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Free Transversal Vibrations of a Double-Membrane System

Danilo Karli¢i¢"

A free vibration analysis of two parallel rectangular membranes continuously joined by a Winkler elastic layer is
presented. The classical Bernoulli-Fourier method of particular integrals was used for obtaining an analytical solution of
the system of two coupled partial differential equations describing transversal vibrations of a double membrane system.
The solution is in a form of an infinite numbers of sets, each with two eigen circular frequencies in each of eigen
amplitude modes (shapes) of transversal vibrations of a double membrane system. Some of these papers are mentioned in
the introduction and references. A commercial software tool was used for a numerical analysis. The obtained numerical

data are presented in graphs and tables.
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Inroduction

RANSVERSAL vibrations of a complex system of two

rectangular membranes coupled by a homogenously
distributed Winkler linear elastic layer are investigated.
Such systems are increasingly used in mechanical and civil
engineering applications. Therefore, the issue of double
membrane system vibrations is important from the practical
point of view and it has a wide application in engineering
practice. The vibration analysis of such a system is possible
and not mathematically complex for certain particular cases
of the boundary conditions; therefore, it can be carried out
by using the same procedures as those used for single
membranes. Free transversal vibrations of the system are
described by a system of two homogeneous partial
differential equations solved by using the classical
Bernoulli-Fourier method (e.g. see ref. [4-7]).

The theory of vibrations of two solid objects connected
with a Winkler elastically layer has been a subject of a
number of papers. The transverse vibrations of an
elastically connected double-beam system were considered
by Seeling and Hoppmann II in [2], Zhang et al. [8] and
Oniszezuk [9]. The vibrations and energy transfer problem,
concerning a similar double-plate system, has been
analytically solved by Hedrih (see Refs. [10-13, 15] by
Hedrih and [14, 16, 17] by Hedrih and Simonovi¢), by
Oniszezuk [11] and many other researchers.

Oniszezuk [1] has discussed free transverse vibrations of
two membranes connected by a Winkler elastic layer
without the analysis of time functions. In addition, the mass
and thickness of the elastic layer are neglected. He has
performed the numerical simulation and visualization of
characteristic shapes of the coupled membranes in a
function of the coordinates (x, y) and the time (7).

Structural model and the formulation of the problem

The physical model of the vibrating system is composed
of two parallel rectangular membranes connected by a
massless linear elastic layer of Winkler type with the

stiffness coefficient E[N /m3] per unit area of the

membrane coupling. The membranes are stretched by the
stresses o[N/m] per unit length of the corresponding

membrane contours in two parallel planes. The membrane
material properties are determined by: the elastic modulus
E, the Poisson coefficient 1 and the density of material

p . The system is shown in Fig.l. The membrane

equilibrium positions are in two parallel planes to the x-y
plane. The double membrane system has negligible bending
resistance, and gravitational body forces are to be
neglected. It is assumed that the membranes are thin,
homogeneous, perfectly elastic and of constant thickness.
The membranes are uniformly tight by suitable constant
tensions applied at the boundaries, marked by the mass

density of the surface membrane p [k—%}
m
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Figure 1. The physical model of the elastically connected double-
membrane system

For the transversal oscillations of the system of two
coupled membranes for generalized coordinates we choose
two transverse displacements w=(x,y,f), i=1,2 of the
corresponding membrane points N(x,y) and perpendicular to
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the membrane surface membrane in undeformed shapes.
The small undamped free transversal vibrations of the
system are analyzed. The free transverse oscillations of the
double-membrane system are described by two coupled
partial differential equations of the second order [1]. The
transverse displacements in the direction of the Oz-axis are
coupled through the elastic layer, where w=(x,y,f) is the
transverse movement of the upper membrane and w,=(x,y,f)
is the transverse movement of the lower membrane.

