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This paper deals with basic nonlinear differential equations describing non-linear phenomena in the dynamics of systems 
with one or more degrees of freedom. It presents the most important results from the papers presented at the Non-linear 
Dynamics Mini Symposium held during the Congress of Serbian Society for Mechanics IConSSM 2011. 
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Introduction 
ET us start with the list of the nonlinear differential 
equations describing non-linear oscillations presented 

in the classical books such as “Theory of Oscillations” by 
D.Rašković [12] and K.Hedrih (Stevanović), [1-2]. The 
asymptotic methods for obtaining approximations of the 
solutions of nonlinear differential equations are presented in 
monographs [4-11] written by Mitropolskiy. The series of  
characteristic nonlinear differential equations of non-linear 
dynamics in a mechanical engineering system abstracted 
into a theoretical model of nonlinear dynamics of systems 
with one degree of freedom is presented in the series of the 
papers [3,14] written by K.Hedrih (Stevanovic). 

Out of the papers listed in References II [15-24] 
presented at the Non-linear Dynamics Mini Symposium 
Proceedings IConSSM 2011, Serbian Society of 
Mechanics, the author made a selection for a suitable 
presentation in this review paper. The equations serving as 
a basis for new equations are presented together with the 
newly obtained ones. The methods used for equation 
solving are given as well. 

A list of selected characteristic nonlinear 
differential equations on the basis of non-linear 

oscillations 

Differential equations for the case of non-linear free 
oscillations of a conservative system 

One of the basic nonlinear differential equations 
describing the nonlinear dynamics of a conservative system 
with one degree of freedom is in the form [1-2, 4-11, 12]: 

 ( ) 0eaq F q+ =��  (2.1) 

where: a is the coefficient of inertia, Fe (q) is the restitution 
force which depends on the generalized coordinate q. 

The equation can be written as: 

 2 ( ) 0q k f q+ =��  (2.2) 

The previous ordinary nonlinear differential equation 

corresponds to the free nonlinear dynamics of a mechanical 
system with one degree of freedom in which the total 
mechanical energy is constant during the system dynamics. 

Differential equations for the case of simple forced non-
linear oscillations without a damping force 

One of the basic nonlinear differential equations 
describing the nonlinear forced dynamics of a conservative 
system with one degree of freedom loaded by an external 
single frequency force is in the form [1-2, 4-11, 12]: 

 0( ) ( ) sineaq F q Q t Q t+ = = Ω��  (2.3) 

where 0( ) sinQ t Q t= Ω  external single frequency force with 
the amplitude 0Q  and the circular frequency Ω . 

Differential equations for the case of simple forced non-
linear oscillations with a nonlinear damping force 

One of the basic nonlinear differential equations describing 
the nonlinear forced dynamics of a non conservative system 
with one degree of freedom loaded by an external single 
frequency force is in the form [1-2, 4-11, 12]: 

 ( ) sinaq q cq Q t+Φ + = Ω�� �  (2.4) 

where the damping force is a nonlinear function of the 
system velocity, and the problem is in many cases reduced 
to simple forced oscillations with a linear damping force or 
proportional to the square of the system velocity as it is 
determined by Jacobsen. 

General form of the equations of free reo-linear 
(rheonomic) oscillations 

One of the basic rheolinear differential equations describing 
the rheolinear free dynamics of a rheonomic system with one 
degree of freedom is in the form [1-2, 4-11, 12]: 

 ( ) ( ) 0x P t x Q t x+ + =�� �  or 0mx bx cx+ + =�� �  (2.5) 

where: P, Q, m, b, c, are the continuous functions of the 
time t. This differential equation is with a coefficient as a 
function of time.  

L 
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Mathieu’s differential equation of the second order 
A special case of the previous rheolinear differential 

equation is in the form of Mathieu’s differential equation of 
the second order in the following form [1-2, 4-11, 12]: 

 ( )
2

2 cos 0d x
d
φ λ γ τ
τ

+ + =  (2.6) 

or 
 ( )cos 0x xλ γ τ+ + =��  (2.7) 

where: tτ = Ω  is a variable, but 2 2 2gλ ω= Ω = Ω  and 
a lγ =  are its parameters. 

