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Non-Linear Dynamics of a Double-Plate System Coupled by a Layer 
with Viscoelastic and Inertia Properties 

Julijana Simonović1) 

The paper considers multi-frequency vibrations of a system of two isotropic circular plates interconnected by a rolling 
viscoelastic layer of nonlinear characteristics. The considered physical system should be of interest to many researchers 
in the field of vibration and acoustics absorbers. The interconnecting layer is modeled as a continually distributed layer 
of discrete standard rheological elements with damping properties and nonlinear elasticity.  
The mathematical model of the system is derived in the form of a system of partial differential equations of transverse 
oscillations of a double circular plate system coupled with a layer of viscous nonlinear elastic and inertia properties, 
excited by external excitation continually distributed along the plate surfaces. The system of ordinary differential 
equations of the first order with respect to the amplitudes and the corresponding number of the phases is derived in the 
first asymptotic averaged approximation for different corresponding multi-frequency nonlinear vibration regimes. These 
equations are considered analytically and numerically in the light of stationary and non-stationary resonant regimes, as 
well as in the light of the interactions of nonlinear modes and the number of resonant jumps in the cases without rolling 
elements and in the cases with two different mass values of rolling elements. 
Such an analysis proves that the presence of rolling coupling elements in the interconnecting layer of two plates  causes a 
frequency overlap of the resonant regions of nonlinear modes, together with the increase of their interaction. 

Key words: system dynamics, nonlinear dynamics, oscillations, plate, resonant regime, resonant jumps, mathematical 
model, partial differential equations. 
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Introduction 
OWADAYS the science of materials has a great 
interest in mathematical modeling of contemporary 

classes of materials. The better prediction of materials 
behavior in different dynamical surroundings is possible 
with the appropriate mathematical model of material 
characteristics. The phenomena of enlargement and jumps 
of amplitudes, transition processes or hysteresis in 
dynamics of systems may be explained by introducing the 
nonlinear elements in mathematical modeling of material 
properties. This paper will get insight in such phenomena 
caused not only by nonlinearity but also by the presence of 
rolling elements with their translation and rotation. The 
viscous non-linear elastic rolling element modeled in the 
manner of rheological models should present the Kelvin-
Voigt material with added spherical material particles. 

In many engineering systems with non-linearity, high 
frequency excitations are the sources of multi-frequency 
resonant regimes appearance of high as well as low 
frequency modes. This is visible from many experimental 
research results and also theoretical results (see [1] and [2]). 
The interaction between the amplitudes and phases of 
different modes in nonlinear systems with many degrees of 
freedom as in the deformable body with infinite numbers of 
frequency vibration of free and forced regimes is observed 
theoretically in the [3] and [4] using averaging asymptotic 
methods of Krilov-Bogoliyubov-Mitropolyskiy (see [5, 6]). 
 This knowledge has great practical importance.  

In the monograph [2] by Nayfeh, a coherent and unified 

treatment of analytical, computational, and experimental 
methods and concepts of modal nonlinear interactions was 
presented. This monograph is an obvious extension of 
Nayfeh’s and Balachandran’s well-known monograph [1] 
titled Applied Nonlinear Dynamics. These methods are 
used to explore and unfold, in a unified manner, the 
fascinating complexities in nonlinear dynamical systems. 
Through the mechanisms discussed in this monograph, 
energy from high-frequency sources can be transferred to 
the low-frequency modes of supporting structures and 
foundations, and the result can be harmful large-amplitude 
oscillations that decrease their fatigue lives. However, these 
mechanisms can be exploited to transfer the energy from 
the main examined system to the designed subsystem and 
hence decrease considerably the vibrations of the main 
system and increase its fatigue life.  

An experimental and theoretical study of the response of 
a flexible cantilever beam to an external harmonic 
excitation near the beam’s third natural frequency is 
presented in [7]. They have noted that the energy transfer 
between the third and first modes is very much dependent 
upon the closeness of the modulation (or Hopf bifurcation) 
frequency to the first-mode natural frequency. In earlier 
studies [8, 1] by Nayfeh and coworkers, the modulation 
frequency was close to the first-mode natural frequency, 
and, therefore, large first-mode swaying was observed. 
Nayfeh developed a reduced-order analytical model by 
discretising the integral partial-differential equation of 
motion. Identifying, evaluating, and controlling dynamical 

N 



 SIMONOVIĆ.J.: NON-LINEAR DYNAMICS OF A DOUBLE-PLATE SYSTEM COUPLED BY A LAYER WITH VISCOELASTIC AND INERTIA PROPERTIES 41 

integrity measures in nonlinear mechanical oscillators is a 
topic for researchers, see [9, 10, 11, 12]. The energy 
transfer between coupled oscillators can be a measure of the 
dynamical integrity of hybrid systems as well as 
subsystems [10, 11, 13, 14]. 

The problem of detecting the homoclinic orbits applied 
to the dynamics of different engineering systems was 
investigated in the series of the papers [9, 15], which gave 
original research results. In [16], resonant nonlinear normal 
modes in the cases of two-to-one, three-to-one, and one-to-
one internal resonances in undamped unforced one-
dimensional systems with arbitrary linear, quadratic and 
cubic non-linearities are investigated for a class of shallow 
symmetric structural systems. The non-linear orthogonality 
of the modes and the activation of the associated 
interactions are clearly dual problems.  

In the series of references, it is possible to find different 
approaches to solving the nonlinear dynamics of real 
systems, as well to discovering nonlinear phenomena or 
some properties of the system dynamics. There are many 
systems consisting of a nonlinear oscillator attached to a 
linear system, examples of which are nonlinear vibration 
absorbers, or nonlinear systems under test using shakers 
excited harmonically with a constant force.  Paper [17] 
presented a study of the dynamic behavior of a specific two 
degree-of-freedom system representing such a system, in 
which the nonlinear system does not affect the vibrations of 
the forced linear system. The nonlinearity of the attachment 
was derived from a geometric configuration consisting of a 
mass suspended on two springs adjusted to achieve a quasi-
zero stiffness characteristic with pure cubic nonlinearity. 
The response of the system at the frequency of excitation 
was found analytically by applying the method of 
averaging. The effects of the system parameters on the 
frequency-amplitude response of the relative motion are 
examined. It is found that closed detached resonance curves 
lying outside or inside the continuous path of the main 
resonance curve can appear as a part of the overall 
amplitude-frequency response. Two typical situations for 
the creation of the detached resonance curve inside the 
main resonance curve, which are dependent on the damping 
in the nonlinear oscillator, were discussed. The similar 
nonlinear phenomena were also clarified in [18], where the 
nonlinear dynamics of the softening and hardening lightly 
damped Duffing’s oscillator with linear viscous damping 
was presented. For simple approximate non-dimensional 
expressions, the corresponding displacement amplitudes for 
the jump-up and jump-down frequencies were determined 
using the harmonic balance approach. These analytical 
expressions were validated for a range of parameters by 
comparing the predictions with calculations from direct 
numerical integration of the equation of motion. They were 
also compared with similar expressions derived using the 
perturbation method. It was shown that the jump-down 
frequency depends on the degree of nonlinearity and the 
damping in the system, whereas the jump-up frequency 
depends primarily upon the nonlinearity, and only weakly 
depends upon the damping. An expression was also given 
for the threshold of the excitation force and the nonlinearity 
that needs to be exceeded for a jump to occur. It was shown 
that this is only dependent upon the damping in the system. 

The list of valuable research results in the connected area 
of the objects of the author’s research is long, but in this 
introduction, a rather subjective choice is given.  

The expressions for energy of the excited modes 
depending on amplitudes, phases and frequencies of 

different nonlinear modes are obtained by Hedrih  in [10, 
11, 19 and 20] and by Hedrih and Simonović in  [14, 21-23] 
by using averaging and asymptotic methods for obtaining a 
system of ordinary differential equations of amplitudes and 
phases in first approximations. By means of these 
asymptotic approximations, the energy analysis of a mode 
interaction in the multi frequency free and forced vibration 
regimes of nonlinear elastic systems (beams, plates, and 
shells) excited by initial conditions was made and a series 
of resonant jumps as well as energy transfer features were 
identified. The excitation was considered like a perturbation 
of the equilibrium state of the double plate system at the 
initial moment, defined by the initial conditions for 
displacements and velocities of both plate middle surface 
points. In addition, for the case of an external excitation in 
the resonant frequency range near one of the natural eigen 
frequency of the basic linear system, two or more resonant 
energy jumps at the nonlinear modes were presented.  

