

o) (F) - Singular values of the matrix F

o{F} - Spectrum of the matrix F

Euclidean matrix norm | F || = |/ (47 4)

= - Follows
= - Such that

Time invariant time delay systems finite time
stability

Stability definitions

In the context of finite or practical stability for a
particular class of nonlinear singularly perturbed multiple
time delay systems various results were, for the first time,
obtained in Hsiao, Hwang (1996).

It seems that their definitions are very similar to those in
Weiss, Infante (1965, 1967), clearly addopted to time delay
systems.

It should be noticed that those definitions are
significantly different from the definition presented by the
autor of this paper.

Definition 1. A system is stable with respect to the set

{a, B, =7, T,|x|}, a<p if for any trajectory x(r)
condition Hx(t)H <p

[xof < @

Vte[-A, T], A=y, Hsiao, Hwang (1996).
Definition 2. An autonomous system is contractively

stable with respect to the set {a, B, -z, T,|x|},

implies

y<a<p, if for any trajectory x(¢) condition [x,|<«
implies:

(i) Stability w.r.t.{a, g, -7, T, |x|},
(i) There exists /" ]0, T[such that |x(¢)|<y for all
Vte J &, T [ Hsiao, Hwang (1996).

Definition 3. Autonomous system (1) satisfying initial
condition (2) is finite time stable w.r.t. {{(¢), B, 3} if and

only if [o,(0)f <& (¢), implies: [x(r)[f <p, 1€,
¢(t) being a scalar function with the property

0<{(t)<a, —7<t<0, where a is a real positive
number and f€R and S > a, Debeljkovic et al. (2001),
Nenadic et al. (1997).

Ix@”
A
B
________ ]| &
0.
o0l
i . . >
-T 0 T 27 T ¢

Figure 1. Illustration of the preceding definition

Definition 4. System (1), with u(¢ — 7) = 0, V¢, satisfying
initial condition (2) is finite time stable w.r.t.

{¢(t), B, e, 7, 3, u(Ay #0)} ifand only if

9. (t)eS,, Vie[-z, 0],



28 DEBELJKOVIC,D. etc.: FINITE TIME AND PRACTICAL STABILITY OF LINEAR CONTINUOUS TIME DELAY SYSTEMS ...

and
u(r)esS,, Vied,
imply
X(t,t, X)) €8s, V1T,

Debeljkovic et al. (2001)
Definition 5. System (1) satisfying initial condition (2)

is finite time stable w.r.t.
{a, B, &, €, 7.3, uy(4y)#0} if and only if
0.(1)€Se, @,(t)€S,,, Vie[-7, 0], (13)
u(t)esS,, ViedJ,

imply:
x(t,t,x0,u(r))e Sz, Vte3J,
Debeljkovic et al. (2001).

Definition 6. System (6.a) satisfying given initial
condition (6.b) is finite time stable with respect to

{a, B, 3}, where 0<a<p,if sup @L(t)oL(t)<a
0]

te[-,

implies H x(1) H2 <pB, teJ, Stojanovic et al (2012).

Dependent delay stability conditions

Stability theorems
Theorem 1. Autonomous system (1) with initial function
(2) is finite time stable with respect to {a, S, 7, J} if the

following condition is satisfied

O«

Lz,

o (1)< Vie3, (6)
where |(-)]| is the Euclidean norm and ®(¢) is the

fundamental matrix of system (1), Nenadic et al. (1997),
Debeljkovic et al. (2001).
Theorem 2: Autonomous system (1) with initial

function (2) is finite time stable w.r.t. {a, S, 7, T} if the
following condition is satisfied

w0y NBla

e < —————

R Vte 3, 7
T o]A] @

where || ()| denotes the Euclidean norm, Debeljkovic et

al. (2001).
Theorem 3. Autonomous system (1) with initial function
(2) is finite time stable with  respect to

{a, B, 1, T, uy(A4y) # 0} if the following condition is
satisfied

/lz(Ao)t pla
¢ < -1 —t2(Ag)T
Tt ()11 Ay 1 {1 =e ) ®
VZ‘ES[O, T]

Debeljkovic et al. (2001).
Theorem 4. System (1), with initial function (2) is finite

time stable w.rt. {{(1), B, & 7, 3, uy(A4y)#0, B, =0}
if the following condition is satisfied

e#Z(AO)t <%, )

6= (A) () A 100

(10)
a7 (A)7 1By Iz (1-e200)), Vied.
where,
r=1 o (Ag) =% T (Ao + 45 ), (11)

Debeljkovic et al. (2001).

