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This paper deals with basic nonlinear differential equations describing non-linear phenomena in the dynamics of systems
with one or more degrees of freedom. It presents the most important results from the papers presented at the Non-linear
Dynamics Mini Symposium held during the Congress of Serbian Society for Mechanics IConSSM 2011.
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Introduction

ET us start with the list of the nonlinear differential

equations describing non-linear oscillations presented
in the classical books such as “Theory of Oscillations” by
D.Ragkovi¢ [12] and K.Hedrih (Stevanovié¢), [1-2]. The
asymptotic methods for obtaining approximations of the
solutions of nonlinear differential equations are presented in
monographs [4-11] written by Mitropolskiy. The series of
characteristic nonlinear differential equations of non-linear
dynamics in a mechanical engineering system abstracted
into a theoretical model of nonlinear dynamics of systems
with one degree of freedom is presented in the series of the
papers [3,14] written by K.Hedrih (Stevanovic).

Out of the papers listed in References II [15-24]
presented at the Non-linear Dynamics Mini Symposium
Proceedings IConSSM 2011, Serbian Society of
Mechanics, the author made a selection for a suitable
presentation in this review paper. The equations serving as
a basis for new equations are presented together with the
newly obtained ones. The methods used for equation
solving are given as well.

A list of selected characteristic nonlinear
differential equations on the basis of non-linear
oscillations

Differential equations for the case of non-linear free
oscillations of a conservative system

One of the basic nonlinear differential equations
describing the nonlinear dynamics of a conservative system
with one degree of freedom is in the form [1-2, 4-11, 12]:

ag +F.(q9)=0 2.1

where: a is the coefficient of inertia, F, (¢) is the restitution
force which depends on the generalized coordinate g.
The equation can be written as:

G+k f(q)=0 2.2)

The previous ordinary nonlinear differential equation
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corresponds to the free nonlinear dynamics of a mechanical
system with one degree of freedom in which the total
mechanical energy is constant during the system dynamics.

Differential equations for the case of simple forced non-
linear oscillations without a damping force

One of the basic nonlinear differential equations
describing the nonlinear forced dynamics of a conservative
system with one degree of freedom loaded by an external
single frequency force is in the form [1-2, 4-11, 12]:

ag + F,(q) = Q1) = Oy sin Q1 (23)

where Q(f) = 0, sin Q¢ external single frequency force with

the amplitude Q, and the circular frequency Q.

Differential equations for the case of simple forced non-
linear oscillations with a nonlinear damping force

One of the basic nonlinear differential equations describing
the nonlinear forced dynamics of a non conservative system
with one degree of freedom loaded by an external single
frequency force is in the form [1-2, 4-11, 12]:

ag+®d(q)+cq=Q0sinQt 2.4

where the damping force is a nonlinear function of the
system velocity, and the problem is in many cases reduced
to simple forced oscillations with a linear damping force or
proportional to the square of the system velocity as it is
determined by Jacobsen.

General form of the equations of free reo-linear
(rheonomic) oscillations

One of the basic rheolinear differential equations describing
the rheolinear free dynamics of a rheonomic system with one
degree of freedom is in the form [1-2, 4-11, 12]:

X+P)x+Q0@)x=0 or mx+bx+cx=0 2.5

where: P, O, m, b, c, are the continuous functions of the
time ¢. This differential equation is with a coefficient as a
function of time.



STAMENKOVIC,M.: NONLINEAR DIFFERENTIAL EQUATIONS IN CURRENT RESEARCH OF SYSTEM NONLINEAR DYNAMICS 63

Mathieu’s differential equation of the second order

A special case of the previous rheolinear differential
equation is in the form of Mathieu’s differential equation of
the second order in the following form [1-2, 4-11, 12]:

2
d—f+(/l+7/cosr)x:0 (2.6)
dr

or
¥+(A+ycost)x=0 (2.7)

where: 7=CQ¢ is a variable, but 1=g/Q?=w?/Q> and

y =a/l are its parameters.

Review of the characteristic equations of non-
linear dynamics by the author’s choice

Nonlinear differential equations of motion and the phase
trajectory equation of the heavy mass particle dynamics
along the rough parabolic, cycloid and circular line:

a) An ordinary nonlinear differential double equation of
motion of the heavy mass particle nonlinear dynamics
along the rough parabolic line is derived by K.Hedrih
(Stvanovic) and presented in reference [3] in the follow-
ing form:

¢+(3tgp+ u)f +%f3¢(sin¢iycos¢):o 3.1)

In addition, the corresponding double equation of the
phase trajectory is in the following form:

¢2 =cos® ¢(— g 5

pcos” ¢

+ Ceﬁﬂfﬁ) (3.2)

and presents the first integral of the previous ordinary

differential double equation of motion of the heavy mass

particle nonlinear dynamics along the rough parabolic line.