Using the Krilov-Bogolyubov-Mitropolskiy asymptotic 
method as well as the energy approach presented in the 
monographs by Mitopolskiy, [5, 6, 24], there are new 
results for a study of the elastic bodies nonlinear 
oscillations and the energetic analysis of elastic bodies 
oscillatory motions  in the doctoral thesis by Stevanović ( 
see [3] and [4]). The introduction of paper [21] presented a 
review survey of the original results of the author and of the 
researchers from the Faculty of Mechanical Engineering, 
University of Niš, inspired and/or obtained by the 
asymptotic method of Krilov-Bogolyubov-Mitropolyskiy,  
by a direct influence of professor Rašković [25] with his 
scientific instructions and by the published Mitropolskiy's 
papers and monographs.  

The interest in the study of coupled plates as a new 
qualitative system dynamics has grown exponentially over 
the last few years because of the theoretical challenges 
involved in the investigation of such systems. Recent 
technological innovations have caused a considerable 
interest in the study of components and processes of hybrid 
dynamical systems.  Hybrid systems consisting of  rigid and 
deformable bodies (plates, beams and belts) connected with 
a system of discrete elements  are characterized by the 
interaction between the dynamics of subsystem, and 
governed by coupled partial differential equations  with 
boundary and initial conditions, see[10, 19, 26, 27] and [12, 
14, 21-23]. 

In papers [11, 28, 29], through the examples of hybrid 
systems of a statically and dynamically coupled discrete 
subsystem of rigid bodies and continuous subsystem, the 
method for obtaining frequency equations of small 
oscillations was presented. In addition, series of theorems 
of small oscillations frequency equations were defined. The 
analogy between frequency equations of some classes of 
these systems was identified. Special cases of discretization 
and continualization of coupled subsystems in the light of 
these sets of proper circular frequencies and frequency 
equations of small oscillations were analyzed. 

The study of transversal vibrations of both double and 
multi plate systems with elastic, viscous elastic of creep 
connections is important for both theoretical and pragmatic 
reason. Many important structures may be modeled from a 
composite structure and possess a big importance in many 
applications such as, e.g., in civil engineering for roofs, 
floors, walls, in thermo and acoustics isolation systems of 
wall and floor constructions, orthotropic bridge decks or for 
building any structural application in which the traditional 
method of construction uses stiffened steel. They are also 
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applied in car, plane and ship industry for sheaths of plane 
wings, for inner arrangement of planes; they are suitable for 
building maritime vessels or for building structures such as 
double hull oil tankers, bulk carriers, car bodies, truck 
bodies or for railway vehicles. 

The sandwich constructions consist of two or more 
facing layers structurally bonded to a core made of material 
with small specific weight. This type of construction 
provides a structural system that acts as a crack arrest layer 
and that can join two dissimilar metals without welding or 
without setting up a galvanic cell and provides equivalent in 
plane and transverse stiffness and strength, reduces fatigue 
problems, minimizes stress concentrations, improves 
thermal and acoustical insulation, and provides vibration 
control. 

It is shown here that, as a model of that structure, it is 
possible to use a double plate system connected by a visco-
elastic layer with a nonlinearity of the third order in the 
elastic part. 

This paper will be an attempt to present the feature of the 
interconnecting layer introduced with rolling elements with 
their inertia of rolling without sliding and with the 
translation of mass centers. The model of a new rheological 
element with the properties of viscous- nonlinear elasticity 
and  that of rolling without sliding will be presented. Such 
an element has different forces on its ends in motion. The 
presence of these elements in the model of the 
interconnecting layer of two plates introduces the 
dynamical coupling in the mathematical model of the plate 
system dynamics. In addition, this model with the 
nonlinearity of the third order in the interconnecting layer 
introduces the phenomenon of passing through the resonant 
range and the appearance of one or several resonant jumps 
in the amplitude–frequency and phase–frequency curves, 
such as multi-nonlinear mode mutual interactions between 
amplitudes and phases of different nonlinear modes. The 
analysis of the mathematical model of dynamics on double 
plate system with coupling layer of visco-elastic nonlinear 
rolling properties is going to show the interesting 
phenomena of nonlinear dynamics caused by the presence 
of viscous nonlinear elastic and rolling elements.    

In systems with nonlinearity, the energy transfer between 
coupled subsystems is noticeable. The two or more resonant 
energy jumps at the nonlinear modes were investigated in 
paper [10] for the case of an external excitation in the 
resonant frequency range near one of the natural eigen 
frequency of the basic linear system. Also, see [20] which 
contains an analysis of the energy transfer in double plate 
system dynamics. 

In the following parts of this paper, we will first present 
the mathematical models of the interconnecting layer and 
the dynamics of the double plate system coupled with 
viscous nonlinear elastic rolling elements continually 
distributed on plate surfaces. The result of that modeling 
will be a system of partial differential equations (PDE`s ), 
dynamically and statically coupled. In the third part of the 
paper, we will present an asymptotic approximation of the 
solution of PDE`s   of transversal vibrations of a double 
circular plate system forced with two-frequency external 
excitations. The fourth and fifth parts consist of the 
analyses of stationary and no stationary regimes of 
transversal vibrations of a double plate system done by the 
series of the amplitude and phase-frequencies curves of the 
system. In the conclusion, we will mention all results of 
these analyses and point out the future use in an energy 
analysis of the dynamics in systems of plates connected 

with a layer of viscous nonlinear elastic rolling properties. 

Model of the interconnecting layer and PDE`s of 
transversal vibrations of a double plate system 
The standard rolling viscous nonlinear elastic element, 

presented in Figs. 1b) and 1d), introduced as a rheological 
model (see [30]), has the transversal displacements 1w  and 

2w  on the ends, and the velocities of its ends 1w�  and 2w� . 
The expressions for the velocity of translation for the centre 
of mass C  have the form: 2 1

2C
w ww +=
� �� , and for the angular 

velocity around the center of mass in the form: 
2 1
2RC

w wω −=
� � . Then the expressions for the kinetic energy 

of such an element have the following form: 
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where 2
Ci m= CJ  is the square of the radius of inertia for the 

rolling element. If the rolling element is the disc, then 
22

2C
Ri = . If we introduce the notation of parameters in the 

form: 

12 2
ˆ

4 84
m ma

R
= − =CJ , 11 2

3ˆ
4 84
m ma

R
= + =CJ   

and  

22 2
3ˆ

4 84
m ma

R
= + =CJ ,  

then we have: 

 ( )

2 2
1 2 1 2

11 22 121,2
1 ˆ ˆ ˆ22k

w w w wE a a at t t t
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 (2) 

The potential energy form for such an element with a 
nonlinearity of the third order is in the form: 
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it turns out: 
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Rayleigh’s function of energy dissipation is in the form: 

 ( )

2
2 1

11,2
1
2

w wb t t
∂ ∂⎡ ⎤Φ = −⎢ ⎥∂ ∂⎣ ⎦

 (4) 

where 1b  is a known coefficient of the dissipation force. 
Now by using the meaning of parts in the Lagrange’s 

equations of motions on ( ), ,iw r tφ , 1, 2i =  as generalized 
coordinates, we may represent the inertial and elastic 
forces, and the force of viscous damping acting to the upper 
or lower plates in the following forms: 
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Figure 1. a) Double circular plate system connected with a rolling viscous-
elastical nonlinear layer; b) a rheological model of the rolling viscous nonlinear 
elastic discrete element; c) Model of the double circular plate system connected 
with a layer of the rheological elemets with properties of the nonlinear 
elasticity, damping and inertia of translation and rotation of the rolling part; d) a 
rheological scheme of the rolling viscous nonlinear elastic discrete element. 

The translational dynamics of the rolling disc gives the 
sum of these two forces of inertia acting on upper and lower 
plates: 

 
1 2

1 11 2

2 2
2 1

2 2
1
2

k k k k
j j

C

E E E Ed dF F dt w dt ww w
t t

w wm ma
t t

∂ ∂ ∂ ∂+ = − − − − =
∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂= − + = −⎜ ⎟∂ ∂⎝ ⎠

(7) 

The rotation dynamics of the rolling disc gives the 
difference of these two forces of inertia acting on upper and 
lower plates: 
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The elastic forces on upper and lower plates are: 
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The forces of viscouse damping on upper and lower 
plates have the forms: 

 2 1
1 2w w

i
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The resulting force of the rolling visco-elastic nonlinear 
element on the plate middle points has the form: 
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Hence, it follows that the resulting force of the rolling 
viscous nonlinear elastic element the on upper ( 1i = ) plate 
middle point has the form: 
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and the resulting force of the rolling viscous nonlinear 
elastic element on the lower ( 2i = ) plate middle point has 
the form: 
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The governing equations of the double plate system, 
Figs.1.a) and 1.c), are formulated in terms of two 
unknowns, [12] and [25]: the transversal displacement 

( ), ,i iw w r tφ= , 1, 2i =  in direction of the axis z , of the 
upper plate middle surface and of the lower plate middle 
surface. We present the interconnecting layer as a model of 
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distributed discrete rheological rolling visco-elastic 
elements with nonlinearity in the elastic part of the layer as 
shown in Figs1.b) and 1.d).  Since these elements are 
continually distributed on the plate surfaces, the generalized 
resulting forces (12) and (13) are also continually 
distributed onto the plate middle points. Our assumptions 
for the plates are: they are thin with the same contours and 
with an equal type of the boundary conditions and they 
have small transversal displacements. The system of two 
coupled partial differential equations is derived using 
d’Alembert’s principle of the dynamic equilibrium in the 
following forms: 
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âa hρ=� , 22
22

2 2
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characteristic. The functions ( ) ( ) ( ), ,i iq q r tφ=� �  are the 
known functions of the external continually distributed load 
on the plate surfaces.  