Review of the characteristic equations of non-
linear dynamics by the author’s choice  

Nonlinear differential equations of motion and the phase 
trajectory equation of the heavy mass particle dynamics 
along the rough parabolic, cycloid and circular line: 
a) An ordinary nonlinear differential double equation of 

motion of the heavy mass particle nonlinear dynamics 
along the rough parabolic line is derived by К.Hedrih 
(Stvanovic) and presented in reference [3] in the follow-
ing form: 

 ( ) ( )
3

2 cos3 sin cos 0gtg p
φφ φ μ φ φ μ φ+ ± + ± =�� �  (3.1) 

In addition, the corresponding double equation of the 
phase trajectory is in the following form: 

 2 6 2
2cos

cos
g Ce

p
μφφ φ

φ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∓�  (3.2) 

and presents the first integral of the previous ordinary 
differential double equation of motion of the heavy mass 
particle nonlinear dynamics along the rough parabolic line. 
b) Ordinary differential double equation of the heavy mass 

particle along the cycloid rough line is presented in ref-
erence [3] in the form: 

 2 6 2
2cos

cos
g Ce

p
μφφ φ

φ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∓�  (3.3) 

Also, the corresponding double equation of the phase 
trajectory is in the following form: 

 

( ) ( )

2
2 2

2
2 2

2 1
1 4 cos 2

1 43 sin 1 2 cos 2

g
R

Ce μφ

φ φμ

μμ φ μ φ

⎛ ⎞
⎜ ⎟
⎝ ⎠= −
+

⎡ ⎤+± − − + +⎢ ⎥⎣ ⎦
∓

�
 (3.4) 

and presents the first integral of the previous ordinary 
differential double equation of motion of the heavy mass 
particle nonlinear dynamics along the rough cycloid line. 
c) Ordinary differential double equation of the heavy mass 

particle along the rough circular line is presented in 
reference [3] in the form:  

 ( )2
0 0

0
sin 0cos

gtg Rφ φ α φ αα± + ± =�� �  (3.5) 

Also, the corresponding double equation of the phase 

trajectory is in the following form: 

 
( ) ( )

( ) ( )[ ] 0

2
2

0 0
2

0 0 0

2
1 4 cos

cos 2 sin tg

g
tg R

tg Ce φ α

φ φ
α α

φ α α φ α

=
+

⋅ ± − ± + ∓

�
 (3.6) 

and presents the first integral of the previous ordinary 
differential double equation of motion of the heavy mass 
particle nonlinear dynamics along the rough circular line. 

The nonlinear differential equation of the heavy gyrorotor-disk 
self rotation in the case of coupled rotations around two 
orthogonal axes is in the following form (see reference [18]): 

 ( )2 2
2 2 2 2cos sin cos 0φ λ φ φ ψ φ+Ω − +Ω =��  (3.7) 

and presents the equation of motion of the heavy gyrorotor 
disk with one degree of freedom and the coupled rotations 
when one component of rotation is programmed by a 
constant angular velocity. 

The dynamics of Watt’s regulator is described by this 
nonlinear differential equation. 

The nonlinear differential equation of the relative motion of 
the heavy material particle along a circle which rotates 
around the skewly positioned axis with respect to the 
horizon, is in the following form (see reference [14]): 

 ( )2 2

2
cos sin cos
cos cosctg t

φ λ φ φ ε φ
λ α φ

+Ω − −Ω =
= Ω Ω

��
 (3.8) 

The nonlinear differential equation describes the 
equation of the motion of the heavy material particle along 
a circle rotating around the fixed axis. Based on a simple 
model, the nonlinear dynamics with one degree of freedom 
of oscillatory motion is obtained.  

The Van der Pol non-linear differential equation is in the 
following form (see reference [20]): 
d) Non-dimensional equation of the Van der Pol oscillator 

 ( )
2

2 , sgn cosd df Fdd
αξ ξε ξ ξ ξ τττ

⎛ ⎞+ + = Ω⎜ ⎟
⎝ ⎠

 (3.9) 

e) Differential equation which corresponds to the Van der 
Pol damping  

 ( )2, 1d df d d
ξ ξξ ξτ τ

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 (3.10)  

where: ξ is the non-dimensional displacement; τ is the non-
dimensional time; ε is a small constant, i.e. ε<< 1; F and Ω 
are the magnitude and the frequency of the harmonic 
excitation. 