b) Ordinary differential double equation of the heavy mass
particle along the cycloid rough line is presented in ref-
erence [3] in the form:

¢52 =cos® ¢(— £ 5

pcos ¢

+ ce+2”¢) (3.3)

Also, the corresponding double equation of the phase
trajectory is in the following form:

¢;2 _ (%j 1

- 2
I+4u” o052 g 3.4)

2
[(13#)5111(/5 —(1-24*)cos ¢ +# + Ce¢2”¢:|

and presents the first integral of the previous ordinary

differential double equation of motion of the heavy mass

particle nonlinear dynamics along the rough cycloid line.

¢) Ordinary differential double equation of the heavy mass
particle along the rough circular line is presented in
reference [3] in the form:

¢'5J_r¢32tga0+Rcfw sin(g+ay)=0 3.5)

0

Also, the corresponding double equation of the phase

trajectory is in the following form:

. 2 2g
#(4) _(l+4tg2aO)Rcosa0 (3.6)
.[COS(¢iao)—2tga0 sjn(¢ia0)]+ce¢2¢tga0

and presents the first integral of the previous ordinary
differential double equation of motion of the heavy mass
particle nonlinear dynamics along the rough circular line.

The nonlinear differential equation of the heavy gyrorotor-disk
self rotation in the case of coupled rotations around two
orthogonal axes is in the following form (see reference [18)]):

$ +Q*(A—cosg )sing, + Q% cosg, =0 (3.7)

and presents the equation of motion of the heavy gyrorotor
disk with one degree of freedom and the coupled rotations
when one component of rotation is programmed by a
constant angular velocity.

The dynamics of Watt’s regulator is described by this
nonlinear differential equation.

The nonlinear differential equation of the relative motion of
the heavy material particle along a circle which rotates
around the skewly positioned axis with respect to the
horizon, is in the following form (see reference [14]):

¢ +Q? (1 —cosg)sing—Q’scosg =

C (3.8)
= Q" Actga cospcos Ot

The nonlinear differential equation describes the
equation of the motion of the heavy material particle along
a circle rotating around the fixed axis. Based on a simple
model, the nonlinear dynamics with one degree of freedom
of oscillatory motion is obtained.

The Van der Pol non-linear differential equation is in the
following form (see reference [20]):

d) Non-dimensional equation of the Van der Pol oscillator

Cerof(e42 Josen(e)e =Foosar - (39)

e) Differential equation which corresponds to the Van der
Pol damping

d , d
f(éfj}(f —1)d—f (3.10)

where: & is the non-dimensional displacement; 7 is the non-
dimensional time; € is a small constant, i.e. e<< 1; F and Q

are the magnitude and the frequency of the harmonic
excitation.

The non-linear damping force defined by relation (3.10)
corresponds to the Van der Pol damping which dissipates
energy for large displacements and supplies energy to the
system for small displacements. As such, it gives rise to
limit cycle oscillations of free oscillators modeled by
equations (3.9) and (3.10) with F=0.

The nonlinear equations of motion presented in reference
[21] in the form:

Mii + fp () + fs(u) = p(7) G.1D)
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This equation is obtained based on the dynamic
equilibrium of the external, internal and inertia forces,
where: f;(t)=Mii is the inertia forces, f,,(t)= fp(u) the
damping forces (nonlinear function), fs(f)= fs(u) the
elastic forces (nonlinear function) and p(z) are the external
excitation forces; u=u(t) is the displacement vector.

Equation (3.11) presents the basic equation of motion
with which J.T.Katsikadelis’s [21] new direct time
integration method is presented for the solution of the
equations of motion describing the dynamic response of
structural linear and nonlinear multi-degree of freedom
systems.

Analysis of characteristic equations in the basis of
non-linear oscillations in reference [12]

As a primary equation for the case of free non-linear
oscillations, equation (2.2) is given (see reference [12]).
Based on it, the first integral is done as well as the law of
motion in the form of:

d(q) =v(g) = Fk 2jfnﬂd§ @.1)

q

4.2)

_ 1q dn
’(")‘kﬁ! J7(a0)-7 (1)

This is the case when the function f{g) is given by an
analytical expression.

For example, with the rectilinear harmonic oscillation
Ag)=g=x, so k=w, the law of motion is presented in the
form:

(4.3)

lj‘ dn 1 X
t=— =—arcsin—+-
wo /xg_nz w X0

The sine and parabolic characteristics are further
considered.

