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Non-Linear Dynamics of a Double-Plate System Coupled by a Layer

with Viscoelastic and Inertia Properties

Julijana Simonovi¢"

The paper considers multi-frequency vibrations of a system of two isotropic circular plates interconnected by a rolling
viscoelastic layer of nonlinear characteristics. The considered physical system should be of interest to many researchers
in the field of vibration and acoustics absorbers. The interconnecting layer is modeled as a continually distributed layer
of discrete standard rheological elements with damping properties and nonlinear elasticity.

The mathematical model of the system is derived in the form of a system of partial differential equations of transverse
oscillations of a double circular plate system coupled with a layer of viscous nonlinear elastic and inertia properties,
excited by external excitation continually distributed along the plate surfaces. The system of ordinary differential
equations of the first order with respect to the amplitudes and the corresponding number of the phases is derived in the
first asymptotic averaged approximation for different corresponding multi-frequency nonlinear vibration regimes. These
equations are considered analytically and numerically in the light of stationary and non-stationary resonant regimes, as
well as in the light of the interactions of nonlinear modes and the number of resonant jumps in the cases without rolling
elements and in the cases with two different mass values of rolling elements.

Such an analysis proves that the presence of rolling coupling elements in the interconnecting layer of two plates causes a
frequency overlap of the resonant regions of nonlinear modes, together with the increase of their interaction.

Key words: system dynamics, nonlinear dynamics, oscillations, plate, resonant regime, resonant jumps, mathematical

model, partial differential equations.

Introduction

OWADAYS the science of materials has a great

interest in mathematical modeling of contemporary
classes of materials. The better prediction of materials
behavior in different dynamical surroundings is possible
with the appropriate mathematical model of material
characteristics. The phenomena of enlargement and jumps
of amplitudes, transition processes or hysteresis in
dynamics of systems may be explained by introducing the
nonlinear elements in mathematical modeling of material
properties. This paper will get insight in such phenomena
caused not only by nonlinearity but also by the presence of
rolling elements with their translation and rotation. The
viscous non-linear elastic rolling element modeled in the
manner of rheological models should present the Kelvin-
Voigt material with added spherical material particles.

In many engineering systems with non-linearity, high
frequency excitations are the sources of multi-frequency
resonant regimes appearance of high as well as low
frequency modes. This is visible from many experimental
research results and also theoretical results (see [1] and [2]).
The interaction between the amplitudes and phases of
different modes in nonlinear systems with many degrees of
freedom as in the deformable body with infinite numbers of
frequency vibration of free and forced regimes is observed
theoretically in the [3] and [4] using averaging asymptotic
methods of Krilov-Bogoliyubov-Mitropolyskiy (see [5, 6]).
This knowledge has great practical importance.

In the monograph [2] by Nayfeh, a coherent and unified

treatment of analytical, computational, and experimental
methods and concepts of modal nonlinear interactions was
presented. This monograph is an obvious extension of
Nayfeh’s and Balachandran’s well-known monograph [1]
titled Applied Nonlinear Dynamics. These methods are
used to explore and unfold, in a unified manner, the
fascinating complexities in nonlinear dynamical systems.
Through the mechanisms discussed in this monograph,
energy from high-frequency sources can be transferred to
the low-frequency modes of supporting structures and
foundations, and the result can be harmful large-amplitude
oscillations that decrease their fatigue lives. However, these
mechanisms can be exploited to transfer the energy from
the main examined system to the designed subsystem and
hence decrease considerably the vibrations of the main
system and increase its fatigue life.