The non-linear damping force defined by relation (3.10) 
corresponds to the Van der Pol damping which dissipates 
energy for large displacements and supplies energy to the 
system for small displacements. As such, it gives rise to 
limit cycle oscillations of free oscillators modeled by 
equations (3.9) and (3.10) with F=0. 

The nonlinear equations of motion presented in reference 
[21] in the form: 

 ( ) ( ) ( )D SMu f u f u p t+ + =�� �  (3.11) 



64 STAMENKOVIĆ,M.: NONLINEAR DIFFERENTIAL EQUATIONS IN CURRENT RESEARCH OF SYSTEM NONLINEAR DYNAMICS  

This equation is obtained based on the dynamic 
equilibrium of the external, internal and inertia forces, 
where: ( )If t Mu= ��  is the inertia forces, ( ) ( )D Df t f u= �  the 
damping forces (nonlinear function), ( ) ( )S Sf t f u=  the 
elastic forces (nonlinear function) and p(t) are the external 
excitation forces; u=u(t) is the displacement vector. 

Equation (3.11) presents the basic equation of motion 
with which J.T.Katsikadelis’s [21] new direct time 
integration method is presented for the solution of the 
equations of motion describing the dynamic response of 
structural linear and nonlinear multi-degree of freedom 
systems. 

Analysis of characteristic equations in the basis of 
non-linear oscillations in reference [12]  

As a primary equation for the case of free non-linear 
oscillations, equation (2.2) is given (see reference [12]). 
Based on it, the first integral is done as well as the law of 
motion in the form of: 

 
0

( ) ( ) 2 ( )
q

q

q q v q k f dξ ξ= = ∫� ∓  (4.1) 

 ( )
( ) ( )00

1
2

q
dt q

k J q J
η

η
=

−∫  (4.2) 

This is the case when the function f(q) is given by an 
analytical expression. 

For example, with the rectilinear harmonic oscillation 
f(q)=q=x, so k=ω, the law of motion is presented in the 
form: 

 
2 2 000

1 1 arcsin
x

d xt xx
η

ω ωη
= =

−∫  (4.3) 

The sine and parabolic characteristics are further 
considered. 

The law of motion for sine characteristics (pendulum) 
according to (4.2) is presented in the form: 

 

( )

00

2 2
0

1
2 cos cos

1 1 ,
1 sin

dt
k

d Fk k

φ

θ

η
η φ

θ ε θ
ε θ

= =
−

= =
−

∫

∫
 (4.4) 

where: φ is the generalized coordinate, ε is the module, θ is 
the amplitude. 

The period of oscillating is also determined, depending 
on the module ε: 

 ( )
2

2 2
0

4 4 ; 2
1 sin

dT Kk k

π
θ ε π

ε θ
= =

−∫  (4.5) 

The equation of motion with parabolic characteristics 
where the movement is observed for a quarter of the period 
in reference [12]: 

 2 0nq k q+ =��  (4.6) 

The law of motion and the period of oscillations for 
parabolic characteristics are: 

 ( )
0

1 10 0

1 1
2 1

q q

n n

dnt q k q
ζ
ζ− +

+=
−∫  (4.7) 

 ( )
1

1 1 1
0 00

4 1 1 4 1
2 1n n n

dnT nk kq q
ζ ψ
ζ− + −

⎡ ⎤+⎢ ⎥= =
⎢ ⎥−⎣ ⎦

∫  (4.8) 

where: 0qζ η= , and ( )nψ  are the introduced functions. 
All this is illustrated in more details in D. Rašković [12]. 
Based on equation (2.3) (see [1-2, 4-11, 12]) which 

presents the differential equation of movement in the case 
of simple forced oscillations without the resistant force, the 
expression for the law of motion and the amplitude in the 
case of resonance is defined as: 

 ( )2
3

2
1sin sin 336

kq C t C tα= Ω − Ω
Ω

 (4.9) 

 23
24 3C h k α=  (4.10) 

While the amplitude for the case of forced oscillations with 
the resistant force is obtained based on (2.4) in the form: 

 
( )22 2 2 2 2( 1) 24 n n

hC N
k Cδ ψ −

= =
−Ω + Ω

 (4.11) 

A general method for solving differential equation (2.5) 
is the integration using the chains of   T. Pejovic [13]. 