The law of motion for sine characteristics (pendulum)
according to (4.2) is presented in the form:

[
po 1 j dn _
kN2 o 4/COS77 —COS ¢ (4.4)

0
do 1
——F——=_"F(&,0)
-!\/1—52 sin2@
where: ¢ is the generalized coordinate, ¢ is the module, 6 is
the amplitude.

The period of oscillating is also determined, depending
on the module :

| —

/2
TZAJ'L
k 0 \1-g2sin? 6

The equation of motion with parabolic characteristics
where the movement is observed for a quarter of the period
in reference [12]:

= %K(a;ﬁ/2) (4.5)

G+k2g" =0 (4.6)

The law of motion and the period of oscillations for
parabolic characteristics are:

a/q0

_1 1 ¢
((q)=1 /2”612,1 ! e @.7)

r=4_1 LHI ¢ 1:4 1 y(n) (438)
e e e

where: ¢ =n/q, ,and y (n) are the introduced functions.

All this is illustrated in more details in D. Raskovi¢ [12].

Based on equation (2.3) (see [1-2, 4-11, 12]) which
presents the differential equation of movement in the case
of simple forced oscillations without the resistant force, the
expression for the law of motion and the amplitude in the
case of resonance is defined as:

2
q = CsinQt —%(é) a,C*sin3Q¢ 4.9)

C=3/4n/3ka,

While the amplitude for the case of forced oscillations with
the resistant force is obtained based on (2.4) in the form:

(4.10)

C=N-= . h
\/(k2 _QZ) + 4§2V/2C2(r171)92n

(4.11)

A general method for solving differential equation (2.5)
is the integration using the chains of T. Pejovic [13].

When the quasi-elastic coefficient ¢ from equation (2.5)
changes linearly with time, then the differential equation of

free oscillations without amortization is obtained in the form:
X+tx=0 4.12)

and its solution is in the form of the Macloren’s chain.
x=A0+Aﬂ+Aﬂ2+~4u@ﬂ+~-=§:AJv (4.13)
v=0

A, are constants that have to be determined in order to
satisfy equation (4.12)

The general integral of equation (4.12) is presented in
the form:

x=A0pl (t)+A1p2(t)

In the case of free amortized oscillations, the differential
equation is in the form:

(4.14)

X+tx+x=0 (4.15)
whose general solution is:

where 4, and 4, are the integration constants, and p;(¢) and
po(f) are the particular integrals also presented in D.
Raskovic [12].

The general solution of equation (2.6) is obtained in the
form:

x=Ae" p(t)+Be " p,(t) 4.17)

where A and B are the integration constants which have to
satisfy the initial conditions, x is the characteristic
exponent, and p;(?) and p,(?) are the periodic functions of ¢,
period 2.
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Based on Mathieu’s equation (2.6) in D. Raskovi¢ [12],
the differential equation of small oscillations is in the form:

I§+21+gd=0

as well as Mathieu’s differential equation for the variable 7.

(4.18)

T+(A+ycost)T =0 (4.19)

Analysis of the characteristic differential equations of
the non-linear dynamics presented in References 11

Based on the results of K.Hedrih (Stevanovic) [3] and the
equations from (3.1) to (3.6) in the work by Jovic and
Raicevic¢ in reference [19], the analyses of the vibro-impact
system dynamics of two heavy mass particles moving freely
along non-ideal lines of rough curvilinear paths in the
vertical plane in the shapes of parabola, cycloid and circle

Ei (¢) = Ek,' (¢) + Ep,‘ (¢) =

RS

1+4,u Cosz

=2mR? cos®

S
‘S~

E(§)=E (§)+E, (¢) =%mR2 [ ( 2g

1+41g°a, )R cos

The graphs of visualization of the energy analysis of the
observed vibro-impact system are also given. For every
separate branch of the phase portrait, there is a graphic
presentation of the alternation of Fiy, P, E;, E, and E from
the initial moment of motion until the moment when the
heavy mass particle returns into the equilibrium position.

Based on equation (3.7) in the work by K.Hedrih (Stevanovic)
and Lj.Veljovi¢ (see reference [18)), the expression for the phase
trajectory equation is obtained, and the nonlinear dynamics of
the rotation of the heavy gyrorotor-disk around its shaft axis is
possible to be presented with the phase portrait method.

Nonlinear differential equation (3.7), based on the model
shown in Fig.1, is obtained:

Figure 1. Model of a heavy gyrorotor with two component coupled
rotations around the orthogonal axis without intersections

The forms of phase trajectories and their transformations
by changes of the initial conditions, for different cases of
the disk eccentricity and its skew angle as well as for
different values of the orthogonal distance between the axes

{(iSy)sin¢—<1—2,u2)cos¢+ 3

are performed. The oscillator is composed of one heavy
mass particle with one degree of freedom of motion limited
by one or two stabile elongation limiters.