The constitutive relation of the elastic material layer for
the force-elongations F, and

Aw(x,y,t)= (w2 (x,p,t)—wm (x,y,t))
is:
F,=¢(wy (x,3,0)—w (x,0,1)) )

The governing equations are formulated in terms of two
unknowns: the transversal displacements w;(x,y,z) and

wy(x,y,t). The coupled partial differential equations are

derived using the Principle of dynamic equilibrium of a
double membrane system [4] as well as decoupled
subsystems in result of decomposition of the double
membrane system into separate membranes using the
conditions of compatibility displacements and interactions
of the forces

These partial differential equations of the elastically
connected membranes in the double-membrane system are:

2
W =2 Aw (x, y,0) +
t 2

+§(W2 (xsyst)_wl (xsyat))

2
w = Aw, (X, y,1) —
" : (3)

= (o (w20 (50.1)

where¢; = 9i [ﬁ] , i=L12 is the propagation speed of
i

the transverse waves of the membrane. The coefficients <

squared the circular frequency dimension, which

corresponds to the unit [1/sec?].
The differential operator (Laplace operator ) is

2 2
A=O0 0
ot oy’

Solution of the problem

Suppose that both membranes have the same rectangular
countours and that they are parallel. Suppose also that the
dimensions of the elastically connected double-membrane
system are a and b and that the membrane ends are without
transverse displacement.

The boundary conditions are given by

Wl(anat):Wl(asyst)zo (43)
wi(x,0,¢) =w (x,b,t) =0 (4b)

WZ(anat)ZWZ(aayat)zo (Sa)

wy (x,0,¢) =wy (x,b,t) =0 (5b)

and the initial conditions are assumed as follows:

wi(x,3,0) = g1 (x, ), (62)
OERD| =g (x,) (6b)
wy (%, ,0) = g (%, »), (72)
Ol ga(x.) (7b)

We follow the idea and the approach of K. Hedrih,
shown in Ref. ([10, 12, 13, 15]), to solve the set of partial
differential equations and to find the analytical solutions of
a system of coupled partial differential equations for
transversal vibrations of the system of coupled membranes.
Following this idea, the first approach for solving the
homogeneous partial differential equations (2) and (3), with
the governing boundary conditions (4) and (5), is to use the
Bernoulli-Fourier method and assume the solution in the
form of a sum of the products of two corresponding
functions W;(x,y) and T;(¢) .

00

M/i(x,yat):ZZVVi(nm)(x,y)T;(nm)(t), i :1,2 (8)

n=l m=1
where T;(¢), i=1,2 denotes the unknown time functions,
and W;(x,y), i=1,2 is the known eigen amplitude (mode

shape) functions for the given boundary conditions. The
eigen amplitude functions are defined as

with characteristic numbers:

2 2
k(nm) = (M) +(M) n,m=1,2,3,4,...,0 (Sb)
a b

The assumed solution (8), introduced into Eqgs.(2) and
(3), yields

'S VVl(nm)(xay)j:i(nm)(t):
22

n=1 m=1

= DD AW (569 i () + 9)

n=1 m=1

+L112 Z Z (VV2(nm) (xn y)T2(nm) (t) - I/Vl(nm) (xa y)Ti(nm) (t))

n=1 m=1

0

> W) (%5 ) Doy () =
2.2

n=l m=1
o0 o0

= c%ZZAVVZ(nm) ()C, y)TZ(nm) (t)_ (10)

n=l m=1
o0 o0

_a22 Z Z (VVZ(nm) ()C, y)TZ(nm) (t) - I/Vl(nm) (x: y)]—i(nm) (t))

n=l m=1

where a? =<
1

, i=1,2; [l/secz] are the relations between
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the coefficient of the elastic layer and the material density.

on

Figure 2. The eigen amplitude functions for the first nine mode shapes
(mn = 11, 12, 13, 21, 22, 23, 31, 32 and 33) of membrane transversal
vibrations

We compare the transverse modes of two membranes,
which have an equal contour, the same boundary conditions
and different density of membranes. Also, we consider
different tensile forces and different stiffness of the elastic
foundation which oscillates. Then, we can conclude the
following: eigen amplitude functions
VVl(nm)(xiy) = W2(nm)(x9 J/) = I/Vnm (xay) , B,m= 1’ 2,3’4""700

are the same, as well as their characteristic eigen numbers
knm >
functions, 7, (1) and Ty, (), n.m=123,4,., 0,

in both cases. We consider various appropriate time

corresponding to each eigen amplitude functions and also

sets of eigen circular frequencies c?)gl(nm) = k(z,,m)cl2 +af and

~2 2 2 2
a)OZ(nm) = k(nm)CZ ta;, n,m= la 2a 3a 4,_,,’00 .