When the quasi-elastic coefficient c from equation (2.5) 
changes linearly with time, then the differential equation of 
free oscillations without amortization is obtained in the form: 

 0x tx+ =��  (4.12) 

and its solution is in the form of the Macloren’s chain. 

   2
0 1 2

0

n v
n v

v

x A A t A t A t A t
∞

=

= + + + + + =∑" "  (4.13) 

Av are constants that have to be determined in order to 
satisfy equation (4.12) 

The general integral of equation (4.12) is presented in 
the form: 

 ( ) ( )0 1 1 2x A p t A p t= +  (4.14) 

In the case of free amortized oscillations, the differential 
equation is in the form:  

 0x tx x+ + =�� �  (4.15) 

whose general solution is:  

 ( ) ( )0 1 1 2x A p t A p t= +  (4.16)  

where A0 and A1 are the integration constants, and p1(t) and 
p2(t) are the particular integrals also presented in D. 
Raskovic [12]. 

The general solution of equation (2.6) is obtained in the 
form: 

 ( ) ( )1 2
t tx Ae p t Be p tμ μ−= +  (4.17) 

where A and B are the integration constants which have to 
satisfy the initial conditions, μ is the characteristic 
exponent, and p1(t) and p2(t) are the periodic functions of  t, 
period 2π.  
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Based on Mathieu’s equation (2.6) in D. Rašković [12], 
the differential equation of small oscillations is in the form: 

 2 0l l gφ φ φ+ + =�� �  (4.18) 

as well as Mathieu’s differential equation for the variable τ.  

 ( )cos 0T Tλ γ τ+ + =��  (4.19) 

Analysis of the characteristic differential equations of 
the non-linear dynamics presented in References II 

Based on the results of K.Hedrih (Stevanović) [3] and the 
equations from (3.1) to (3.6) in the work by Jovic and 
Raičević in reference [19], the analyses of the vibro-impact 
system dynamics of two heavy mass particles moving freely 
along non-ideal lines of rough curvilinear paths in the 
vertical plane in the shapes of parabola, cycloid and circle 

are performed. The oscillator is composed of one heavy 
mass particle with one degree of freedom of motion limited 
by one or two stabile elongation limiters.  

Using the previously listed nonlinear differential equations 
of motion, in the work by S.Jovic and V.Raičević in reference 
[19], the expressions for the phase trajectory equation in the 
phase plane ( ),φ φ�  necessary for the energy analysis of the 
dynamics of vibro-impact systems together with the energy 
equation curves are illustrated. In addition, the methodology of 
the energy transfer investigation among the elements of the 
observed vibro-impact system is presented. 

In this paper, only the expressions for the total mechanical 
energy Ei(φ) are presented in the following forms: 

 
( )

2 2
2 2

( ) ( )
1 1( )2 2cos cos

i ii k p

i

E E E
g mgpmp C e

p
μφ

φ φ φ

φ φ

= + =

= − + +∓  (5.1) 

                    

( )

( ) ( )
2

2 2 2 2
2 2

( ) ( )

2 1 412 cos 3 sin 1 2 cos (1 cos )2 21 4 cos 2

i ii k p

i

E E E
g
RmR C e mgRμφ

φ φ φ

φ μμ φ μ φ φφμ

= + =
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎡ ⎤+⎝ ⎠= − ± − − + + + −⎜ ⎟⎢ ⎥+ ⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠

∓               (5.2) 

   ( ) ( ) ( ) ( )[ ] 02 2
0 0 02

0 0

21( ) ( ) cos 2 sin (1 cos )2 1 4 cosi i
tg

i k p i
gE E E mR tg C e mgR

tg R
φ αφ φ φ φ α α φ α φ

α α

⎛ ⎞
⎜ ⎟= + = ± − ± + + −
⎜ ⎟+⎝ ⎠

∓   (5.3) 

The graphs of visualization of the energy analysis of the 
observed vibro-impact system are also given. For every 
separate branch of the phase portrait, there is a graphic 
presentation of the alternation of FN, Pμ, Ek,, Ep and E from 
the initial moment of motion until the moment when the 
heavy mass particle returns into the equilibrium position. 