Asymptotic approximation of the solution  
of PDE`s of transversal vibrations of a double 

circular plate system 
The system of partial differential equations (14) 

describes the dynamics of the double plate - system with 
the rolling viscous nonlinear elastic layer. By using the 
Bernoulli’s method of particular integrals, we suppose the 
solutions for that system are in the form of the eigen 
amplitude functions ( ) ( ),i nmW r φ , , 1,2,...n m = ∞ , satisfying 
the same boundary conditions, expansion with time 
coefficients in the form of unknown time functions 
( ) ( ) ( )i nm i nmT T t= , and describing their time evolution (see 

[12]), in the form: 

 ( ) ( ) ( ) ( ) ( ), , ,i i nm i nmw r t W r T tφ φ= . (15) 

After substituting this solution in the system of equations 
(14), keeping in mind the orthogonality conditions of plate 
amplitude functions, it turns into a system of differential 
equations for the time function of one nm -mode of plates 
transversal oscillations : 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

2
1 (1)1 2 1 2 1 1

32
1 2 1 2 1 1

2 nmnm nm nm nm nm

nmnm nm nm nm

T T T T T

a T W T T f

κ δ ω

εβ

+ − − + −

⎡ ⎤− = ℵ − +⎣ ⎦

��� �� � � �
���

  

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2 (2)2 1 2 2 1 2

32
2 1 2 2 1 2

2 nmnm nm nm nm nm

nmnm nm nm nm

T T T T T

a T W T T f

κ δ ω

εβ

+ + − + −

⎡ ⎤− = − ℵ − −⎣ ⎦

��� �� � � �
���

 (16) 

where ( )
( )
2

2

1
i nm

i nm
iia

ω
ω =

+
� �  and ( ) ( ) ( ) ( )

2 4 4 2
i nm i nm i nm i nmk c aω = +  , 

1,2i =  are the eigen circular frequencies of coupled plates, 

( )
( )

( )

2
4

(1)

0 0
2

2
(1)

0 0

,

,

r

nm

nm r

nm

W r rdrd

W

W r rdrd

π

π

φ φ

φ φ

ℵ =
∫ ∫

∫ ∫

 is the coefficient of the 

nonlinearity influence of the elastic layer, 

( ) ( )
( ) ( ) ( )

( ) ( )

2

0 0
2

2

0 0

, , ,

,

r

i i nm

i nm r

i nm

q r t W r rdrd

f t

W r rdrd

π

π

φ φ φ

φ φ

=

⎡ ⎤⎣ ⎦

∫ ∫

∫ ∫

�
 are the known 

functions of external forces and the coefficients of 

reduction are: ( )12

1
i

i
ii

a
aκ =

+
�
� , ( )

( )
2

2

1
i

i
ii

a
a a=

+
� �

, ( )2
2 1

i
i

iia
δ

δ =
+

�
� , 

( )
( )

1
i

i
iia

β
β =

+
�

�
 and ( ) ( ) ( ) ( )

1
i nm

i nm
ii

f t
f t a=

+
�

� . 

Having in mind the form of solutions for the 
corresponding homogeneous system of (14), we suppose 
the solution of that system in the following form:  

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1

2

ˆ1
1 11 21

ˆ2
2 221

cos

cos

nm

nm

t
nm nmnm nm

t
nm nmnm

T t K e R t t

K e R t t

δ

δ

−

−

= Φ +

+ Φ
  

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1

2

ˆ1
1 12 22

ˆ2
2 222

cos

cos

nm

nm

t
nm nmnm

t
nm nmnm

T t K e R t t

K e R t t

δ

δ

−

−

= Φ +

+ Φ
 (17) 

where: s
ijnmK  are the cofactors of determinant corresponding 

to the basic homogeneous coupled linear system (see [27] , 
[5] and [22]), and the amplitudes ( )inmR t  and the phases 

( ) ( )inm i inm inmt q t tϕΦ = Ω +  are unknown time functions which 
we are going to obtain using the asymptotic Krilov-
Bogolyubov-Mitropolyskiy averaging method (see [5, 6, 
24] ). It is taken into account that the defined task satisfies 
all necessary conditions for applying the asymptotic Krilov-
Bogolyubov-Mitropolskiy method concerning the small 
parameter. 

We suppose that the functions of the external excitation 
at nm -mode of oscillations are the two-frequency process 
in the form:  

 ( ) ( ) [ ]
[ ]

01 1 1

02 2 2

cos
cos

nm nm nmi nm

nm nm nm

f t h t
h t

ϕ
ϕ

= Ω + +
+ Ω +

, (18) 

and that the external force frequencies 1nmΩ  and 2nmΩ  are 
in the range of two corresponding eigen linear damped 
coupled system frequencies 1 1ˆnm nmpΩ ≈  and 2 2ˆnm nmpΩ ≈  
of the corresponding linear and free system to system (14) 
and that the initial conditions of the double plate system 
permit the appearance of the two-frequency like vibrations 
regimes of the system. Also, we accept that nonlinearity is 
small introducing the small parameter ε . ˆinmp  are the 
frequencies of visco-elastic coupling obtained as the 
imaginary parts of the solution ,

ˆ ˆi jnm inm inmipλ δ= − ∓  for the 
characteristic equations of system (14). For details see [26, 
27] and [14, 21-23]. 

In addition, it is necessary to point out that all previous 
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expressions are valid for the cases of the same plate 
contours, as well as for the equal boundary conditions of 
both plates. The previous system of equations and solutions 
are uniquely determined for corresponding initial 
conditions determining the initial middle surface of the 
plate forms (positions) and the corresponding initial 
velocities of the middle surface points. 

By introducing the condition that the first derivatives 
( ) ( )i nmT t�  have the same forms as in the case where the 

amplitudes ( )inmR t  and the difference of the phases 

( )inm tϕ  are constant and after introducing the first ( ) ( )i nmT t�  

and the second ( ) ( )i nmT t��  derivatives in the system of 
nonlinear equations (14), we obtain a system of equations 
in respect of the derivatives of the unknown functions  

( )inmR t�  and ( )inm tϕ� . After applying the method of 
averaging to the right-hand sides of that system with respect 
to the full phases ( )( )

1
i
nm tΦ  and ( )( )

2
i
nm tΦ , we obtain the first 

asymptotic averaged approximation of the system of 
differential equations for the amplitudes ( )inmR t  and the 
difference of the phases ( )inm tϕ  as follows: 

 ( ) ( ) ( )
1

1 1 1 1
1 1

cosˆ
nm

nm nm nm nm
nm nm

Pa t a t
p

εδ ϕ= − −
Ω +

�  (19) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 211 1

1 1 1 1 2 1
1 1 1 1 1

3 1ˆ sin8 4ˆ ˆ ˆ
nmnm nm

nm nm nm nm nm nm
nm nm nm nm nm

Pt p a t a t
p p p a t

βα εϕ ϕ= −Ω − − +
Ω +

�  (20) 

 ( ) ( ) ( )
2

2 2 2 2
2 2

cosˆ
nm

nm nm nm nm
nm nm

Pa t a t
p

εδ ϕ= − −
Ω +

�  (21) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 222 2

2 2 2 2 1 2
2 2 2 2 2

3 1ˆ sin8 4ˆ ˆ ˆ
nmnm nm

nm nm nm nm nm nm
nm nm nm nm nm

Pt p a t a t
p p p a t

βα εϕ ϕ= −Ω − − +
Ω +

�  (22) 

where ( ) ( ) înmt
inm inma t R t e δ−=  is the change of variables 

hence ( ) ( ) ( )( ) ˆˆ e inmt
inm inm inm inma t R t R t δδ −= −�� , and 

( ) ( ) ( ) ( )( ) ( ) ( )

( )( )
12 1 12 21 2 1 2

22 21 21 22
22 11

1
1 1nm nm nm nm nm

a a
KK K K K K

a a
⎛ ⎞

= − −⎜ ⎟+ +⎝ ⎠

� �
� � . 