Theorem 5. System (1), with u(z — 7) = 0, V¢, satisfying
initial condition (2) is finite time stable w.r.t.
{S(1), B, &, 7. T, uy(A4y)#0, B =0}, if the following
condition is satisfied

(+el L)+ 7 1B <, wies,  (2)

where y is given with (33), Debeljkovic et al. (2001).

Theorem 6. Autonomous system (1) with initial function
(2) is finite time stable with  respect to

{\/E, \/E, , T, u(4)= 0} if the following condition is

satisfied

1+7| 4 |,<NJB/a, Vte|0, T], (13)

Debeljkovic et al. (2001):
Theorem 7. System given by (1), with initial function (2)

is finite time stable w.r.t. {a, B € €, 7,3, s (AO) # O}
if the following condition is satisfied

e#z(Ao)t

,Uz(Ao

<Bla-d, Vie3, (14)

where

o=, (Ao ) +a (”1 (1 el ) +

(15.a)
+7Z'2 (l_e_/-‘Z(AO)t))
m=1+b(y+7,), m=y(by+b), (I15b)
_ _1Bo |l _1Bo |l
ay =4, b= a , by = a (15.c)
_E _%
7/_0!9 yq) a (15(1)

Debeljkovic et al. (2001).
Theorem 8 Time delayed system (1) is finite time stable

with respect to {tO,S,a,ﬂ, ()Hz}, a < f3, if the following

condition is satisfied:

el\max(n)(t*to) < é, Ve . (16)

]
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where:
Amax(n)zﬂ’lmax( )+T'/12max( ) (17)

and:

At ()= P (40 + Ao )+ (4T +.4,)) (18

Armax ()= A2ma (@(AleAgAlT + A1A1A1TA1T)+

2 19
Y )
®
with: ¢ >0 and g >1, Debeljkovic et al (2011.a).
Proof. Let us consider the continuous linear time delay
system described by differential delay equation (1).
Let x(¢), 120 be the solution of (1) if the initial

moment and state are 0 and @, (¢).

It is very well known that if the x(¢) is continuously

differentiable for ¢ > 0, one can write:
0
x(t-7)= x(t)—j(AOX(t+19)+Alx(t—r+19))d3, @1

for t > 7, Hale (1977), so the basic system dynamics in (1)
can be rewritten as:

X(t):(AOO+A,)x(t)_
_AlI(A(,x(mg)JrAlx(t_Hg))a,UQ (20)

-7
for an arbitrary continuous initial function ¢(¢) on the time

interval ¢ €[-29, 0].

It is stated in Hale (1977) that the asymptotic stability of
(20) can assure the asymptotic stability of the original
system (1), since the basic system (1) is only a spacial case
of a system whose dynamics is described by (20).

This important fact will be directly used in the second
part of this investigation, namely when the attractive
practical stability is considerd.

In this section, for the sake of simplicity, we will use
(20) to obtain a sufficient condition of finite time stability
of (1) since the conditions to be fulfilled are less severe
than to achive asymptotic stability,

Let us define the tentative aggregation function as:

V(x(t))=x"(¢)x(¢). 21

The total time derivative ¥ (x(¢)) along the trajectories
of the system yields:

V(x(2)=x" (t)((A6+40 )+ (AT +4, ))x(¢)

) I K (£) Ay (Agx(t + S)r A x (--r+8)) 9
Now, we follow Su (1994).