Using the previously listed nonlinear differential equations
of motion, in the work by S.Jovic and V.Rai€evi¢ in reference
[19], the expressions for the phase trajectory equation in the

phase plane (¢,¢) necessary for the energy analysis of the

dynamics of vibro-impact systems together with the energy
equation curves are illustrated. In addition, the methodology of
the energy transfer investigation among the elements of the
observed vibro-impact system is presented.

In this paper, only the expressions for the total mechanical
energy E{p) are presented in the following forms:

Ei(¢):Ek;(¢)+Epi(¢):
1.2 & wupy , 1 _MgP (5.1
2" ( pcosz¢+ce ’ )+2cos 20

1+ 447 (5.2)

+ C,-eﬁ”q +mgR(1—cos ¢)

[cos(¢ £ ay)—2tgay sin(p+ )]+ Ce™E ]+ mgR(1—-cosg) (5.3)

of component rotations,

nonlinear oscillations.
For that reason, it is necessary to find the first integral of

differential equation (3.7) which is in the following form:

may present the character of

4 = &, +2(22(/1cos¢2 ~cos ¢2+1//s1n¢2)

(5.4)

-20? (ﬂcos%z —5cos 2 oo + (//sin¢02)

In the cited paper (see reference [18]), the trajectories of

the vector rotators are presented with the series of three
parameters transformations.

Nonlinear differential equation (3.8) is presented in the
paper by K.Hedrih (Stevanovié) (see reference [14]) and in
that paper a suitable linearized approximation and an
optimal control of nonlinear dynamics is performed.

Nonlinear differential equation (3.8), based on the model

shown in Fig.2, is obtained:
I S

| B
.-"'---' H o -~
; T 'f\"}r b=
s ».l# P
/ - I‘\_ ___.--""J §
i

Figure 2. Motion of the heavy material particle along a circle rotating
around the fixed axis. Simple model of the nonlinear dynamics.
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As for linearized approximation around stationary points
(which correspond to relative equilibrium positions), the
paper considers special cases of the heavy material particle
of free and forced dynamics in the case when the
eccentricity e is equal to zero. Let us present these special
cases:

1* For the case when A >1, small oscillations around
the stable relative equilibrium position ¢ =0, by using a
corresponding linearization of the differential equation, are
studied in the form (see reference [14]):

P+ (A-1)p~Q*ActgacosQt (5.5)

For that case, we can see that a phenomenon of a similar
resonance is possible for the relation between the system
parameters: A~2.

2* For the case when A <1, small oscillations around
the stable relative equilibrium position ¢, =tarccosA are
studied by applying a corresponding linearization of the
differential equation and a change of the generalized
coordinate ¢ is made by following ¢,+¢. After

linearization, the following linearized equation is obtained
(see reference [14]):
Actga

¢'5+Qz<1—/12){1 Ny

From this linearized differential equation — differential
equation with time dependent coefficients (Mathieu Hill
type), we can see that the forced nonlinear dynamics around
the equilibrium positions must be investigated taking into
consideration the area of the stability or non-stability
regimes.

coth}p Q2 ActgacosQt (5.6)

Nonlinear differential equation (3.9) presented in the paper
by Z. Rakaric, and 1. Kovacic [20] is given as the initial
equations of the Van der Pol oscillator and it served for the
following considerations:

1.Motion of conservative oscillators, where the period of
oscillations T and the frequency of the elliptic function
are obtained, implies that there is a specific non-linear
power-form relationship between the amplitude of free
oscillations and the frequency of the elliptic function.
The period of oscillations:

l-a
dé‘ =4 'O!-‘r j :TeyDa 2 (57)
\/‘ ‘aH a+1

The frequency of the elliptic function:

a-1

w=a? (5.8)

2.Motion of forced non-conservative oscillators where
based on the equation of response a system of forced
non-conservative oscillators motion is obtained:

E(r)=a(r)en[y (7),m(7)] (5.9)

During the detailed equation solution in the work, the
final result is obtained:

£()=a(e)en| 2K (Qr+p)m(r) |

which shows that the frequency of the free oscillation

(5.10)

modeled by the Jacobi elliptic function is close to the
excitation frequency w=Q.