An experimental and theoretical study of the response of
a flexible cantilever beam to an external harmonic
excitation near the beam’s third natural frequency is
presented in [7]. They have noted that the energy transfer
between the third and first modes is very much dependent
upon the closeness of the modulation (or Hopf bifurcation)
frequency to the first-mode natural frequency. In earlier
studies [8, 1] by Nayfeh and coworkers, the modulation
frequency was close to the first-mode natural frequency,
and, therefore, large first-mode swaying was observed.
Nayfeh developed a reduced-order analytical model by
discretising the integral partial-differential equation of
motion. Identifying, evaluating, and controlling dynamical
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integrity measures in nonlinear mechanical oscillators is a
topic for researchers, see [9, 10, 11, 12]. The energy
transfer between coupled oscillators can be a measure of the
dynamical integrity of hybrid systems as well as
subsystems [10, 11, 13, 14].

The problem of detecting the homoclinic orbits applied
to the dynamics of different engineering systems was
investigated in the series of the papers [9, 15], which gave
original research results. In [16], resonant nonlinear normal
modes in the cases of two-to-one, three-to-one, and one-to-
one internal resonances in undamped unforced one-
dimensional systems with arbitrary linear, quadratic and
cubic non-linearities are investigated for a class of shallow
symmetric structural systems. The non-linear orthogonality
of the modes and the activation of the associated
interactions are clearly dual problems.

In the series of references, it is possible to find different
approaches to solving the nonlinear dynamics of real
systems, as well to discovering nonlinear phenomena or
some properties of the system dynamics. There are many
systems consisting of a nonlinear oscillator attached to a
linear system, examples of which are nonlinear vibration
absorbers, or nonlinear systems under test using shakers
excited harmonically with a constant force. Paper [17]
presented a study of the dynamic behavior of a specific two
degree-of-freedom system representing such a system, in
which the nonlinear system does not affect the vibrations of
the forced linear system. The nonlinearity of the attachment
was derived from a geometric configuration consisting of a
mass suspended on two springs adjusted to achieve a quasi-
zero stiffness characteristic with pure cubic nonlinearity.
The response of the system at the frequency of excitation
was found analytically by applying the method of
averaging. The effects of the system parameters on the
frequency-amplitude response of the relative motion are
examined. It is found that closed detached resonance curves
lying outside or inside the continuous path of the main
resonance curve can appear as a part of the overall
amplitude-frequency response. Two typical situations for
the creation of the detached resonance curve inside the
main resonance curve, which are dependent on the damping
in the nonlinear oscillator, were discussed. The similar
nonlinear phenomena were also clarified in [18], where the
nonlinear dynamics of the softening and hardening lightly
damped Duffing’s oscillator with linear viscous damping
was presented. For simple approximate non-dimensional
expressions, the corresponding displacement amplitudes for
the jump-up and jump-down frequencies were determined
using the harmonic balance approach. These analytical
expressions were validated for a range of parameters by
comparing the predictions with calculations from direct
numerical integration of the equation of motion. They were
also compared with similar expressions derived using the
perturbation method. It was shown that the jump-down
frequency depends on the degree of nonlinearity and the
damping in the system, whereas the jump-up frequency
depends primarily upon the nonlinearity, and only weakly
depends upon the damping. An expression was also given
for the threshold of the excitation force and the nonlinearity
that needs to be exceeded for a jump to occur. It was shown
that this is only dependent upon the damping in the system.

The list of valuable research results in the connected area
of the objects of the author’s research is long, but in this
introduction, a rather subjective choice is given.

The expressions for energy of the excited modes
depending on amplitudes, phases and frequencies of

different nonlinear modes are obtained by Hedrih in [10,
11, 19 and 20] and by Hedrih and Simonovi¢ in [14, 21-23]
by using averaging and asymptotic methods for obtaining a
system of ordinary differential equations of amplitudes and
phases in first approximations. By means of these
asymptotic approximations, the energy analysis of a mode
interaction in the multi frequency free and forced vibration
regimes of nonlinear elastic systems (beams, plates, and
shells) excited by initial conditions was made and a series
of resonant jumps as well as energy transfer features were
identified. The excitation was considered like a perturbation
of the equilibrium state of the double plate system at the
initial moment, defined by the initial conditions for
displacements and velocities of both plate middle surface
points. In addition, for the case of an external excitation in
the resonant frequency range near one of the natural eigen
frequency of the basic linear system, two or more resonant
energy jumps at the nonlinear modes were presented.