The coefficients inmδ  depend on the coupling properties via 

cofactors and ( )i nmδ�  on the damping coefficients of the 

viscous elastic layer too, the coefficients 1P nmε  and 2P nmε  
of excited forces amplitudes, and the coefficients inmα , 

inmβ  of the non-linearity layer properties too, in the 
following forms: 

 

 
( ) ( )

( ) ( )
( )

( )
( )

( )
( ) ( )

( )

( )
( )

( )

1 1 2 2
22 21 12 1 2 12 2 122 212 2

1 21 22
11 22 22 111 1 1 1

nm nm nm nm
nm nm nm

nm

K K a K a K
K KKK a a a a

δ δ
δ

⎡ ⎤ ⎧ ⎫− ⎛ ⎞ ⎛ ⎞⎪ ⎪⎣ ⎦ ⎜ ⎟ ⎜ ⎟= + + +⎨ ⎬⎜ ⎟ ⎜ ⎟+ + + +⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

� �� �
� � � �  (23a) 

 

( ) ( )
( )

( )
( )

2
12 2 212

22
22

1
11

1

1

nm
nm

nm
nm

a K
K

a
P

KK a

ε
⎛ ⎞
⎜ ⎟+
⎜ ⎟+⎝ ⎠= −

+

�
�

�  (23b) 

 
( ) ( ) ( )( ) ( )

( )
( ) ( )

( )

( )
( )

( )
( ) ( )

( )

( )

31 1 2 2
22 21 2 12 1 1 12 222 212 2

1 21 22
22 11 11 222 1 1 1 1

nm nm nm nm nm
nm nm nm

nm

W K K a K a K
K KKK a a a a

ε β β
α

⎧ ⎫ℵ − ⎡ ⎤ ⎛ ⎞⎪ ⎪⎜ ⎟= − + + +⎢ ⎥⎨ ⎬⎜ ⎟+ + + +⎢ ⎥⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭

� �
� � � �  (23c) 
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( )
( ) ( )

( )

( )
( )
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( ) ( )

( )

( )

21 1 2 2 2 2
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1 21 22
22 11 11 221 1 1 1

nm nm nm nm nm nm nm
nm nm nm

nm

W K K K K a K a K
K KKK a a a a

ε β β
β

⎧ ⎫ℵ − − ⎡ ⎤ ⎛ ⎞⎪ ⎪⎜ ⎟= − + + +⎢ ⎥⎨ ⎬⎜ ⎟+ + + +⎢ ⎥⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭

� �
� � � �  (23d) 
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 ( )

( ) ( ) ( ) ( )
( )
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( )

( )
( ) ( )

( )

( )
( )

( )

1 1
12 2 1 12 1 221 222 2 1 1

22 21 22 21
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2
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nm nm
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a K a K
K K K K

a a a a
t KK
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⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎡ ⎤ ⎜ ⎟ ⎜ ⎟− + + +⎨ ⎬⎣ ⎦ ⎜ ⎟ ⎜ ⎟+ + + +⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭=

� �� �
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1
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K
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( )
( ) ( )

( )

( )
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( )
( ) ( )

( )

( )

32 2 1 1
22 21 1 12 2 2 12 121 221 1

2 22 21
11 22 22 112 1 1 1 1

nm nm nm nm nm
nm nm nm

nm

W K K a K a K
K KKK a a a a

ε β β
α
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( ) ( )

( )

( )
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W K K K K a K a K
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⎧ ⎫ℵ − − ⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟= − + + +⎨ ⎬⎜ ⎟ ⎜ ⎟+ + + +⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

� �
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We observed the case when the external distributed two-

frequencies force acts at upper surfaces of the upper plate 
with frequencies near the circular frequencies of the 
coupling 1 1ˆnm nmpΩ ≈  and 2 2ˆnm nmpΩ ≈ , and that the lower 
plate is free of excitation ( ) ( )2 0nmq t =� .This means that the 
passing thought the main resonant state corresponding to 
the frequencies of the viscous elastic coupling ˆ»inm inmpΩ  
was observed. 

Analysis of the stationary regimes of transversal 
vibrations of a double plate system 

For the analysis of the stationary regime of oscillations, 
we equal the right-hand sides of differential equations (19), 
(21) for the amplitudes ( )inmR t  and (20), (22) for the 

difference of the phases ( )inm tϕ  with null. Eliminating the 
phases 1nmϕ  and 2nmϕ , we obtained a system of two 
algebraic equations by the unknown amplitudes 1nma  and 

nma2  in the following form: 

 

( )

( )

2 2 2 2
1 1 1 1

2
2 2 2 21 1

1 1 1 1 1 2
1

2
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ˆ
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2 2 2 2

2
2 2 2 2 2 2

2 2 2 2 2 1
2
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ˆ
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0
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α β

+Ω +

⎛ ⎞+Ω
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⎝ ⎠
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(24b) 

Also, with the elimination of the amplitudes nma1  and 

nma2 , we obtained the forms for the phases nm1φ  and nm2φ  
in the case of two-frequencies forced oscillations in the 
stationary regime of one nm mode of double plate system 

oscillations: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−

Ω−
=

nmnm

nmnmnmnm

nm

nmnm
nm

aa
δ
βα

δ
φ

1

2
21

2
1111

1 p̂8
23p̂arctg  (25a) 

and 
2 2

2 2 2 2 2 1
2

2

p̂ 3 2arctg
ˆ8p

nm nm nm nm nm nm
nm

nm nm nm

a aα βϕ
δ δ

⎛ ⎞−Ω += −⎜ ⎟
⎝ ⎠

. (25b) 

Solving systems (24a,b) and (25a,b) by the numerical  
Newton-Kantorovic's method in the Mathematica computer 
program, we obtained the stationary amplitudes and phases 
curves of the two-frequencies regime of one eigen nm -
shape amplitude mode oscillations in the double plate 
system coupling with a rolling viscous nonlinear elastic 
layer depending on the frequencies of the external 
excitation force. If we fix the value of one external 
excitation frequency of two possible ones, we obtain 
amplitude-frequency curves as well as phase-frequency 
curves of the stationary states of the vibration regime in the 
following forms:  

1* for the second external excitation frequency with a 
constant discrete value ( )2 constnmΩ =  corresponding 
amplitude-frequency and phase-frequency curves: 

( )nmnm fa 111 Ω= , ( )nmnm fa 122 Ω= , ( )nmnm f 131 Ω=φ   

and 

( )nmnm f 142 Ω=φ  

and  
2* for the first external excitation frequency with a 

constant discrete value ( )1 constnmΩ =  corresponding 
amplitude-frequency and phase-frequency curves: 

( )nmnm fa 251 Ω= , ( )nmnm fa 262 Ω= , ( )nmnm f 271 Ω=φ   

and  
( )nmnm f 282 Ω=φ . 

We will present the amplitude-frequencies and phase-
frequencies curves of the stationary state in a continuous 
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exchange of fixed discrete values of external excitation 
frequencies and in that sense consider the system in the 
stationary regime. Some characteristic diagrams of these 
amplitide-frequency and phase-frequency curves are 
presented in Fig.2-17. 

The following analysis considers changing the rolling 
element masses that affect the kinetic energy of the 
interconnecting layer. Since the visco-elastic part of the 
interconnecting elements has negligible mass, it follows 
that the mass of the rolling elements does not influence the 
part of the potential energy of the interconnecting layer. 
This is obvious from forms (2) and (3). For further 
numerical solutions, we present three cases of the 
interconnecting layer rolling elements. We change their 
masses per unit of plates surfaces from m = 240 kg and  
m = 100 kg to a case when we do not have rolling elements 
for m = 0 kg. 