3.Motion of forced oscillators with van der Pol damping
where the expression for stability of the steady-state is
obtained.
The expression for the steady—state value of ¢ is

derived:

a-l1

7Z'P8(d1 —dga® )aT

2
DKa, [(21() a® - Qz}

The paper Z.Rakaric and I.Kovacic [20] represents
oscillators with a non-negative real-power restoring force
and considers the Van der Pol damping. The entrainment
phenomenon has been investigated, when the frequency of
the unforced limit cycle oscillations and the excitation
frequency synchronize, so that the response occurs only at
the excitation frequency. A new elliptic averaging method
has been developed, which does not have any limitations
regarding the value of the power of the non-linear restoring
force, as this power can be any non-negative real number.
The solution for motion is expressed in the form of the
Jacobian elliptic function and has excellent accuracy with
respect to the numerical solution.

tan g = (5.11)

Based on nonlinear differential equations (3.11) from
reference [21], the problem consists of establishing the time
history u=u(t) where te[0,T],T >0 satisfying Eq. (3.11)

with the initial conditions:

u(0) =1y, u(0) =i (5.12)

The forces f, (1) and f(u)are in general non-linear

functions of their arguments.
For linear problems they are given as f,(¢t)=Cu

and f,(¢) = Ku and equation (3.11) becomes

Mii+Cii + Ku = p(t) (5.13)

where M, C and K are the mass, damping and stiffness
matrix of the structure, respectively.

In the paper by J.T.Katsikadelis [21], a system with one-
degree-of-freedom and multi-degree-of-freedom systems
with their stability of the numerical scheme and errors
analysis and convergence are presented, using the analysis
of accuracy in solving numerical examples.

A special highlight matrix for the one-degree-of-freedom
systems and for multi-degree-of-freedom systems was
investigated.

For the one-degree-of-freedom systems, it is in the form:

m c k qn 0 00 qn-1 1
P —-h 1Ku,r=|-ac 0 1|t t+<0rp, (5.14)
-pc, 1 0]|u, ac, 1 0||u,, 0

For the multi-degree-of-freedom systems, it is in the
following form:

Mo C K| 0 00, s
n n-1
Sro—nro1 a,tb={=%1 0 1, t+{0tp, (5-15)
2 u 2 u 0
n n—1

_a
2I I 0
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Matrixes (5.14) and (5.15) are obtained based on
equations from (17) to (19) in the paper by J.T.Katsikadelis
[21].

In this paper, the nonlinear initial value problem is given
for multi-degree of freedom systems and is described as:

Mii+ F (u,u) = p(t) (5.16)

u(0)=uqy, u(0)=1u, (5.17)

From equation (5.16) for =0 it follows that the initial
acceleration vector is:

5]0=M71[P0—F(b'losuo)]a qo =1t (5.18)

Then it is applied for t=t, and the equation has been
obtained in the following form:

qu+F(1’.{n:un)=pn (519)

For calculating g¢,,u,,u,, equation (5.19) and the

equation that is presented in the following form are used
(see reference [21]):

) AR et

%1 —%1 (5.20)
+ qn + qn-1
_Cy 2y
2 2

In this paper by J.T.Katsikadelis [21], a new direct time
integration method is presented for the solution of the
equations of motion describing the dynamic response of
structural linear and nonlinear multi-degree of freedom
systems. According to this principle, the system of the N
coupled equations of motion, linear or non-linear, is
replaced by a set of uncoupled linear single term quasi-
static equations each of which includes only one unknown
displacement and are subjected to appropriate unknown
fictitious external loads. These fictitious loads are
established numerically from the integral representation of
the solution and the requirement that the equations of
motion are satisfied at discrete times.

An analysis of a mechanical model of the human voice
production systems is presented in the review paper written
by L. Cveti¢anin [15].

In this paper, the basic model of the vocal cords/vocal
tracts and vocal folds is considered as a two mass non-
linear oscillator system which is assumed to be the basic
one for a mechanical description in voice production on the
basis of listed references published in the world scientific
literature.The corresponding mathematical model is a
system of two coupled second order non-linear differential
equations. Usually, this system of equations does not have
an exact closed form solution and various analytical and
numerical solving methods are applied. The solutions
describe the self-excited vibrations of the mechanical
elements of voice production. The influence of air flow in
glottis is additionally modeled and included into the
previously developed mechanical system.

Analyzing the corresponding mathematical models, it is
evident that besides the self-excited oscillations of vocal
cords some additional vibrations appear. The vibrations
may be regular but also irregular like bifurcation and chaos.
The numerical simulation gives the parameter values for

proper and improper voice production. Based on the results
given in the review, the objectives for future investigation
into the matter are given.

In the work by L. Cveticanin [15], according to the
obtained results, it is concluded that the mathematical models
based on the physical model of human voice production give
a very good qualitative description of the phenomenon;
however, in spite of the fact that the clinically observed and
measured parameters are used for modeling, the obtained
results quantitatively differ from the real ones. This requires
the improvement of the accuracy of the models.

Therefore, seven suggestions are given in the paper (see
reference [15]).

In paper [17] written by A.Hedrih, and K Hedrih
(Stevanovi¢), a model of double DNA helix main chain

forced vibrations is analytically investigated.