Following the Ruzumikhin-type theorem, Hale (1977),
we assume that for some real constant g >1 the following

(22)

inequality holds:

V(x(&))<q'V(x(t)), t-29<é&<t. (23)

Furthermore, by using the following inequality, for any
real constant g >0 and any symmetric, positive definite

matrix 2, E=27 >0:

“2u’ (1)v(t) < pu’ (t)Elu(t)+éVT (1)2v (1), (24)

we obtain:

—2ij (t) A Apx(t+3)d I <
< j.(pr (z)AlAOAgAlTx(z)TIOxT (t+9)x(t+3))d3

-7

2
<rx’ (t)(goAleAgAlT +Zozjx(t)

. (25)

2
<T A [goAleAgAlT +Z01JXT (£)x(7)
and in the same way:

—2j (t) 4 Ax (1 -7+ 9)d 9 <
(26)
<T A [goA A, AT 4T +—1J (t)x" (2)
2
Using (25) and (26), one may have:

PV (x(0)<

<Ay ((Ag +dg )+ (4] + 4, ))xT (1)x" ()
2
T Ay {@(AlAOAgAﬁAlAIA{A{ }2%1}%0)#(;)

< A (T X" (2)x7 (1)

27)

Amax (H) Amax (AO’AI’ ) llmax( )'H-ﬂ’Zmax( ) (28)

From (27) one can get:

d(xT (t)x(t)) 3
X' (1)x(t)

Amax (IT)d t ,(29)

or:
cd(x" (1)x(1))
t.[ x' (£)x(t) J./Imax ’ 30)
and:
X (6)x(t)<x" (to)x(to)elma"(n)(Ho) ) (31)

Finally, if one uses the first condition of Definition 3,
then:

¥ (£)x(1) <@t Mi0) (34)

and finally by (16), yields to:
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xT(t)x(t)<a'§<ﬂ, Vte3, (35)

which has to be proved. Q.E.D.
Theorem 9. System (1) is finite time stable with respect

to (a,p8,T), a < f3, if there are nonnegative scalar @ and
positive define symmetric matrices P and Q such that the
following conditions hold

(A P+PA+Q—pP P4

mum (P)+ 7 A (0)) 7 < g (37)

Stojanovic, Debeljkovic, Antic (2012)
Proof. Let us consider the following Lyapunov-like
function

t

V(x(t)):xT(t)Px(t)+JxT (9)0x(9)d9  (38)

-7
Then, the time derivative of V(x(t)) along the solution
of (1) gives

V(x(1))=x"(1)( 4" P+ P4y +Q)x (t)
X7 (1) PAx(1-7) = (t=1)Ox(—7) (39)

=0T &0
where
(X' (1) ¥ (t=7)]",
(AO P+PAO+Q PAIJ
-0
Hence

P (x(0)=¢ Ore)=g o= 5" §))s0)
<gT(t)Qg(t)+gT(t)(5"P 0)2‘;(1?)
<O Y=o ex @D

t
<p{xT(t)Px(t)+ j xT(S)Qx(H)dSJ
t—7
<@V (x(1))
Multiplying (41) by e ", we can obtain

Llev (x(1))) <0 (42)

Integrating (42) from 0 to ¢, with ¢ €[0,7], we have
V(x(1)) < e”V (x(0)) (43)
Then

V(x(o))sz(o)Px(o)+j(pT(s)Qq,(g)ds

< A (P) & + A (0)7 -2 (44)
= a(ﬂmax (P) ot + A pmax (Q)‘r)
On the other hand,
V(x(2))>x" (£)Px(1) = Ain (P)X" (£)x(2)  (45)

Combining (43), (44) and (45), we get

X (0x(1) < 75 (e (P A (Q)

(46)
< e (P (@), <[0T
If
ﬂmf (P) (Amax (P)+7 A (Q)) ™ < B (47)
then
X' (1)x(t) < B, Vte[0,T]. (48)
Q.E.D.

Remark 1 It should be pointed out that the condition in
Theorem 9 is not standard LMIs condition with respective
to ¢ and P . However, once we fix ¢, it can be turned

into an LMIs based feasibility problem which can be solved
via existing software.
Theorem 10. Suppose that the certain matrix

(Ag +Ag+ A4 +I) is positive definite.
Then the autonomous system (6.a) with initial function
(6.b) is finite time stable with respect to {a,f, 7, T}, if

a < 3, such that the following conditions hold:

(1+2)eimmme B (49)

Proof: Let us consider the following Lyapunov-like
aggregation function:

t

V(x(1)=x" (£)x(c)+ j X' (9)x(9)d9,  (50)