Based on equation (3.7) in the work by K.Hedrih (Stevanović) 
and Lj.Veljović (see reference [18]), the expression for the phase 
trajectory equation is obtained, and the nonlinear dynamics of 
the rotation of the heavy gyrorotor-disk around its shaft axis is 
possible to be presented with the phase portrait method.  

Nonlinear differential equation (3.7), based on the model 
shown in Fig.1, is obtained: 

 
Figure 1. Model of a heavy gyrorotor with two component coupled 
rotations around the orthogonal axis without intersections 

The forms of phase trajectories and their transformations 
by changes of the initial conditions, for different cases of 
the disk eccentricity and its skew angle as well as for 
different values of the orthogonal distance between the axes 

of component rotations, may present the character of 
nonlinear oscillations. 

For that reason, it is necessary to find the first integral of 
differential equation (3.7) which is in the following form: 

 
( )

( )
2 2 2 2
2 02 2 2 2

2 2
02 02 02

12 cos cos sin2
12 cos cos sin2

φ φ λ φ φ ψ φ

λ φ φ ψ φ

= + Ω − + −

− Ω − +

� �
 (5.4) 

In the cited paper (see reference [18]), the trajectories of 
the vector rotators are presented with the series of three 
parameters transformations. 

Nonlinear differential equation (3.8) is presented in the 
paper by K.Hedrih (Stevanović) (see reference [14]) and in 
that paper a suitable linearized approximation and an 
optimal control of nonlinear dynamics is performed. 

Nonlinear differential equation (3.8), based on the model 
shown in Fig.2, is obtained: 

 
Figure 2. Motion of the heavy material particle along a circle rotating 
around the fixed axis. Simple model of the nonlinear dynamics. 
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As for linearized approximation around stationary points 
(which correspond to relative equilibrium positions), the 
paper considers special cases of the heavy material particle 
of free and forced dynamics in the case when the 
eccentricity e  is equal to zero. Let us present these special 
cases: 

1* For the case when 1λ > , small oscillations around 
the stable relative equilibrium position 0ϕ = , by using a 
corresponding linearization of the differential equation, are 
studied in the form (see reference [14]): 

 ( )2 21 cosctg tϕ λ ϕ λ α+Ω − ≈ Ω Ω��  (5.5) 

For that case, we can see that a phenomenon of a similar 
resonance is possible for the relation between the system 
parameters: 2≈λ . 

2* For the case when 1λ < , small oscillations around 
the stable relative equilibrium position arccossϕ λ= ±  are 
studied by applying a corresponding linearization of the 
differential equation and a change of the generalized 
coordinate ϕ  is made by following sϕ ϕ+ . After 
linearization, the following linearized equation is obtained 
(see reference [14]): 

( )2 2 2
2

1 1 cos cos
1
ctg t ctg tλ αϕ λ ϕ λ α
λ

⎡ ⎤
+Ω − + Ω ≈ Ω Ω⎢ ⎥

−⎣ ⎦
��  (5.6) 

From this linearized differential equation – differential 
equation with time dependent coefficients (Mathieu Hill 
type), we can see that the forced nonlinear dynamics around 
the equilibrium positions must be investigated taking into 
consideration the area of the stability or non-stability 
regimes. 

Nonlinear differential equation (3.9) presented in the paper 
by Z. Rakaric, and I. Kovacic [20] is given as the initial 
equations of the Van der Pol oscillator and it served for the 
following considerations: 
1. Motion of conservative oscillators, where the period of 

oscillations T and the frequency of the elliptic function 
are obtained, implies that there is a specific non-linear 
power-form relationship between the amplitude of free 
oscillations and the frequency of the elliptic function. 

The period of oscillations: 

 
1

2
1 1

0 0

14 4 2

a a
ND

ex
d dT T a
d a
d

α

α α

ξ ξα
ξ ξ
τ

−

+ +

+= = =
−∫ ∫  (5.7) 

The frequency of the elliptic function:  

 
1

2a
α

ω
−

=  (5.8) 

2. Motion of forced non-conservative oscillators where 
based on the equation of response a system of forced 
non-conservative oscillators motion is obtained: 

 ( ) ( ) ( ) ( )[ ],a cn mξ τ τ ψ τ τ=  (5.9) 

During the detailed equation solution in the work, the 
final result is obtained: 

 ( ) ( ) ( ) ( )2 ,Ka cn mξ τ τ τ ϕ τπ
⎡ ⎤= Ω +⎢ ⎥⎣ ⎦

 (5.10) 

which shows that the frequency of the free oscillation 

modeled by the Jacobi elliptic function is close to the 
excitation frequency ω=Ω. 
3. Motion of forced oscillators with van der Pol damping 

where the expression for stability of the steady-state is 
obtained. 