We introduce Egs. (8) into coupled differential equations
for free double membrane system vibrations (2) and (3).
Then we multiply the first and the second equation of

systems  (9) and (10) with W (m(x, y)dxdy ,
sr=1,2,3,3,4,..,0, and the integrate along the surface
takes into account the orthogonality conditions of the eigen
amplitude functions W 1(m(x, y) and W 1(m)(x, y) . After
using corresponding boundary conditions (4) and (5) and
the ratios between eigen characteristic —numbers
a'}(%(nm)l = k(2nm)clz +a12 and ang(nm) = k(2nm)C§ +a§ P
n,m=1,2,3,4,..,0, we obtain infinite numbers of mn

subsystems. Each of these subsystems has two coupled
second order ordinary differential equations for
determination of the unknown eigen time functions
T,-(,,m)(t), i=1L2, nnm=123,4,..,00 in the following

form (for details see [10-12]):

Ti(nm) (t) + ah')(%l(nm)z(nm) (t) - a12T2(nm) (t) =0 (15)

7TvZ(nm) (t) + a'}(%Z(nm)TZ(nm) (t) - a%n(nm) (t) =0
(16)

nm=1,2,3,4,...,0

The solutions of Egs. (15) and (16) can be obtained by

Tl(nm)(t) = Al(nm) COS(aN)nmt + anm) > (17)

TZ(nm)(t) = A2(nm) COS(CD,,mt + anm) s n,m= 152’35 45"'500

where @, , n,m=1,2,3,4,...,00 denotes the eigen (natural)

circular frequency of the double-membrane system, and
Aymy and Ay, represent the eigen amplitude

coefficients of two membranes, respectively. Substituting
Egs. (17) into Egs. (15) and (16), we obtain

(5)31(71n1) - asr%m )A(l)nm - ale(Z)nm =0 (18)

(6552(")71) - a‘}/?m ) A(Z)nm - aZZA(I)nm =0 (19)

When the determinant of the coefficients in Eqs. (18)
and (19) vanishes, nontrivial solutions for the constants
Ay and 4, can be obtained. That yields the following

frequency (characteristic) equation:

4 ~2 ~2 ~2 ~2 ~2 2 2
Wy — Wpy (a)OI(nm) + a)OZ(nm) ) + a)Ol(nm)a)OZ(nm) —ara; = 0 (20)

Then, from the frequency equation (20), we obtain

~2 (Cz‘)gl(nm) +a~)g2(nm))
D1yum = - 3
| 2n
_E \/((T)gl(nm) + Cbgz(nm) )2 - 4([7)31(nm) Cbgz(nm) - a12a22)
~2 (Cbgl(ﬂm) + Cb(%(nm))
w([[)nm =
2 22)

+%\/(Cbgl(nm) + @gZ(nm) )2 - 4(@51(nm)6)§2(nm) - a12a22

This means that, at any nm mode of the time function
Timy(@) and Ty, (1), n,m=123,4,.,0 as dual

frequency  with  frequencies %

as(l)nm and a)(Z)nm s
n,m=1,2,3,4,...,0, there are infinitely many eigen modes.
It also means that a set of its eigen circular frequencies has
its twice infinity eigen circular frequency, and that the time
function in each mode is dual frequency.