-7

Denote by ¥ (x()) the time derivative of ¥ (x(¢))
along the trajectory of system (1), so one can obtain:

V(x(t))=x" (t)x (¢ px" (t)x(t)%% I X' (9)x(9)d 3
=x (t)(A€+AO)x(t)+2xT ()Aix(t—7)  (51)

+x" (1)x(t)-x" (t-7)x(t-71)

Based on the well-known inequality1 and with the
particular choice:

X' (OTx(¢t)=x" (1) Ix(t)>0, Vx(t)e Sz, (52)

"ou" (f)v(t—z)<u” ()T u(t)+v"

(t-7)Tv(t-7),T>0
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so that:
V(x(£)<x" (¢) (40 + Ao + A4l +1)x(2)
<x" ()IIx(z) , (53
< A (1) x" x(1)

under the assumption given by Theorem 10.
Moreover, it is easy to see that:

t

V (x(£)) <Aanar (1) X7 X (£} (n)j ¥/ (9)x(8)d9

since J x' (9)x(8)d9>0 and A, (11)>0.
-7

Multiplying (54) by ¢ Fmax (D1 , We can obtain:

d [ (1)
E(e H Wy (x(1))) <0, (55)

Integrating (22) from 0 to ¢, with ¢t € I, we get:
V(x(r))<e™"" v (0). (56)

From (50) it can be seen:
7(0)=x" (0)x(0)+ [ ¢7 (0)9(0)d3

<x" (0)x(0)+o" (0)0(0) [d5 . (57)
<a+a-t=a(l+7) N

in the light of Definition 6.
Combining (56) and (57) leads to:

V(X(t))<0‘(1+7)~e/1maX(“)'t 8

On the other hand:

t

< (t)X(l)<XT (t)X(l)"‘ J. x! (19))((19)(1'19:’ (59)

-7

=V (x(t))<a(l+7)- ™"
Condition (50) and the above inequality imply:
X (O)x(t)<a(l+7)-™ M < g vieT, (60)

which has to be proved.
In the case of a non-delay system, e.g., when 7=0

or4, =0, the result given in (49) is reduced to Angelo
(1974).

Independent delay stability conditions

The results that will be presented in the sequel enable the
checking of finite time stability of the autonomous system
to be considered, namely the system given by (1) and (2),
without finding the fundamental matrix or corresponding
matrix measure.

Eq. (2) can be rewritten in its general form as:

x(t+93)=9,(9), ¢0.(9)eC[-r, 0]
-7<9<0

(61)

where ¢ is the initial time of observation of system (1) and
C[-t, 0] is the Banach space of continuous functions
over a time interval of length 7, mapping the interval
[(t—r), t] into R" with the norm defined in the
following manner:

o] , = max [@(9)]. (62)

-7<8<0

It is assumed that the usual smoothness conditions are
present so that there is no difficulty with questions of
existence, uniqueness, and continuity of solutions with
respect to the initial data.

Moreover, one can write:

x(to +19):q)x (3), (63)
as well as:

x(to) =1 (t0,9.(9)). (64)

Theorem 11 The autonomous system given by (1) with
initial function (2) is finite time stable w.r.t. {¢y,3,a, 8} if

the following condition is satisfied
(1+(f t ) 2 2(t-10)omax ﬁ <
—t0 O-max) e < Es Vied ’ (65)

Omax (+) being the largest singular value of the matrix (-),
namely
Omax = Omax (AO ) + Omax (Al ) . (66)

Debeljkovic et al. (2001).
Theorem 12. The autonomous system given by (1) with

initial function (2) is finite time stable w.r.t. {¢,3,, 8} if

the following condition is satisfied
GAito)oma g Vied, (67)

where 0, (+) is defined in (66), Debeljkovic et al.

(2001).
Remark 2. In the case when in Theorem 11 4, =0, e.g.

A4, is null matrix, we have the result similar to that

presented in Angelo (1974).

Practical stability

Delay dependent stability conditions

Stability definitions
Definition 7. System (6.a) with initial function (6.b), is
attractive practically stable w.r.t. {to ,3,5,, Sﬁ} , if:

(2 )H2 = HX0H2 <a,

implies:
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Ix(0)]> < B, vie3,
with a property that:

lim Hx
k—w

H -0.