The expression for the steady–state value of ϕ  is 
derived: 

 
( )
( )

1
2 2

1 6
2

1 2
1

tan

2

P d d a a

DKa aK

α

α

π ε
ϕ

π

−

−

−
=

⎡ ⎤−Ω⎢ ⎥⎣ ⎦

 (5.11) 

The paper Z.Rakaric and I.Kovacic [20] represents 
oscillators with a non-negative real-power restoring force 
and considers the Van der Pol damping. The entrainment 
phenomenon has been investigated, when the frequency of 
the unforced limit cycle oscillations and the excitation 
frequency synchronize, so that the response occurs only at 
the excitation frequency. A new elliptic averaging method 
has been developed, which does not have any limitations 
regarding the value of the power of the non-linear restoring 
force, as this power can be any non-negative real number. 
The solution for motion is expressed in the form of the 
Jacobian elliptic function and has excellent accuracy with 
respect to the numerical solution. 

Based on nonlinear differential equations (3.11) from 
reference [21], the problem consists of establishing the time 
history u=u(t) where [ ]0, , 0t T T∈ >  satisfying Eq. (3.11) 
with the initial conditions:  

 0(0)u u= , 0(0)u u=� �  (5.12) 

The forces )(uf D �  and )(ufS are in general non-linear 
functions of their arguments.  

For linear problems they are given as ( )Df t Cu= �  
and ( )Sf t Ku=  and equation (3.11) becomes  

 ( )Mu Cu Ku p t+ + =�� �  (5.13) 

where M, C and K are the mass, damping and stiffness 
matrix of the structure, respectively. 

In the paper by J.T.Katsikadelis [21], a system with one-
degree-of-freedom and multi-degree-of-freedom systems 
with their stability of the numerical scheme and errors 
analysis and convergence are presented, using the analysis 
of accuracy in solving numerical examples. 

A special highlight matrix for the one-degree-of-freedom 
systems and for multi-degree-of-freedom systems was 
investigated. 

For the one-degree-of-freedom systems, it is in the form: 

1

1 1 1

2 2 1

0 0 0 1
1 0 1 0

1 0 1 0 0

n n

n n n

n n

m c k q q
c h u c u p
c u c u

β α
β α

−

−

−

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥− = − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

� �  (5.14) 

For the multi-degree-of-freedom systems, it is in the 
following form: 

1
1 1

1

11 1

0 0 0

0 02 2 0
0 02 2

n n

n n n

n n

M C K q q Ic cI hI I u I I u p
u uc cI I I I

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥− = − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭
−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� �  (5.15) 
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Matrixes (5.14) and (5.15) are obtained based on 
equations from (17) to (19) in the paper by J.T.Katsikadelis 
[21]. 

In this paper, the nonlinear initial value problem is given 
for multi-degree of freedom systems and is described as: 

 ( ), ( )Mu F u u p t+ =�� �  (5.16) 

 0(0)u u= , 0(0)u u=� �  (5.17) 

From equation (5.16) for t=0 it follows that the initial 
acceleration vector is: 

 ( )[ ]1
0 0 0 0,q M p F u u−= − � ,  0q u= ��  (5.18) 

Then it is applied for t=tn and the equation has been 
obtained in the following form: 

 ( ),n n n nMq F u u p+ =�  (5.19) 

For calculating nnn uuq ,, � , equation (5.19) and the 
equation that is presented in the following form are used 
(see reference [21]): 
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In this paper by J.T.Katsikadelis [21], a new direct time 
integration method is presented for the solution of the 
equations of motion describing the dynamic response of 
structural linear and nonlinear multi-degree of freedom 
systems. According to this principle, the system of the N 
coupled equations of motion, linear or non-linear, is 
replaced by a set of uncoupled linear single term quasi-
static equations each of which includes only one unknown 
displacement and are subjected to appropriate unknown 
fictitious external loads. These fictitious loads are 
established numerically from the integral representation of 
the solution and the requirement that the equations of 
motion are satisfied at discrete times. 