For each of the natural frequencies, the associated
amplitude ratio of vibration modes of the two membranes is
given by

Alv(nm) A;(nm)
C(s)nm = P = ~2 o) , S 21,11
a (a)Ol(nm) - w(.v)nm )
(23.2)
n,m=12,3,4,...,0©
or
AIY( nm) A2g( nm)
C(S)nm: -2 ) = > ,SZI,II
(w02(nm) - a)(s)nm ) a
. (23)

n,m=1,2,3,4,..,0

however, from Eqgs.(23.a) we can obtain the relations for
the amplitudes

Als(nm) = C(S)nmal2

Aiv(nm) = (C(N)gl(nm) - (b(zs)nm ) C(s)nma §= ]9]] (23C)

nm=12,3,4,.....,0
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Solutions (17) of the system of ordinary differential
equations (15) and (16), based on the previous amplitude
ratio of the vibration modes, can be written in the form of:

I ~ . ~
T(l)nm (t):A((l))nm [Anm COS(C()nm(I)t) + Bnm Sln(a)nm(l)t)]+ (24 )
A o COS(@r(i11) + Doy S iy1)] A
(1)ynm nm nm (1) nm nm(Il)

1
T(Z)nm (t):A((Z))nm [ nm COS( 1m(1)t) + Bnm Sln(a)nm(l)t)]

25.a)
1 (
+A((2)3,m [C,,,,7 COS(D(iry!) + Doy SIN( @y ,,)t)]

nm=123,4,.....,0.

Introduction of Egs.(23.c) into Egs.(24.a) and (25.a)
yields

® ® 2 ~ ~ 5 . ~
wm ()C, y:t) = Z el Z mel I/Vnmal |:Anm Cos(a)nm(l)t) + Bnm Sln(a)nm([)t):| +

2 2

wyn=y " IZ
2

On the basis of the orthogonality property of the mode

nm wOl(nm)

shape functions, the unknown constants zzlnm, é,,m and

B,., ﬁnm can be determined from assumed initial
conditions (6) and (7). To find the final form of the
transverse vibrations, the initial-value problem is solved. In
this case, the classical orthogonality condition for the two-
dimensional case is applied:

i@, 1) |+
Sin(@nm(ll)t):|

El)nm (t) = a12 I:Anm Cos(a}nm(l)t) + Bnm

~ ~ 24b
+L112 |:Cnm COS((Z)nm(II)t) + Dnm ( )

~2 ~2
Toymm () = (0)01(nm) = W1 )
|:Anm COS(@nm(l)t) + Bnm Sin(a}nm(l)t)] +

- - (25.b)
+(w§1(nm) -

wi?m([l) )
|:Cnm Cos(a}nm(ll)t) + Dnm Sin(a)nm(ll)t):|

where /NI,,,,, ,é,,,,, and B,,,D,, are unknown constants
which will be determined in the text below.

Then the transverse vibrations of the double-membrane
system can be described by

) (26)
a I:Cnm COS(C(N)nm(U)t) + Dnm Sin(tbnm(ll)t)}
2 ~ ~ d . ~
nm wOl(nm) nm(I) )|:Anm Cos(wnm(l)t) + Bnm SIH(wnm(I)t):| + (27)
nm(H) )[énm COS(Dymrt) + Dnm Sin(@nm(n)f)]
%f nm=sr
[[ e e ey = (28)
4 0 nm # sr

The introduction of Eqgs.(26) and (27) into the initial
conditions (6) and (7) yields the following expressions

ib J‘J. {12 &1 (x’ J’)(Cb(zm)nm - C(N)fmuz) ) — & (X, y)}an (x,y)dA
a y aj

! & (xay)(03(201)nn1 - 5’3”1(1) ) —}

Cbifm(ll) ) - (Cb(zol)nm - a‘}r%m(l) )

W (x, y)dA

~2 ~2 ~2
(a)(Ol)nm - wnm([]) ) - (a)(Ol)nm -

(29)

Oum(1) )

;‘b‘[J.|: 1 gl (an’)(fb(zonnm - ~r%m(11))_g2 (xs y):|an (xay)dA

~ ~2 ~2 ~2 ~2
Opm(1) |:(a)(01)nm - nm(l]))_(a)(ol)nm - nm(I))]

o J.J[ X y)—fzgl (x, y)(wwnnm = D) )}an (x, y)dA

" (Cb(zol)nm_
e
é ) Clb ; |:g2( »y) a12
P L
Dnm =

Numerical experiment

The free transversal vibrations of the system of two
elastically coupled identical rectangular membranes are
considered. The following values of the system parameters
are used in the numerical calculations:

a=2[m],b =1[m], ¢ =2000[N/m"3], p,
P> =18[kg/m"2], o

= 20[kg/m"2],
= 500[N/m], &, = 300[N/m]

~2 ~ ~2
nm(ll) |:(a)(01)nm — Wpm(I1) ) - (w(Ol)nm — Wym(1) )]

In Fig.2 we can see the form of the eigen amplitude
functions for the first nine shapes among the infinite family
with different modes of free vibrations of the rectangular
membrane and for the following mn pairs: 11, 12, 13, 21,
22,23,31, 32 and 33.