Stability theorems

Theorem 13. System (6.a) with initial function (6.b), is
attractive  practically  stable  with  respect to

{

P =P" >0 being a solution of:

()HZ}, a< f, if there exists the matrix

Al P+ P4, =-0Q, (68)

with the matrice Q=07 >0,
conditions are satisfied:

and if the following

] <o 0° Jods(22P). (69)
and:

e man ()=o) ﬁ, Viesd, (70)
where:

A (B) = Aimax () +7 Aamax () - (71)

with Ajpay () and A, () given by (18) and (19) with
# >0 and g >1, Debeljkovic et al (2011.b)

Remark 3. The asymptotic stability of (1) is quaranted
by (68) and (69).

Theorem 14. System (1) with initial function (2), is
attractive  practically  stable  with  respect  to

{

P =P" >0 being a solution of:

()Hz}, a< B, if there exists the matrix

Al P+ P4y =-21, (72)

and if the following conditions are satisfied:

I« (73)
and:
Hmm®0) By s (74)
a
where:
Ao (Z) = Dimax ()47 Aomax () - (75)

with A; e () and ﬂzmax( ) given by (18) and (19) and

|4 IH

Proof. Define the tentative aggregation function as:
V(x(t))=x" ()P x(t). (76)

The proof of the asymptotic properties of the system
under consideration is identical to that presented in Xu, Liu
(1994) for the particular case when:

@>0and 1<g<—— /1mlax ), Debeljkovic et al (2011.a).

f(t.x(t-7(1)))= Ax(t-7). (77)

It is clear that the asymptotic stability of (6) is quaranted
by (72) and (73), based on the results presented in Xu, Liu
(1994) and the additional corrections in Mao (1997). Q.E.D

Theorem 15. System (1) with initial function (2), is
attractive  practically  stable  with  respect  to

{

P =P" >0 being the solution of:

()Hz}, a< B, if there exists the matrix

Al P+PAy =0, (78)

with the matrix Q = Q" > 0, and if the following conditions
are satisfied:

[4)] < G (Qijo—;lzx (Q;Pj, (79)
and:
pralto) o _NBla o (80)

I+ 4],°

L, (40) being any matrix measure, Debeljkovic et al

(2011.a).

Proof. The asymptotic stability of (1) is guaranteed by
(78) and (79), based on the ideas presented in Tissir,
Hmamed (1996).

To prove finite time stability, one should start with the
solution of (1) with the given initial function (2) and the
approach given in Debeljkovic et al (2011.a).

A detailed overview of different contributions in the area
of finite time stability for particular classes of time delay
and singular — descriptor time delay systems can be found
in papers Debbbeljkovic et al. (2010.a,2010b, 2011.c,
2011.d, 2012.a, 2012.b)

APPENDIX A

Some additional results

Lemma 1. Let O(¢) be an n x n characteristic matrix
for autonomous system (1) with initial function (2), also
continuous and differentiable in [O, T] and zero elsewhere.

Define the following vector:

+IQ(t)x(t—6)dt9, (A1)
0
where the matrix Q(f) satisfy the following matrix
equation:
0(0)=(4+0(0)-0(0)0. <0, 7], (A2)
with the boundary value:

O(r)=4,, (A3)

Lee, Diant (1981).
If

V(y(0)=y"(1)y(1), (A4)
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is the aggregation function for system (1), then

V(y(1)=y" ()(-R)y (1),

(A.5)

where:

~R=(4y+0(0))" +(4 +0(0)), (A.6)

The proof is omitted, for the sake of brevity and can be
found in Lee and Diant (1981).