An analysis of a mechanical model of the human voice 
production systems is presented in the review paper written 
by L. Cvetićanin [15].  

In this paper, the basic model of the vocal cords/vocal 
tracts and vocal folds is considered as a two mass non-
linear oscillator system which is assumed to be the basic 
one for a mechanical description in voice production on the 
basis of listed references published in the world scientific 
literature.The corresponding mathematical model is a 
system of two coupled second order non-linear differential 
equations. Usually, this system of equations does not have 
an exact closed form solution and various analytical and 
numerical solving methods are applied. The solutions 
describe the self-excited vibrations of the mechanical 
elements of voice production. The influence of air flow in 
glottis is additionally modeled and included into the 
previously developed mechanical system.  

Analyzing the corresponding mathematical models, it is 
evident that besides the self-excited oscillations of vocal 
cords some additional vibrations appear. The vibrations 
may be regular but also irregular like bifurcation and chaos. 
The numerical simulation gives the parameter values for 

proper and improper voice production. Based on the results 
given in the review, the objectives for future investigation 
into the matter are given. 

In the work by L. Cveticanin [15], according to the 
obtained results, it is concluded that the mathematical models 
based on the physical model of human voice production give 
a very good qualitative description of the phenomenon; 
however, in spite of the fact that the clinically observed and 
measured parameters are used for modeling, the obtained 
results quantitatively differ from the real ones. This requires 
the improvement of the accuracy of the models.  

Therefore, seven suggestions are given in the paper (see 
reference [15]). 

In paper [17] written by A.Hedrih, and K.Hedrih 
(Stevanović), a model of double DNA helix main chain 
forced vibrations is analytically investigated.   

The DNA transcription process is well described at the 
biochemical level. During transcription, double DNA 
interacts with transcription proteins; a part of double DNA 
is unzipped, and only one chain helix is used as a matrix for 
transcription. In order to understand better the DNA 
transcription process and its behavior from the 
biomechanical point of view, we consider double DNA 
(dDNA) as an oscillatory system that oscillates in forced 
regimes. In this paper, the analytical expressions of the 
forced oscillations of the dDNA helix chains are presented 
for both introduced models, an ideally elastic one as well as 
a fractional order model. On the basis of the previous 
results (DNA mathematical nonlinear models published by 
N. Kovaleva, L. Manevich in 2005 and 2007), and the 
multipendulum models where main chain subsystems of the 
double DNA helix are obtained, the analysis of the forced 
vibrations is done as a new result. There are different cases 
of the resonant state in one of the main chains, and there are 
no interactions between the main chains. The possibility of 
appearance of resonant regimes only in one of the two main 
chains is proved as well as the dynamical absorption under 
forced excitations of external frequency. 

The geometrical aspects of nonholonomic mechanical 
systems are investigated by C. Frigioiu and published in 
paper [16]. 

In this paper, the author presents the nonholonomic 
mechanical systems studied from the geometric point of 
view using the Lagrange Geometry. The geometrization of 
nonholonomic mechanical systems is given using the 
geometry of tangent bundle and the Lagrange equations are 
obtained. 

The dynamic systems admitting Morse functions that do not 
increase along trajectories with time are considered by R. M. 
Bulatović and M. Kažić and presented in paper [22] entitled 
“On the degree of instability of mechanical systems”. 

The main relations between the indices of inertia of these 
functions and the instability degrees of the equilibria are 
indicated, and these results are supplemented with several 
new statements. The results are applied to two classes of 
mechanical systems. 

A. Obradović, S. Šalinić, O. Jeremić1, Z. Mitrović are the 
authors of paper [23] entitled “Brahistochronic motion of a 
variable mass system”.  