The numerically considered plates are with the same 
material characteristics with a radius of 1m, heights h1=0,01 
m and h2=0,005m, made of still with a density of 

33
i kgm10849.7 −⋅=ρ , Poisson’s ratio 33.0=μ and 

Young's modulus 10 221 10 NmiE −= ⋅ . The plates are 
connected with a layer of continually distributed viscous 
nonlinear elastic rolling elements of stiffness 

5 12 10 Nmc −= ⋅  and 5 1
1 0,5 10 Nmc −= ⋅  and a coefficient of 

damping 1
1 0.5 kgsb −=  all per one square meter of plate 

surfaces. This is the case when the lower plate has the 
height twice greater than the upper plate, 2 1 2h h= , and 
when we modify the mass of the rolling elements, the 
solutions of characteristics equations of system (19) 

1,2 1 1
ˆ ˆnm nm nmipλ δ= − ∓  and 3,4 2 2

ˆ ˆnm nm nmipλ δ= − ∓  have the 
different values and therefore the coefficients (23a-h) have 
different values. The solved values of the circular 
frequencies of the coupling ˆ inmp  and the coefficients  
(23a-h) are presented in Table 1. Here we present the 
solutions for the case of the first eigen mode of the plates 
oscillations for n = 0 and m = 1 for which the characteristic 
eigen number of the clamped circular plate is 11 3.196k = . 
The value of the coefficient of nonlinearity influence is 
( )1 0.117Wℵ = , and the value of the coefficient of the 

nonlinearity of the layer is -2 25 m sβ −= , reduced values of 

the amplitude of excitations are ( )
7 3

0 11 10 Nmih −=  for the 

value of the dimensionless parameters 210−=ε . 

Table 1. The values of the circular frequencies of the coupling ˆ inmp , and the coefficients inmδ , inmδ  and inmβ , inmP , for 1, 2i =  in first mode of plate 
system oscillations ( 0, 1n m= = ), for three different values of the rolling elements masses. 

( )kgm  ( )1
1p̂ s−  ( )1

2ˆ sp −  1δ  2δ  1α  2α  1β  2β  1P  2P  

0 108.33 174.49 11 8 12210 96220 267100 17590 2945 534 

100 87.33 148.42 6.273 2.151 25480 15720 91720 17470 1402 358.5 

240 71.61 126.82 3.326 0.7554 18640 3538 30310 8704 1082 289 

 
As expected, the increasing of the mass of rolling 

elements has reduced the circular frequencies of the 
coupling ˆ inmp  anf the coefficients of the damping influence 

inmδ ; thus the impact of the nonlinearity should be grater. 
All the phenomena of the resonant transition for the 
stationary regime need to be more evident for the same 
values of the amplitude of external excitations. These are 
the characteristic jumps of the amplitude and the phase 
response in the vicinity of the resonant values ˆinm inmpΩ ≈ , 
the appearance of new stable and unstable branches which 
conditions the more-values responses of system and the 
emergence of two stable solutions of the system in the area 
of these new branches, the mutual interaction of the 
harmonics and the jumps of the system energies. All these 
phenomena we will present through the series of the 
amplitude-frequency and phase-frequency diagrams for 
both harmonics in the mentioned three cases of rolling 
element masses. Also, presented are the shapes of the 
corresponding branches of the amplitude-frequency and 
phase-frequency curves are presented for stationary non-
linear vibration regimes, for the first time harmonic 
amplitude ( )1 1 2,nma Ω Ω  and the phase ( )1 1 2,nmφ Ω Ω , and 

for the second time harmonic amplitude ( )2 1 2,nma Ω Ω  and 

the phase ( )2 1 2,nmφ Ω Ω  in the one nm - th eigen amplitude 
shape mode of plate.  

These shapes are the results of the modes interaction and 
of the particular discrete values choice of the external 

excitation frequencies 1nmΩ  and 2nmΩ  used in the resonant 
frequencies intervals belonging to the corresponding eigen 
frequencies 1ˆ nmp  and 2ˆ nmp  of the corresponding nm  - th 
eigen amplitude shape mode of the plate linear system 
taken in the simulations. Strong interactions between the 
time modes in the nm  - th eigen amplitude shape mode of 
plate pairs appear only in the case that both values of the 
both external excitation frequencies nm1Ω  and nm2Ω  are 
simultaneous in the corresponding resonant frequency 
interval 1 1ˆnm nmpΩ ≈  and 2 2ˆnm nmpΩ ≈ . If one of the 
external excitation frequencies, 1nmΩ  or 2nmΩ , is outside 
the corresponding resonant frequency interval, 

1 1ˆnonm nmpΩ ≈  and 2 2ˆnm nmpΩ ≈  or 1 1ˆnm nmpΩ ≈  and 

2 2ˆnm nmno pΩ ≈ , the interactions between modes are small. 
For that case, a specific change of the corresponding 
amplitude-frequency and phase-frequency curves is not 
visible and looks like the one in the case of the single 
frequency external excitation in the corresponding resonant 
frequency interval, 1 1ˆnonm nmpΩ ≈  and 2 2ˆnm nmpΩ ≈  or 

1 1ˆnm nmpΩ ≈  and 2 2ˆnm nmno pΩ ≈ . The amplitude-
frequency curve for the second time harmonics in the 
interval of the frequencies which are not close to the 
external excitation frequency, 2 2ˆnm nmno pΩ ≈  or 

1 1ˆnonm nmpΩ ≈  and outside the resonant frequency 
intervals is practically a straight line, and practically has a 
constant value. Hence, there is no interaction between time 
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modes in the first asymptotic approximation. This is visible 
from Fig.2-15 at the beginning or at the end of the external 
excitation frequency intervals.  

The first eight Fig.2-7 present the amplitude and phase 
responses for both harmonics for the case of the greatest 
mass of the rolling elements m=240 kg per unit of plate 
surface. 

The amplitude-frequency responses for two frequencies 
like stationary vibration regimes contain the amplitudes 1a  
and a2, Figures 2 and 4. The shown figures exhibit a strong 
characteristic as nonlinear interactions between the time 
modes of the two-frequency external excitation in the 
resonant interval of two external excitation frequencies 
close to the eigen linearized system frequencies. 

1* In Fig.2, the amplitude-frequency curves 
( )1 1 2,nma constΩ Ω = , in Fig.3 the phase-frequency curves 

( )1 1 2,nm constφ Ω Ω = , in Fig.4 the amplitude-frequency 

response ( )2 1 2,nma constΩ Ω =  and in Fig.5 the phase-

frequency curves ( )2 1 2,nm constφ Ω Ω =  for two frequency 
like nonlinear stationary vibration regimes are presented for 
the discrete values of the 2nm constΩ = , 

1 1 1 1
2 100s , 130s , 132s , 135s ,nm

− − − −Ω =  1140s ,−  1145s− , 
1150s ,−  1155s− , for the nm1Ω continuously from the 

interval 1 1
1 50s , 250snm

− −⎡ ⎤Ω ∈ ⎣ ⎦  and the discrete values of 

2nm constΩ =  in the interval 1 1
2 100s ,155snm

− −⎡ ⎤Ω ∈ ⎣ ⎦ . 
The amplitude-frequency and phase-frequency curves 

for the cases: ( )1
1 1 2, 100snma −Ω Ω = , 

( )1
1 1 2, 100snmφ −Ω Ω =  as for ( )1

1 1 2, 160snma −Ω Ω = , 

( )1
1 1 2, 160snmφ −Ω Ω =  presented in Figures 2. and 3 have 

the shapes as in the case of the corresponding single 
frequency amplitude-frequency and phase-frequency curves 
with only one pair of resonant jumps in each pair of the 
corresponding curves.  

2* In Fig.6 the amplitude-frequency curves 
( )1 1 2,nma constΩ = Ω , in Fig.7 the amplitude-frequency 

response ( )2 1 2,nma constΩ = Ω  for two frequencies like 
nonlinear stationary vibration regimes are presented for the 
discrete values of the 1nm constΩ = , 

1 1 1 1 1 1 1 1
1 85s ,110s ,120s ,190s , 220s , 260s ,300s ,320snm

− − − − − − − −Ω =

from the interval 1 1
1 85s , 320snm

− −⎡ ⎤Ω ∈ ⎣ ⎦  and the discrete 

values of 2nm constΩ =  continuously in the interval 
1 1

2 60s , 200snm
− −⎡ ⎤Ω ∈ ⎣ ⎦ . In this case, we did not present the 

phase-frequency diagrams because, as we notice in the 
previous series of the Figures, the phase transient through 
the resonant regime is simultaneous to that of the amplitude 
and gives the same quantitative conclusions. 

Comparing the first and the last diagrams in Figures 2, 3 
and 6, we may conclude that the amplitude and phase 
responses of the first harmonic have small changes after the 
transient regime while the amplitude and phase responses 
of the second harmonics have significant changes of the 
values and the shapes, Figures 4, 5 and 7. Therefore, we 
conclude that the influence of the first harmonics on the 
second one, in the resonant region of the frequencies 

1nmΩ of the external excitation, is greater than vice versa in 

the resonant region of the frequencies 2nmΩ of the external 
excitation.  