The DNA transcription process is well described at the
biochemical level. During transcription, double DNA
interacts with transcription proteins; a part of double DNA
is unzipped, and only one chain helix is used as a matrix for
transcription. In order to understand better the DNA
transcription process and its behavior from the
biomechanical point of view, we consider double DNA
(dDNA) as an oscillatory system that oscillates in forced
regimes. In this paper, the analytical expressions of the
forced oscillations of the dDNA helix chains are presented
for both introduced models, an ideally elastic one as well as
a fractional order model. On the basis of the previous
results (DNA mathematical nonlinear models published by
N. Kovaleva, L. Manevich in 2005 and 2007), and the
multipendulum models where main chain subsystems of the
double DNA helix are obtained, the analysis of the forced
vibrations is done as a new result. There are different cases
of the resonant state in one of the main chains, and there are
no interactions between the main chains. The possibility of
appearance of resonant regimes only in one of the two main
chains is proved as well as the dynamical absorption under
forced excitations of external frequency.

The geometrical aspects of nonholonomic mechanical
systems are investigated by C. Frigioiu and published in
paper [16].

In this paper, the author presents the nonholonomic
mechanical systems studied from the geometric point of
view using the Lagrange Geometry. The geometrization of
nonholonomic mechanical systems is given using the
geometry of tangent bundle and the Lagrange equations are
obtained.

The dynamic systems admitting Morse functions that do not
increase along trajectories with time are considered by R. M.
Bulatovi¢ and M. Kazi¢ and presented in paper [22] entitled
“On the degree of instability of mechanical systems”.

The main relations between the indices of inertia of these
functions and the instability degrees of the equilibria are
indicated, and these results are supplemented with several
new statements. The results are applied to two classes of
mechanical systems.

A. Obradovié, S. Salinié, O. Jeremiél, Z. Mitrovié are the
authors of paper [23] entitled “Brahistochronic motion of a

s

variable mass system”.

A mechanical system consisting of rigid bodies and
material particles, some particles of which are with variable
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masses, is considered. Laws of variation of the masses of
the points and relative velocity of particles separating from
the points are well-known. The system is moving in an
arbitrary field of known potential and nonpotential forces.
Applying Pontryagin’s Maximum Principle and the singular
optimal control theory, the brachistochronic motion is
determined. A two-point boundary value problem, due to
the nonlinearity of equations in a general case, is needed to
be solved using some of the numerical procedures. Here the
Shooting method is used, where the missing boundary
conditions are chosen to be the physical variables (velocity
and mass). The field where they are found can be
approximately estimated, which is not the case with the
conjugate vector coordinates being of purely mathematical
nature. The paper also presents the manner of
brachistrochronic motion realization without the action of
active control forces. It is realized by subsequent imposition
of independent ideal holonomic mechanical constraints to
the corresponding number of systems. The method is
illustrated by an example of determining the
brachistochronic motion of the system with three degrees of
freedom and a method of its realization. The system
consists of one rigid body to which two points of variable
masses are attached, where the system is moving in the
vertical plane. The brachistochronic motion is realized by
the help of two ideal holonomic constraints.

V. Nikolic-Stanojevic, C. Doli¢anin, Lj. Veljovi¢, M.
Obradovié are the authors of paper [24] entitled “Dynamic
models of buildings to mitigate fluctuations”.

A dynamic suspension system for high-rise buildings has
a role to reduce the oscillations of the highest floors due to
the effects of winds, earthquakes and other causes. It is a
complex mechanical and mathematical problem. The
suspension system, which can be active and passive, has to
absorb and suppress all components of the forces that
would lead to a reduced life of the structure or the
disruption of comfort, stability and security. The modeling
of the dynamic suspension system is reduced to the
formation of physical and mathematical models that
describe the real system most adequately. This paper
presents a dynamic model for tall buildings. A numerical
solution and appropriate comments are given.

Concluding remarks

The selected nonlinear differential equations in Chapters
2 and 3 are applicable as mathematical descriptions of
nonlinear dynamics in real mechanical systems added to
theoretical models for different research purposes presented
here for the given authors and their papers. The papers from
the mini-symposium Nonlinear dynamics organized by
K.Hedrih (Stevanovi¢), included in the program of
IConSSM 2011 of the Serbian Society of Mechanics, are
analysed. This paper highlights the most important
nonlinear differential equations of the mechanical systems
of motion of the observed real systems, the equations of the
phase trajectories based on the graphs discussed, the period
of oscillations, the frequency, the equation of the system
response and the expressions for total mechanical energy.