A mechanical system consisting of rigid bodies and 
material particles, some particles of which are with variable 
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masses, is considered. Laws of variation of the masses of 
the points and relative velocity of particles separating from 
the points are well-known. The system is moving in an 
arbitrary field of known potential and nonpotential forces. 
Applying Pontryagin’s Maximum Principle and the singular 
optimal control theory, the brachistochronic motion is 
determined. A two-point boundary value problem, due to 
the nonlinearity of equations in a general case, is needed to 
be solved using some of the numerical procedures. Here the 
Shooting method is used, where the missing boundary 
conditions are chosen to be the physical variables (velocity 
and mass). The field where they are found can be 
approximately estimated, which is not the case with the 
conjugate vector coordinates being of purely mathematical 
nature. The paper also presents the manner of 
brachistrochronic motion realization without the action of 
active control forces. It is realized by subsequent imposition 
of independent ideal holonomic mechanical constraints to 
the corresponding number of systems. The method is 
illustrated by an example of determining the 
brachistochronic motion of the system with three degrees of 
freedom and a method of its realization. The system 
consists of one rigid body to which two points of variable 
masses are attached, where the system is moving in the 
vertical plane. The brachistochronic motion is realized by 
the help of two ideal holonomic constraints. 

V. Nikolić-Stanojević, Ć. Dolićanin, Lj. Veljović, M. 
Obradović are the authors of paper [24] entitled “Dynamic 
models of buildings to mitigate fluctuations”.  

A dynamic suspension system for high-rise buildings has 
a role to reduce the oscillations of the highest floors due to 
the effects of winds, earthquakes and other causes. It is a 
complex mechanical and mathematical problem. The 
suspension system, which can be active and passive, has to 
absorb and suppress all components of the forces that 
would lead to a reduced life of the structure or the 
disruption of comfort, stability and security. The modeling 
of the dynamic suspension system is reduced to the 
formation of physical and mathematical models that 
describe the real system most adequately. This paper 
presents a dynamic model for tall buildings. A numerical 
solution and appropriate comments are given. 

Concluding remarks 
The selected nonlinear differential equations in Chapters 

2 and 3 are applicable as mathematical descriptions of 
nonlinear dynamics in real mechanical systems added to 
theoretical models for different research purposes presented 
here for the given authors and their papers. The papers from 
the mini-symposium Nonlinear dynamics organized by 
K.Hedrih (Stevanović), included in the program of 
IConSSM 2011 of the Serbian Society of Mechanics, are 
analysed. This paper highlights the most important 
nonlinear differential equations of the mechanical systems 
of motion of the observed real systems, the equations of the 
phase trajectories based on the graphs discussed, the period 
of oscillations, the frequency, the equation of the system 
response and the expressions for total mechanical energy. 
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Nelinearne diferencijalne jednačine u savremenim istraživanjima 
nelinearne dinamike sistema 

U radu su prikazane osnovne nelineare diferencijalne jednačine  kojima se opisuju nelinearni fenomeni u dinamici 
sistema sa jednim stepenom ili sa više stepena slobode kretanja. Prikazani su najvažnji rezultati predstavljeni u radovima 
učesnika mini simpozijuma Nelinearna dinamika, koji je održan na Kongresu mehanike Srpskog društva za mehaniku 
IConSSM 2011. 

Ključne reči: nelinearna dinamika, nelinearne diferencijalne jednačine, nelinearni fenomeni, nelinearna analiza, dinamika 
sistema. 

Нелинейные дифференциальные уравнения в современных 
исследованиях по нелинейной динамике  

В настоящей работе представлены основные нелинейные дифференциальные уравнения, описывающие 
нелинейные явления в динамике либо систем с одной степенью свободы, либо с несколькими степенями 
свободы. Наиболее важные результаты показаны в работах, представленных участниками небольшой 
конференции „Нелинейная динамика”, которая состоялась в рамках Конгресса механики Сербского общества 
механики IConSSM 2011. года. 

Ключевые слова: нелинейная динамика, нелинейные дифференциальные уравнения, нелинейные явления, 
нелинейный анализ, динамика системы. 

Les équations différentielles non linéaires dans les recherches 
actuelles de la dynamique non linéaire de système  

Dans ce papier on a présenté les équations différentielles non linéaires basiques par lesquelles on décrit les phénomènes 
non linéaires dans la dynamique de système à un ou plusieurs degrés de liberté de mouvement. On a cité les résultats les 
plus importants figurant dans les travaux des participants au mini symposium « Dynamique non linéaire » qui a eu lieu 
lors du Congrès de la mécanique de la Société serbe pour la mécanique IConSSM 2011.  

Mots clés: dynamique non linéaire, équations différentielles non linéaires, phénomènes non linéaires, analyse non linéaire, 
dynamique de système.  

 