Using the Krilov-Bogolyubov-Mitropolskiy asymptotic
method as well as the energy approach presented in the
monographs by Mitopolskiy, [5, 6, 24], there are new
results for a study of the elastic bodies nonlinear
oscillations and the energetic analysis of elastic bodies
oscillatory motions in the doctoral thesis by Stevanovi¢ (
see [3] and [4]). The introduction of paper [21] presented a
review survey of the original results of the author and of the
researchers from the Faculty of Mechanical Engineering,
University of Ni§, inspired and/or obtained by the
asymptotic method of Krilov-Bogolyubov-Mitropolyskiy,
by a direct influence of professor Raskovi¢ [25] with his
scientific instructions and by the published Mitropolskiy's
papers and monographs.

The interest in the study of coupled plates as a new
qualitative system dynamics has grown exponentially over
the last few years because of the theoretical challenges
involved in the investigation of such systems. Recent
technological innovations have caused a considerable
interest in the study of components and processes of hybrid
dynamical systems. Hybrid systems consisting of rigid and
deformable bodies (plates, beams and belts) connected with
a system of discrete elements are characterized by the
interaction between the dynamics of subsystem, and
governed by coupled partial differential equations with
boundary and initial conditions, see[10, 19, 26, 27] and [12,
14, 21-23].

In papers [11, 28, 29], through the examples of hybrid
systems of a statically and dynamically coupled discrete
subsystem of rigid bodies and continuous subsystem, the
method for obtaining frequency equations of small
oscillations was presented. In addition, series of theorems
of small oscillations frequency equations were defined. The
analogy between frequency equations of some classes of
these systems was identified. Special cases of discretization
and continualization of coupled subsystems in the light of
these sets of proper circular frequencies and frequency
equations of small oscillations were analyzed.

The study of transversal vibrations of both double and
multi plate systems with elastic, viscous elastic of creep
connections is important for both theoretical and pragmatic
reason. Many important structures may be modeled from a
composite structure and possess a big importance in many
applications such as, e.g., in civil engineering for roofs,
floors, walls, in thermo and acoustics isolation systems of
wall and floor constructions, orthotropic bridge decks or for
building any structural application in which the traditional
method of construction uses stiffened steel. They are also
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applied in car, plane and ship industry for sheaths of plane
wings, for inner arrangement of planes; they are suitable for
building maritime vessels or for building structures such as
double hull oil tankers, bulk carriers, car bodies, truck
bodies or for railway vehicles.

The sandwich constructions consist of two or more
facing layers structurally bonded to a core made of material
with small specific weight. This type of construction
provides a structural system that acts as a crack arrest layer
and that can join two dissimilar metals without welding or
without setting up a galvanic cell and provides equivalent in
plane and transverse stiffness and strength, reduces fatigue
problems, minimizes stress concentrations, improves
thermal and acoustical insulation, and provides vibration
control.

It is shown here that, as a model of that structure, it is
possible to use a double plate system connected by a visco-
elastic layer with a nonlinearity of the third order in the
elastic part.

This paper will be an attempt to present the feature of the
interconnecting layer introduced with rolling elements with
their inertia of rolling without sliding and with the
translation of mass centers. The model of a new rheological
element with the properties of viscous- nonlinear elasticity
and that of rolling without sliding will be presented. Such
an element has different forces on its ends in motion. The
presence of these eclements in the model of the
interconnecting layer of two plates introduces the
dynamical coupling in the mathematical model of the plate
system dynamics. In addition, this model with the
nonlinearity of the third order in the interconnecting layer
introduces the phenomenon of passing through the resonant
range and the appearance of one or several resonant jumps
in the amplitude—frequency and phase—frequency curves,
such as multi-nonlinear mode mutual interactions between
amplitudes and phases of different nonlinear modes. The
analysis of the mathematical model of dynamics on double
plate system with coupling layer of visco-elastic nonlinear
rolling properties is going to show the interesting
phenomena of nonlinear dynamics caused by the presence
of viscous nonlinear elastic and rolling elements.