Acknowledgment

I want to express my sincere and special appreciation to
Professor K.Hedrih (Stevanovic¢), Project O1174001 Leader,
for all her comments and motivation that she gave me. This

research was supported through Project OI174001 by the
Ministry of Sciences and Environmental Protection of the
Republic of Serbia (2011.-2014.) through the Mathematical
Institute SANU.

References I

[11 HEDRIH (STEVANOVIC),K.: Selected Chapters from Theory of
Nonlinear Vibrations (in Serbian), Faculty of Mechanical
Engineering, Nis, (First Edition), 1975, pp.180.

[2] HEDRIH (STEVANOVIC),K.: Study of Methods of Nonlinear
Vibrations Theory (in Serbian), Poligraphy, Faculty of Mechanical
Engineering, Ni§, Preprint, 1972, pp.500.

[3] HEDRIH (STEVANOVIC),K.: Vibrations of a Heavy Mass Particle
Moving along a Rough Line with Friction of Coulomb Type,
©Freund Publishing House Ltd., International Journal of Nonlinear
Sciences & Numerical Simulation 10(11): 2009, pp.1705-1712,
http://www.freundpublishing.com/International Journal Nonlinear
Sciences Numerical%20Simulation/MathPrev.htm.

[4] MITROPOLYSKIY,YU.A.: (1955), Nestashionarnie proshesi v
nelinyeynih sistemah, AN USSR, Kiev. (in Russian)

[S] MITROPOLYSKIY,YU.A., MOSSEENKOV,B.I.: (1968), Lekciyi
po primenyeniyu metodov k recheniyu uravnyeniy v chastnih
proizvodnih, Int. Math. AN USSR, Kiev. (in Ukrainian)

[6] MITROPOLYSKIY,YU.A.: Problemi asimptoti-cheskoy teorii
nestashionarnih kolebaniy, Nauka Moskva. (in Russian), 1964.

[77 MITROPOLYSKIY,YU.A,, MOSSEENKOV,B.L.:
Assimptoticheskie recheniya uravnyeniya v chastnih proizvodnih,
Vichaya chkola Kiev. (in Ukrainian), 1976.

[8] MITROPOLSKIY,YU.A., NGUYEN VAN Dao: Lectures on
Asymptotic Methods of Nonlinear Dynamics, Vietnam National
University Publishing House, Hanoi, 2003, pp.494.

[91 MITROPOLSKIY,YU.A.: Some problems in the development in
nonlinear mechanics theory and applications, Facta Universitatis,
Series Mechanics, Automatic Control and Robotics, 1995, Vol.1,
No.5, pp.539-560.

[10] MITROPOLSKIY,YU.A.: On Application of asymptotic methods of
nonlinear mechanics for solving some problems of oscillation
theory, Facta Universitatis, Series Mechanics, Automatic Control
and Robotics, 1996, Vol.2, No.6, pp.1-9.

[11] MITROPOLSKIY,YU.A.: Adiabatic processes in nonlinear
oscillation  systems (Adiabaticheskie processi v nelinyeynih
kolebatelynih sistemah), Simpozijum 83 — Nelinearni problemi
dinamike, Arandjelovac, pp.23-25, Novembar 1983. IT-Drustvo za
mehaniku Srbije, pp. I-1-1-12.

[12] RASKOVIC,D.: Teorija oscilacija (Theory of Oscillations), Naugna
knjiga, Serbia, 1952, pp.439-474

[13] PEJOVIC,T.: Diferencijalne jednacine II, Beograd, Serbia, 1950.

[14] HEDRIH (STEVANOVIC)K.: (2005), Nonlinear Dynamics of a
Heavy Material Particle Along Circle which Rotates and Optimal
Control, Chaotic Dynamics and Control of Systems and Processes in
Mechanics (Eds: G. Rega, and F. Vestroni), pp. 37-45. IUTAM
Book, in Series Solid Mechanics and Its Applications, Edited by
G.M.L. Gladwell, Springer. 2005, XX VI, 504 pp., Hardcover ISBN:
1-4020-3267-6.

References II - IConSSM 2011 Proceedings,
Serbian Society of Mechanics

[15] CVETICANIN,L.; Review on mechanical modeling of the human
voice production systems, Proceeding IConSSM 2011, Serbian
Society of Mechanics, M2-03, pp.1131-1138.

[16] FRIGIOIU,C.; Geometric aspects of nonholonomic mechanical
systems, Proceeding IConSSM 2011, Serbian Society of Mechanics,
M2-04 , pp.1139-1146.

[17] HEDRIH (STEVANOVIC),K.: Modeling double dna helix main
chains forced vibrations, Proceeding IConSSM 2011, Serbian
Society of Mechanics, M2-06, pp.1147-1180.