Theorem A.1 If 4;, is the maximum eigenvalue of the
matrix (—R) being defined by (A.6), then

[io@ oo <00 [ 1xt-o)1a0 )

Debeljkovic et al. (2001).
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Prakti¢na stabilnost i stabilnost na kona¢nom vremenskom intervalu
linearnih kontinualnih sistema sa Cistim vremenskim kasnjenjem -
klasi¢an i moderan pristup: Pregled rezultata

Ovaj rad daje detaljan pregled radova i rezultata autora ovog ¢lanka na polju neljapunovske stabilnosti (stabilnost na
kona¢nom vremenskom intervalu, tehni¢ka stabilnost, prakti¢na stabilnost, krajnja stabilnost) posebne klase linearnih
kontinualnih sistema sa Cistim vremenskim kasnjenjem u stanju.
Ovaj pregled obuhvata period posle 2000.godine, pa sve do danas$njih dana i ima snaZnu nameru da predstavi glavene
koncepte i doprinose koji su stvoreni u pomenutom periodu a koji su publikovani u medunarodnim ¢asopisima ili
prezentovani repektabilnim workshop-ovima na prestiZznim medunarodnim konferencijama.

Kljucne reci: kontinualni sistem, sistem sa kaSnjenjem, sistem na kona¢nom vremenskom intervalu, stabilnost sistema,

neljapunovska stabilnost, prakti¢na stabilnost.

CTa0MJIbHOCTH B IPAKTHKE U CTA0WJIBHOCTD HA KOHEYHOM
HHTEepPBaJie BpeMeH! JIUHEHHBIX HeMPpePbIBHBIX CUCTEM C
3ana3AbIBAIIIMM APrYMEHTOM — KJIACCUYECKUN U COBPEMEHHbI
noaxoa: O030p pe3yabTaTOB

JTa CTaThsl CONEPKUT INOAPOOHBIH 0030p padoT M pe3yJbTATOB aBTOPa 3TOH CTATbH HA IMOJe HeJSIYHOBCKOI
YCTOMYMBOCTH (CTAOMJILHOCTH HA KOHEYHOM MHHTEpBajle BpPeMEHH, TEeXHHYecKasi CTa0WIbHOCTh, MPaKTHYeCKasi
CTA0MJIbHOCTD, BBHICOKASI CTA0MIBHOCTD) CHEHHATIBHOI0 KJIACCA JMHEIHbIX HeMPEPbIBHBIX CHCTEM C 3aMa3IbIBaAl0LUM
ApryMeHTOM B COCTOSIHMH. DTOT 0030p oXBaTbiBaeT nepuoa nocie 2000 roga v no ceii J1eHb U UMeeT CUJIbHOE HAMepeHHe
MPEICTABUTH OCHOBHBIE MOHSITHSI U B3HOCHI, KOTOPbIE CO3IAHBI B TOT MEPHOI, a2 KOTOpPbIe ObUIH OMy0JIMKOBAHBI B
ABTOPUTETHBIX MEKIYHAPOAHBIX KYPHAJIAX MM NMPeICTaBJeHbI HA MPECTHKHBIX MEKIYHAPOAHBIX KOH(pepeHIHsIX, a

HEKOTOPbIEC U3 HUX U HA MPECTHKHBIX MUPOBBIX CEMHHapax.

Knrouegvle cnosa: HEMpepbLIBHAA CHCTEMA, CHCTEMA C 3ama3/ibIBAHHEM, CHCTEMAa HA KOHEYHOM HHTEPBaJji€ BPEMEHH,
yCTOﬁ‘lHBOCTL CHUCTEMbI, HEJIITYHOBCKasI CTaﬁl/lJILHOCTL, NpaKTH4YeCcKas CTa0MIBHOCTD.
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Stabilité pratique et stabilité sur ’intervalle temporelle finie des
systémes linéaires continus a délai temporel pur — approche classique
et approche moderne: Tableau des résultats

Ce papier donne un tableau détaillé des travaux et des résultats de Pauteur de cet article réalisés dans le domaine de la
stabilité de non Lyapunov (stabilité sur I’intervalle temporelle finie, stabilité technique, stabilité pratique, stabilité finale)
de classe particuliére des systémes linéaires continus a délai temporel pur. Ce tableau comprend la période aprés ’an
2000 jusqu’a nos jours et son intension est de présenter les concepts principaux et les contributions réalisés pendant la
période citée et publiés dans des revues internationales ou bien exposés aux ateliers de renom, lors des conférences
internationales de prestige.

Mots clés: systéme continu, systéme a délai, systéme sur I’intervalle temporelle finie, stabilité de systéme, stabilité de non
Lyapunov, stabilité pratique.