The time history diagrams of the membrane surface are
presented in Fig.3. The time functions are presented
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together in each of the nm modes. The number of modes is
infinite, but we have limited it to the first nine modes. We
can see that these time functions for free vibrations are in
the two-frequency regime for every shape of the modes.

ey EEW T el

w11} war=| | ware | §

o i |

[T B ey 12 mme L}

Figure 3. The time history diagrams of the membrane surface
corresponding to the time functions 7, (¢) and T, () for each eigen
mode (mn= 11, 12, 13, 21,22, 23,31, 32 and 33)

The results of the calculations of the natural frequencies
are presented in Table 1.

Table 1. Natural frequencies 5)(:)”,,, of the double-membrane system

o — T 12z

— Iz
m—

12
- i

e e 1z

== — == I

100 1% 200 250 300 30 400 450 500
o, =0, (Nm "
Figure 4. The natural-eigen circular frequencies of the coupled-membrane

system @y, (s=1,11 and m,n=1,2 ) as a function of the membrane

tension force o, and o,

In general, an elastically-connected simply-supported
double membrane system executes two fundamental kinds
of vibrations. The system vibrates with lower natural

frequencies @), and with higher frequencies @, . It

can be seen from the numerical analysis that there is a
general tendency to increase the natural-eigen circular

frequencies @y,, in the case of increasing the layer

stiffness modulus ¢ . The important conclusions can be
drawn from expressions (21) and (22). The lower natural

frequencies @y, are not dependent on the stiffness
modulus ¢ unlike @y, . This effect is greater for the
frequencies @y, as it has been presented in Fig.5.

-
. 2

S (1/5)

1121
miz
111

111

m 1 2 3
CN‘)(s)nm a)(l)nl 6(1);12 CN‘)(l)n3
" a)(Z)rxl (’NJ(z)nz a)(z)ns
1 Z@lm 15.7362 27.9296 40.2261
@,m 21.8524 34.3335 48.9580
2 @m 19.6579 30.1249 41.7442
@Zm 25.4390 36.8751 50.8023
3 N 24.6560 33.4364 44.1550
N 30.6545 40.7839 53.7385
[

The natural-eigen circular frequencies @y, are

evaluated from relations (21) and (22) as the functions of
the tension magnitude o, and o,. The results of the
calculations for s =1,/ and m,n=1,2 are presented in
Fig.4. An evident influence of the membrane tension on the
frequencies of the system is contemplated. In any case, the
increase of o, and o, causes an increase of @) -

However, this influence of the membrane tension on the
particular frequencies is different, and the effect of o; and

o, on the frequencies @, is greater than on the @y, -

It can be seen that the discussed combined system has an
interesting feature which allows each natural frequency to
change as a function of membrane tension, while other
constructional and physical parameters of the system can
stay the same.

Fol} . Iz
r— 111

e 6& 1 15 2 28 3 38 4 48 &

& (Ninr) =10
Figure 5. The natural eigen circular frequencies of the coupled-membrane
system @), (s=1,0I and m,n=1,2 ) as the function stiffness
modulus ¢ of the Winkler elastic layer