[18] HEDRIH (STEVANOVIC),K., VELIOVIC, Lj.: Analysis of the
vector rotators of a rigid body nonlinear dynamics about two axes
without section, Proceeding IConSSM 2011, Serbian Society of
Mechanics, M2-09, pp.1194-1201.

[19] JOVIC,S., RAICEVIC,V.: Energy analysis of vibro-impact system
based on oscillator moving freely along curvilinear routes and non-



STAMENKOVIC,M.: NONLINEAR DIFFERENTIAL EQUATIONS IN CURRENT RESEARCH OF SYSTEM NONLINEAR DYNAMICS 69

[20]

(21]

lineal relations, Proceeding IConSSM 2011, Serbian Society of
Mechanics, M2-10 , pp.1202-1221.

RAKARIC,Z., KOVACIC,L.: On the behaviour of forced oscillators
with a non-negative real-power restoring force and van der pol
damping, Proceeding IConSSM 2011, Serbian Society of
Mechanics, M2-22, pp.1284-1296.

KATSIKADELIS,J.T.: 4 new direct time integration method for the
equations of motion in structural dynamics, Proceeding IconSSM

[23]

[24]

OBRADOVIC,A., SALINIC,S., JEREMIC,0., MITROVIC,Z.:
Brachistochronic motion of a variable mass system, Proceeding
IConSSM 2011, Serbian Society of Mechanics,. M2-15, pp.1237-
1246.

NIKOLIC-STANOJEVIC,V., DOLICANIN,C., VELJOVIC,LI.,
OBRADOVIC,M.: Dynamic models of buildings to mitigate
fluctuations, Proceeding IConSSM 2011, Serbian Society of
Mechanics, M2-20 , pp.1259-1274.

2011, Serbian Society of Mechanics, M2-11, pp.1222-1236.

BULATOVIC,RM., KAZIC,M.; On the degree of instability of
mechanical systems, Proceeding IConSSM 2011, Serbian Society of
Mechanics, M2-02, pp.1122-1130.

Received: 12.04.2012.

Nelinearne diferencijalne jednacine u savremenim istraZivanjima
nelinearne dinamike sistema

U radu su prikazane osnovne nelineare diferencijalne jednacine kojima se opisuju nelinearni fenomeni u dinamici
sistema sa jednim stepenom ili sa viSe stepena slobode kretanja. Prikazani su najvaznji rezultati predstavljeni u radovima
ucesnika mini simpozijuma Nelinearna dinamika, koji je odrzan na Kongresu mehanike Srpskog drustva za mehaniku
IConSSM 2011.

Kljucne reci: nelinearna dinamika, nelinearne diferencijalne jednacine, nelinearni fenomeni, nelinearna analiza, dinamika
sistema.

Heauneiinbie nuddpepeHuaibHbie YPABHCHHUS B COBPEMEHHBIX
HUCCJICAOBAHUAX 110 HEJIMHEHHOW JUHAMUKE

B Hacrosinneii paGore mnpeicTaBIeHbl OCHOBHbIe HelMHeliHble aAuddepeHnUaIbHbIE YPABHEHHs, ONMCHIBAIOIIHE
HeJIHHeliHble sIBJIeHHs1 B JHHAMHKe JHOO CHCTEM € OJHOH CTelmeHbI0 CBO0OOIbI, JIMOO C HECKOIbLKHMH CTelleHsIMH
cBodonbl. HauGosee BakHble pe3yJbTaThl I0Ka3aHbI B PadoTaX, NpPeJCTABJEHHBIX YYACTHHKAMH He0O0JbIIOH
KkoH(pepenuun ,,Heqnneiinas nuHaMuka”, kotopas cocrosiiack B pamkax Konrpecca mexanunkn Cep6ckoro odiectsa
mexanukn IConSSM 2011. roaa.

Kniouegvle cnoséa: HelMHelHasi NMHAMMKA, HeJIMHeiiHble JU(depeHUUATbHbIE YPABHEHMs, HeJIMHeliHble SIBJICHMS],
HeJIMHEHHbIA aHAJIM3, AIMHAMHMKA CHCTEMBbI.

Les équations différentielles non linéaires dans les recherches
actuelles de la dynamique non linéaire de systéme

Dans ce papier on a présenté les équations différentielles non linéaires basiques par lesquelles on décrit les phénoménes
non linéaires dans la dynamique de systéme a un ou plusieurs degrés de liberté de mouvement. On a cité les résultats les
plus importants figurant dans les travaux des participants au mini symposium « Dynamique non linéaire » qui a eu lieu
lors du Congrés de la mécanique de la Société serbe pour la mécanique IConSSM 2011.

Mots clés: dynamique non linéaire, équations différentielles non linéaires, phénomeénes non linéaires, analyse non linéaire,
dynamique de systéme.