 

Figure 2. Amplitude-frequency characteristic curves for the amplitudes of 
the first time harmonics ( )1 1 1nm nma f= Ω  on the different value of the 

excited frequency 1nmΩ  for the discrete value of the excited frequency 

2nm constΩ =  with noted corresponding one or more resonant jumps for 
240m kg= . The arrows designate the directions of the resonant jumps 

 

Figure 3. Phase -frequency characteristic curves for the amplitudes of the 
first time harmonics ( )1 3 1nm nmfφ = Ω  on the different value of the excited 

frequency 1nmΩ , for the discrete value of the excited frequency 

2nm constΩ =  with noted corresponding one or more resonant jumps for 
240m kg= . The arrows designate the directions of the resonant jumps 

 

Figure 4. Amplitude-frequency characteristic curves for the amplitude of 
the second time harmonics ( )2 2 1nm nma f= Ω  on the different value of the 

excited frequency 1nmΩ  for the discrete value of the excited frequency  

2nm constΩ =  with noted corresponding one or more resonant jumps for 
240m kg=  
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Figure 5. Phase-frequency characteristic curves for the phases of the 
second time harmonics ( )2 4 1nm nmfφ = Ω  on the different value of the 

excited frequency 1nmΩ  for the discrete value of the excited frequency 

2nm constΩ =  with noted corresponding one or more resonant jumps for 
240kgm =  

In the second case, we presented the amplitude-
frequency diagrams for other values of rolling element 
masses for 100kgm =  at Figures 8 - 11. 
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Figure 6. Amplitude-frequency characteristic curves for the amplitudes of 
the first time harmonics ( )1 5 1nm nma f= Ω  on the different value of the 

excited frequency 2nmΩ  for the discrete value of the excited frequency 

1nm constΩ =  with noted corresponding one or more resonant jumps for 
240kgm =  
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Figure 7. Amplitude-frequency characteristic curves for the phases of the 
second time harmonics ( )2 6 2nm nma f= Ω  on the different value of the 

excited frequency 2nmΩ  for the discrete value of the excited frequency 

1nm constΩ =  with noted corresponding one or more resonant jumps for 
240kgm =  

In Figures 8-11, for this case and select  numerical 
particular values of the system parameters, that mutual 
interactions between two time modes belonging to one nm -
th eigen amplitude shape mode of plates oscillation are 
presented at the following discrete values of the frequencies 
and resonant frequencies intervals: 

1* Amplitude-frequency curves ( )1 1 2,nma constΩ Ω = , 

in Fig.8, and ( )2 1 2,nma constΩ Ω =  in Fig.9, for two 
frequency like nonlinear stationary vibration regimes, 
strong resonant interactions between time modes in the 
nm -the eigen shape amplitude mode are visible and 
presented for the discrete values of the 2nm constΩ = , 

111111
2 s180,s170,s160,s158,s156,s145 −−−−−−=Ω nm  from 

the interval 1 1
2 145s ,180snm

− −⎡ ⎤Ω ∈ ⎣ ⎦  and the values of 

1nm constΩ =  continuously in the interval 
1 1

1 50s ,250snm
− −⎡ ⎤Ω ∈ ⎣ ⎦ . 

2* Amplitude-frequency curves ( )1 1 2,nma constΩ = Ω , 

in Fig.10, and ( )2 1 2,nma constΩ = Ω  in Fig.11 for two 
frequency like nonlinear stationary vibration regimes, 
strong resonant interactions between modes are visible and 
presented for the discrete values of the 1nm constΩ = , 

1 1 1 1 1 1 1
1 100s ,120s , 160s , 170s , 180s , 190s , 210s ,nm

− − − − − − −Ω =
1220s−  from the interval 1 1

1 100s , 220snm
− −⎡ ⎤Ω ∈ ⎣ ⎦  and the 

values of 2nm constΩ =  continuously in the interval 
1 1

2 100s ,250snm
− −⎡ ⎤Ω ∈ ⎣ ⎦ . 

In this case the difference among first ( )1
1ˆ 87.33p s−=  

and the second ( )1
2ˆ 148.42 sp −=  frequencies is greater than 

in the previous case for m=240 kg. Therefore, the overlap 

of the resonant regions of the first [ ]( )1
1 120, 210 snm

−Ω ∈  

and the second [ ]( )1
2 156, 175 snm

−Ω ∈  frequencies is 
smaller and the mutual interactions of the modes are less 
obvious. 

The appearance of new resonant branches has the 
identical mechanism as in the first case. The branches 
appear first on the right lower side of the main resonant 
curve for the second resonant region at the value 

( )1
2 156 snm

−Ω = , Figures 8 and 9, and for the first resonant 

region at the value ( )1
1 120 snm

−Ω = , Figures 10 and 11. 
Again, the resonant region of the first frequency of the 
external excitation is wider from the resonant region of the 
second frequency and the amplitude-frequency curves of 
the first harmonics are practically the same after the 
resonant transition, Figures 8 and 10, while the curves of 
the second harmonics undergo major changes by rotating, 
summarizing and covering a narrower frequency range, 
with the decrease of values, Figures 9 and 11. 
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Figure 8. Amplitude-frequency characteristic curves for the phases of the 
first time harmonics ( )1 1 1nm nma f= Ω  on the different value of the excited 

frequency 1nmΩ  for the discrete value of the excited frequency 

2nm constΩ =  with noted corresponding resonant jumps for m=100 kg.  
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Figure 9. Amplitude-frequency characteristic curves for the phases of the 
second time harmonics ( )1 2 1nm nma f= Ω  on the different value of the 

excited frequency 1nmΩ  for the discrete value of the excited frequency 

2 constnmΩ =  with noted corresponding resonant jumps for 100 kgm = . 

 
 

 

1a  

2Ω  

[ ]1
1 100 −=Ω s  1a  

2Ω  

[ ]1
1 120 −=Ω s  

1a  

2Ω  

[ ]1
1 160 −=Ω s  

2Ω  

[ ]1
1 150 −=Ω s  

1a
 

1a  

2Ω  

[ ]1
1 180 −=Ω s  1a  

2Ω  

[ ]1
1 190 −=Ω s  1a  

2Ω  

[ ]1
1 210 −=Ω s  

1a  

2Ω  

[ ]1
1 220 −=Ω s  

 

Figure 10. Amplitude-frequency characteristic curves for the phases of the 
first time harmonics ( )1 5 2nm nma f= Ω  on the different value of the excited 

frequency 2nmΩ  for the discrete value of the excited frequency 

1 constnmΩ =  with noted corresponding resonant jumps for 100kgm = . 
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Figure 11. Amplitude-frequency characteristic curves for the phases of the 
second time harmonics ( )2 6 2nm nma f= Ω  on the different value of the 

excited frequency 2nmΩ  for the discrete value of the excited frequency 

1 constnmΩ =  with noted corresponding resonant jumps for 100 kgm = . 

For the third, last, case, we practically consider the case 
without rolling elements in the connecting layer of two 
plates, 0m kg= . For the same selected numerical 
particular values of the other system parameters, the mutual 
interactions between two time modes in one nm -the eigen 
amplitude shape mode of plates vibration regimes are 
presented at Figs.12-15 for the following discrete values of 
the frequencies and the resonant frequencies intervals: 

1* Amplitude-frequency curves ( )1 1 2, constnma Ω Ω = , 

in Fig.12, and ( )2 1 2, constnma Ω Ω =  in Fig.13, for two 
frequency like nonlinear stationary vibration regimes. The 
light resonant interactions between time modes in  the nm -
the eigen shape amplitude mode are visible and presented 
for the discrete values of the 2 constnmΩ = , 

1 1 1 1 1
2 100s ,190s , 200s , 201s , 210snm

− − − − −Ω =  from the 

interval 1 1
2 100s ,210snm

− −⎡ ⎤Ω ∈ ⎣ ⎦  and the values of 

1 constnmΩ =  continuously in the interval 
1 1

1 50s ,250snm
− −⎡ ⎤Ω ∈ ⎣ ⎦ . 

2* Amplitude-frequency curves ( )1 1 2,nma constΩ = Ω , 

in Fig.14, and ( )2 1 2,nma constΩ = Ω  in Fig.15 for two 
frequency like nonlinear stationary vibration regimes. The 
light resonant interactions between modes are visible and 
presented for the discrete values of the 1 constnmΩ = , 

111
1 s120,s100,s90 −−−=Ω nm  from the interval 

1 1
1 90s ,120snm

− −⎡ ⎤Ω ∈ ⎣ ⎦  and the values of 2 constnmΩ =  

continuously in the interval [ ]11
2 s250,s100 −−∈Ω nm . 