Conclusions

In this study, the free transverse vibrations of an
elastically-connected rectangular double-membrane system
are analyzed theoretically. The solutions of differential
equations of the motion are formulated by the Bernoulli-
Fourier method of particular integrals. It is shown that one
vibration mode corresponds to a two-frequency regime of
free vibrations. The numerical analysis shows the effect of
physical parameters of the system on the natural eigen
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circular frequencies. It should be noted that the natural
frequencies of the system may be varied with a change of
membrane tensions and a change of stiffness modulus. It is
concluded that the influence of the change of membrane
tensions at a high natural frequency is larger than at a lower
natural frequency. Natural frequency increases with an
increase of the membrane tensions and an increase of the
stiffness modulus ¢ of the Winkler elastic layer. Moreover,
higher natural frequency significantly depends on the
increase of the stiffness modulus ¢ of the Winkler elastic
layer, whereas at a lower natural frequency it is almost
independent of it. Using the Matlab software tools, the
corresponding visualizations of the characteristic forms of
the membrane and the time functions are presented.
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Sopstvene transverzalne oscilacije sistema dveju spregnutih
membrana

U ovom radu izvrSena je analiza sopstvene transferzalne oscilacije sistema dveju paralelnih pravougaonih membrana
kontinualno spojenih Winklerovim elastinim slojem. KoriS¢enjem Bernoulli-Fourier-vog metoda partikularnih
integrala dobijeno je analiticko resenje sistema parcijalnih diferencijalnih jedna¢ina pomocu kojih su opisane
transverzalne oscilacije membrana. ReSenje je odredeno u obliku beskona¢nog niza sopstvenih amplitudnih funkcija
transverzalnih oscilacija sistema za svaku od dve sopstvene frekvencije. Takode je uradena numericka analiza sistema
pomocu softverskih alata. Dobijeni numericki rezultati su prikazani u vidu dijagrama i tabela.

Kljucne reci: slobodne oscilacije, transferzalne oscilacije, membrane, Bernuli-Furijeova metoda, numericka analiza.

CB000aHBIC MONEpPeYHbIe KOJICOAaHUS CUCTEM IBYX MeMOpaH

B nanHoli cTaThe aHAJIM3UPYIOTCS CBOOO/IHBIE MONepeyHble KoIeGaHus ABYX NapalieJIbHBIX NPSAMOYIoJbHbIX MeMOpaH
NMOCTOSTHHO NojK/I04eHbIx Winkler-ynpyrum cioem. Mcnosbs3oBannem meroaa bepryin-®@ypbe 4acTHbIX MHTEIPaJioB
MOJIY4YAETCS AHAIMTHYECKOE pellieHne cucTeM QU depeHunanIbHbIX yPABHEHHI B YACTHBIX MPOU3BOIHBIX, IIPU MOMOIIH
KOTOPbIX ONHUCHIBAIOTCH MONepeuHble KojedaHuss MemMOpaH. Peuienue, npegocraBieHHoe B BUie 0ECKOHEYHOIo psijaa
CcOOCTBEHHBIX AMIIMTYIHBIX (YHKIMI MONepeYHbIX KOJIeGaHuii cHCTeMbI I KaXKI0H U3 IBYX COOCTBEHHBIX YaCTOT.
Tak:ke BBINOJHEH YHCJICHHBIH CHCTEMHBIH aHAIU3 ¢ MOMOIILIO NMPOrpaMMHbIX cpeacTs. IlosyyeHHble nupposBbie
JaHHbIe NPUBeIEeHbI B Tad u1Ie.

Knrouegvie cnosa: ¢Bo0OIHBIE KOJIeOaHUs, NMONEPeYHbIe Kole0anus, MeMOpaHbl, MeTo] BepHyn-®ypbe, YHcICHHBINH
aHaJIM3.
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Libres oscillations transversales du systeme a double membrane

Dans ce papier on a fait ’analyse de D’oscillation transversale libre du systéme a deux membranes rectangulaires et
paralléles liées continuellement par la couche élastique de Winkler. En utilisant la méthode des intégrales particuliéres de
Bernoulli -Fourier on a obtenu une solution analytique du systéme des équations différentielles partielles par lesquelles
on a décrit les oscillations transversales des membranes. La solution a été déterminée sous la forme d’une série infinie des
propres fonctions d’amplitude des oscillations transversales du systéme pour chacune des deux fréquences. On a effectué
aussi I’analyse numérique du systéme a I’aide d’un logiciel. Les données numériques obtenues ont été exposées en forme
graphique.

Mots clés: oscillations libres, oscillations transversales , membranes, méthode Bernoulli — Fourier , analyse numérique