From Fig.12 and 13 it can be seen that the amplitude-
frequency curve of the first harmonics passes through the 
resonant regime of the second frequency of the external 
excitation without characteristic resonant jumps, but the 
amplitude response of the second harmonics has resonant 
jumps in the resonant range of the second frequency of the 
external excitation [ ] 1

2 185, 201nm s−Ω ∈  and after the 
resonant transition undergoes changes of values and shape. 
This leads to the conclusion that the first harmonics has 
more influence on the second one than in the opposite case. 

In the case of the amplitude frequency curves of both 
harmonics in the resonant region for the discrete values of 
the first frequency 1 1 1

1 90s ,100s ,120snm
− − −Ω = , Fig.14 and 

15, we cannot notice the characteristic phenomenon of 
passing through the resonant regime; there are no resonant 
jumps but the curves of the amplitude for the second 
harmonics undergo the decrease of the value, Fig.15. 
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Figure 12. Amplitude-frequency characteristic curves for the phases of the 
first time harmonics ( )1 1 1nm nma f= Ω  on the different value of the excited 

frequency 1nmΩ  for the discrete value of the excited frequency 

2 constnmΩ =  with noted corresponding resonant jumps for 0kgm = . 
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Figure 13. Amplitude-frequency characteristic curves for the phases of the 
second time harmonics ( )2 2 1nm nma f= Ω  on the different value of the 

excited frequency 1nmΩ  for the discrete value of the excited frequency 

2nm constΩ =  with noted corresponding resonant jumps for 0kgm = .  
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Figure 14. Amplitude-frequency characteristic curves for the phases of the 
first time harmonics ( )1 5 2nm nma f= Ω  on the different value of the excited 

frequency 2nmΩ  for the discrete value of the excited frequency 

1nm constΩ =  without noted corresponding resonant jumps for 0 kgm = . 
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Figure 15. Amplitude-frequency characteristic curves for the phases of the 
second time harmonics  ( )2 6 2nm nma f= Ω  on the different value of the 

excited frequency 2nmΩ  for the discrete value of the excited frequency 

1 constnmΩ =  without noted corresponding resonant jumps for 0 kgm = . 

Hence, the amplitude responses in this case are similar to 
the case when there is no nonlinearity; we may conclude 
that the influence of the nonlinearity in the coupling layer is 
insignificant for such a selection of all other system 
parameters. The influence of the nonlinearity in the 
interconnecting layer may be less or more present 
depending on the parameters of the system. For example, 
by changing the value of the amplitude of the external 
excitations or the damping coefficient, we may find the 
same phenomena of resonant transition, resonant jumps and 
mutual modes interactions.  

The characteristic of the presented series of the 
amplitude-frequency and phase-frequency curves for two- 
frequency like nonlinear stationary vibration regimes is that 
more than one pair of the resonant jumps appear, together 
with more than one instability branch in the corresponding 
amplitude-frequency and phase-frequency curves. It is 
visible that in the listed discrete values of the external 
excitation frequency from the corresponding resonant 
intervals two pairs plus one or three pairs with one more 
resonant jump appear together with a corresponding non-
stable branch.  
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For obtaining data on stability or non-stability of the 
stationary amplitude and phase, it is necessary to use 
linearization of the system of the first approximation 
differential equations for two amplitudes and two phases in 
each discrete stationary vibration state and to compose a 
corresponding characteristic equation. Using real parts of 
the roots of the corresponding characteristic equation, it is 
possible to conclude whether the stationary two frequency 
like nonlinear vibration regimes are stable or not. If all real 
parts of all the roots of the characteristic equation are 
negative, then the regime is stable, or if only one is 
positive, then the regime is non-stable.  

Analysis of non-stationary regimes of transversal 
vibrations of a double plate system 

In order to investigate non-stationary regimes of 
transversal nonlinear oscillations of a double circular plate 
system as nonlinear dynamics for the presented model, we 
have numerically integrated the obtained system of DE’s of 
the first approximation (19-22). We have used the Runge-
Kutta’s method of IV order in the MathCAD computer 
program and obtained the amplitudes-frequencies 
characteristics for the system of two circular plates 
connected with a viscous nonlinear elastic rolling layer 
shown in Fig.16. In such a manner, by changing the external 
excitation frequency, we can explain the passing through 
resonant intervals depending on the exchange velocity of 
external excitation frequencies ( )i tΩ . 

The numerical consideration of the system (19-22) of 
differential equations in the first asymptotic approximation 
for the corresponding amplitudes ( )inmR t  and the 

difference of phases ( )inm tϕ  of two frequency like 
vibration regimes in the light of the stationary and non-
stationary resonant regimes gives us the graphic results and 
the corresponding conclusions. 
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a)                                                           b) 

Figure 16. Amplitude-frequency curves ( )1 1nm nma f= Ω  of the passing 
through the resonant non-stationary kinetic states by the external excitation 
frequency change and for the cases with slow changing frequency with 
different velocities as well as by increasing and also decreasing values in 
the interval around the value of the eigen frequency of the corresponding 
linearized coupled double plate system. a) decreasing of the external 
excitation frequency 1 A BtΩ = −  by diferent velocities: 1 118 5 tnmΩ = − , 

1 118 10 tnmΩ = −  and 1 118 15 tnmΩ = − ; and b) increasing of the external 

excitation frequency 1 A BtΩ = +  by different velocities 1 264 5 tnmΩ = + , 

1 264 10 tnmΩ = +  and 1 264 20 tnmΩ = + ; of the first harmonics of the 
external excitation, with the initial values on the borders of the considered 
frequency interval and for the external excitation second frequency 
constant ( )1

2 360 snm
−Ω = . 

Fig.16 presents the amplitude-frequency curves 
( )1 1nm nma f= Ω  of the passing through the resonant non-

stationary kinetic states by the external excitation frequency 
change and for the cases with slow changing of frequency 
with different velocities as well as by increasing and also 
decreasing values  in the interval around the value of the 
eigen frequency ˆ inmp  of the corresponding linearized 
coupled double plate system. Fig.16a) presents the 
amplitude-frequency curves for non-stationary regimes fot 
the decrease of the external excitation frequency 

1 A BtΩ = −  by different velocities: 1 118 5nm tΩ = − , 
tnm 101181 −=Ω  and 1 118 15nm tΩ = − . Fig.16 b) presents 

the amplitude-frequency curves for non-stationary regimes 
for the increase of the external excitation frequency 

1 A BtΩ = −  by different velocities 1 264 5nm tΩ = + , 
tnm 102641 +=Ω  and 1 264 20nm tΩ = + ; of the first 

harmonics of the external excitation, with the initial values 
on the borders of the considered frequency interval and for 
the second external excitation second frequency constant 

( )1
2 360 snm

−Ω = . 
From the amplitude frequency characteristics presented 

in Fig.16 for the passing through the resonant interval by 
these different velocities of the external excitation 
frequency change, we can conclude that, for lower 
velocities of the external excitation frequency change 
through the resonant frequency interval, non-stationary 
amplitudes take larger values than in the case of higher 
frequency velocities.  

In the same Fig.16 a) and b) the amplitude-frequency 
curves for the stationary resonant regimes are included. 
Then it is possible to compare the values of the amplitudes 
of the stationary and non-stationary regimes for passing 
through the resonant range by the external excitation 
frequency with different velocities. By this comparison we 
can conclude that non-stationary amplitudes for the passing 
through the resonant range frequency interval with 
slowchanging external excitation frequency follow the 
stationary stable amplitude branch and on the resonant 
jumps appear “resonant jumps oscillations“ with jumps 
from higher to lower amplitudes for decreasing frequency, 
such as from lower to higher amplitudes for the external 
excitation frequency increasing on the corresponding 
resonant jumps frequency for stationary amplitudes. 

Concluding remarks  
The phenomena such as enlargement and jumps of 

amplitudes and phases of system oscillations, transition 
processes or hysteresis in the dynamics of systems, mutual 
interaction of modes in multi-frequency regimes may be 
explained by introducing the nonlinear elements in 
mathematical modeling of material properties of system sub 
elements. This paper explained these phenomena caused 
not only by nonlinearity but also by the presence of rolling 
elements with their translation and rotation without sliding. 
The viscous non-linear elastic rolling element modeled in 
the manner of rheological models presents the Kelvin-Voigt 
material with added spherical material particles. 

We have analyzed stationary and non-stationary regimes 
of nonlinear oscillations for the presented model to explain 
the passing through the resonant regimes, amplitude and 
phase jumps and multi modes mutual interaction. A 
mathematical model of a two-plate sandwich system, a 
system of PDE`s (14), was used for solving an averaged 
asymptotic first approximation semi analytically and semi 
numerically. One part of the solutions was obtained 
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numerically presenting amplitudes-frequencies and phase-
frequency characteristics. These characteristics explained 
the interaction of the nonlinear component modes and 
nonlinear resonant interactions in the first asymptotic 
approximations of the displacement of the plate middle 
surface points. We concluded that the complexity in the 
system nonlinear response for the two frequency external 
excitations and the resonant range of the frequencies 
depends on the initial conditions and also on other system 
kinetic parameters and the corresponding relation between 
these sets of  kinetic parameters. 

The presented model of new features in the 
interconnecting layer introduced with rolling elements with 
their inertia of rolling without sliding and of translation of 
mass center is a novelty in the modeling of rheological 
elements. The presence of rolling elements in the 
interconnecting layer introduces the part of the dynamic 
coupling into the system of the obtained PDE’s describing 
the nonlinear dynamics of the presented plates system. 
Based on the numerical comparisons, we conclude that the 
dynamic coupling intensifies the phenomenon of resonance 
transition caused by the mutual interaction of harmonics. 
Non-linearity is a source for the appearance of two resonant 
jumps in the amplitude-frequency and phase-frequency 
curves inside the interval of the resonant frequency. Three 
or five, or seven on more singular values of the stationary 
amplitudes and phases appear between two jumps together 
with alternatively stable and unstable values that build 
coupled singularities and trigger of coupled singularities. 
The trigger of coupled singularities consists of two stable 
amplitudes and phases around one unstable one. The unique 
values of the amplitudes and phases lose their stability and 
split into the trigger of three coupled singularities such as 
two stable values and one unstable passing through 
resonant intervals for a simple case without nonlinear 
interactions between time modes. But, in the case when 
there are resonant interactions between modes, more than 
one pair of the resonant jumps appear, and there are 
possibilities for the appearance of coupled triggers of 
coupled singularities containing odd number of alternating 
coupled stable and unstable singularities.  

A trigger of coupled stationary amplitude and phase 
values, of two stable and one non-stable (saddle point) on 
the one external force frequency of two- or multi-frequency 
resonant regimes is presented in the considered nonlinear 
dynamics of the double plate system. More than one trigger 
of coupled stationary amplitude and phase values, of two 
stable and one non-stable (saddle point) on the one external 
force frequency are presented for the case of the 
interactions between resonance nonlinear modes. The 
coupled trigger of coupled singularities is presented as well 
in the resonant stationary coupled states. 
The results presented in Section 5 lead to a conclusion 
about transient processes of system dynamics. Regimes of 
turning on and turning off the systems may be examples of 
transient processes in terms of non-stationary system 
regimes. For turning on regimes, it is better to use low 
velocities of external frequency changes because of a 
smaller number of amplitude jumps which happen on lower 
values of the external excitation frequency, Fig.16 b). For 
turning off regimes, in the sense of frequency decrease, it is 
better to use higher velocities of the external frequency 
changes because of a smaller number of amplitude jumps 
which happen on lower values of the external excitation 
frequency, Fig.16 a). 
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Nelinearna dinamika sistema dve ploče spregnute slojem  
visko-elastičnih i inercijalnih svojstava 

U radu su prikazane više frekventne oscilacije sistema dve izotropne kružne ploče spojene slojem kotrljajnih visko-
elastičnih nelinearnih elemenata. Ovakav fizički sistem imam veliki značaj u proučavanjima vibracionih i akustičkih 
apsorbera. Sprežući sloj je modeliran kao kontinualno raspodeljen sloj diskretnih standardnih reoloških elemenata sa 
svojstvima prigušenja, nelinearne elastičnosti i inercije kotrljanja bez klizanja.  
Matematički model sistema predstavljen je u obliku sistema parcijalnih diferencijalnih jednačina prinudnih 
transverzalnih oscilacija tačaka srednjih ravni ploča spregnitih slojem kotrljajnih visko-elastičnih elemenata pod 
dejstvom harmonijske kontinualno raspodeljene po površinama ploča pobude. Sistem običnih deiferencijalnih jednačina 
prvog reda po amplitudama i faznim kašnjenja vremenskih funkcija, odgovarajućih sopstvenih oblika oscilovanja ploča, 
u prvoj asimptotskoj aproksimaciji izveden je za različite odgovarajuće više frekventne režime oscilovanja. Potom je taj 
sistem analitički i numerički posmatran u svetlu stacionarnih i nestacionarnih rezonanatnih režima i međuinterakcija 
nelinearnih modova, kao i broja rezonantnih skokova i to u slučajevima kada nema kotrljajućih elemenata u sloju i za 
dve različite vrednosti masa kotrljajućih elemenata. 
Ovakva analiza pokazuje da prisustvo kotrljajućeg elementa kao reprezenta dinamičke sprege ploča uzrokuje 
preklapanje rezonantnih oblasti nelinearnih modova što u isto vreme izaziva uvećanje njihove međuinterakcije.  

Ključne reči: dinamika sistema, nelinearna dinamika, oscilacije, ploča, rezonantni režim, rezonantni skokovi, matematički 
model, parcijalne difernecijalne jednačine. 

Анализ нелинейной динамики систем из двух пластин 
соединённых слоем нелинейных элементов  

вязкоупругого качения  
В настоящей работе представлены некоторые колебания частоты систем двух изотропных круговых пластин, 
соединённых слоем нелинейных элементов вязкоупругого качения. Такие физические системы имеют большое 
значение в изучении колебательных и акустических поглотителей. Соединительный слой моделируется как 
сплошной слой распределённых дискретных элементов со стандартными реологическими свойствами 
затухания, нелинейной теории упругости и инерции качения без скольжения.  
Математическая модель системы представлена в виде систем частичных дифференциальных уравнений 
принудительных поперечных колебаний высокой точки средних плоских панелей, соединённых слоем 
нелинейных элементов вязкоупругого качения, под влиянием гармонического возбуждения непрерывно 
распределённого в соответствии с поверхностью панели. Система обыкновенных частичных 
дифференциальных уравнений первого порядка по амплитуде и фазе временной задержки функции, 
соответствующих собственных форм пластины колебания, в первом асимптотическом приближении получается 
более подходящей для различных соответствующих режимов частоты колебаний. Потом система аналитически 
и численно рассматривана в свете стационарных и нестационарных резонантных режимов и взаимодействия 
нелинейных режимов, а в том числе и количества резонантных прыжков, и то при отсутствии качения 
элементов в слое и для двух различных значений массы тела качения.  
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Этот анализ показывает, что наличие подвижного элемента в качестве представителя динамической плиты 
связи вызывает перекрытие резонансных областей нелинейных режимов, что  в то же время вызывает 
увеличение причины их взаимодействий. 

Ключевые слова: динамика системы, нелинейная динамика, колебания, плита, резонансный режим, резонансные 
прыжки, математическая модель, частичные дифференциальные уравнения. 

Analyse de la dynamique non linéaire du système de deux  
plaques couplées par une couche d’éléments roulants  

hautement élastiques  
Les oscillations multi fréquentes du système de deux plaques circulaires isotropes connectées par une couche d’éléments 
roulants non linéaires et hautement élastiques ont été présentées dans ce travail .Ce système est très important pour les 
recherches des absorbeurs vibratoires et acoustiques. La couche connectée est modelée comme une couche distribuée 
continuellement composée des éléments discrets standards rhéologiques avec les propriétés d’étouffement, d’élasticité 
non linéaire et de l’inertie de roulement sans glissement.  
Le modèle mathématique du système est présenté sous la forme du système des équations différentielles partielles des 
oscillations forcées transversales des points de moyens plans des plaques couplées par une couche d’éléments roulants 
hautement élastiques sous l’effet de l’excitation harmonique distribuée continuellement sur les surfaces des plaques. Le 
système des équations différentielles simples du premier ordre  sur les amplitudes et les fonctions temporelles du délai en 
phase, des formes propres d’oscillations des plaques, dans la première approximation asymptotique a été dérivée pour les 
différents régimes d’oscillations multi fréquents. Ce système a été ensuite examiné analytiquement et numériquement 
sous l’aspect des régimes des résonances stationnaires et non stationnaires et des interactions des modes non linéaires. On 
a considéré également le nombre des sauts de résonance pour les cas où la couche ne contient pas d’éléments roulants et 
pour deux différentes valeurs des masses des éléments roulants.  
Cette analyse démontre que la présence de l’élément roulant en tant que le représentant du couplage dynamique des 
plaques provoque le chevauchement des régions de résonance chez les modes non linéaires causant en même temps 
l’augmentation de leur interaction.  

Mots clés: dynamique de système, dynamique non linéaire, oscillations, plaque, mode de résonance, sauts de résonance, 
modèle mathématique, équations différentielle partielles. 

 
 