In systems with nonlinearity, the energy transfer between
coupled subsystems is noticeable. The two or more resonant
energy jumps at the nonlinear modes were investigated in
paper [10] for the case of an external excitation in the
resonant frequency range near one of the natural eigen
frequency of the basic linear system. Also, see [20] which
contains an analysis of the energy transfer in double plate
system dynamics.

In the following parts of this paper, we will first present
the mathematical models of the interconnecting layer and
the dynamics of the double plate system coupled with
viscous nonlinear elastic rolling elements continually
distributed on plate surfaces. The result of that modeling
will be a system of partial differential equations (PDE's ),
dynamically and statically coupled. In the third part of the
paper, we will present an asymptotic approximation of the
solution of PDE's  of transversal vibrations of a double
circular plate system forced with two-frequency external
excitations. The fourth and fifth parts consist of the
analyses of stationary and no stationary regimes of
transversal vibrations of a double plate system done by the
series of the amplitude and phase-frequencies curves of the
system. In the conclusion, we will mention all results of
these analyses and point out the future use in an energy
analysis of the dynamics in systems of plates connected

with a layer of viscous nonlinear elastic rolling properties.

Model of the interconnecting layer and PDE’s of
transversal vibrations of a double plate system

The standard rolling viscous nonlinear elastic element,
presented in Figs. 1b) and 1d), introduced as a rheological
model (see [30]), has the transversal displacements w, and
w, on the ends, and the velocities of its ends »; and ;.
The expressions for the velocity of translation for the centre
Wy + Wy

of mass C have the form: . = , and for the angular

velocity around the center of mass in the form:
wc :%. Then the expressions for the kinetic energy

of such an element have the following form:
E: 2
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where ;2 —=Jc is the square of the radius of inertia for the
m
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rolling element. If the rolling element is the disc, then

i =R72. If we introduce the notation of parameters in the

_m, Jc _3m
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and

then we have:

2 2
1|~ (Owm ~ [Ow ow \( Ow; \ ~
Ek(l,z)—z[an(atl) +ayn (67;] +2(6‘tl)(6tz)a12j (2)
The potential energy form for such an element with a
nonlinearity of the third order is in the form:
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it turns out:
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Rayleigh’s function of energy dissipation is in the form:

ow, ow |
T @

where b, is a known coefficient of the dissipation force.
Now by using the meaning of parts in the Lagrange’s

equations of motions on w;(r,¢,¢), i=1,2 as generalized

coordinates, we may represent the inertial and elastic

forces, and the force of viscous damping acting to the upper
or lower plates in the following forms:



SIMONOVIC.J.: NON-LINEAR DYNAMICS OF A DOUBLE-PLATE SYSTEM COUPLED BY A LAYER WITH VISCOELASTIC AND INERTIA PROPERTIES 43

F,—( 4 Ok _OE
= dta(%j owm
ot
_ 1 dffow,  ow ow, ow )\
__4mdt<(6t+8tj (&_atj>_ 5)
:_1m<(azwz +82W1J_ié(52w2 _62W1j>
4 o 0% ) R*\ o o4
_ | d Ok OF,
PR (o) o
(%)
__ 1 _d/fom ow, ow )\
__4mdt<(8t E)* (&_&j>_ ©)
_lm (6 Wz 0 W1j+ié(azwz_azwlj
4 Zt R2 at2 aZt
ponan UL LUV L LD
QR /5 A A S S S G SIS }"

w,(l',(p,t)

==
Na==
F =
%ﬁ
=2

SN G

oy

P

N |
O
~
8o

d)

Figure 1. a) Double circular plate system connected with a rolling viscous-
elastical nonlinear layer; b) a rheological model of the rolling viscous nonlinear
elastic discrete element; ¢) Model of the double circular plate system connected
with a layer of the rheological elemets with properties of the nonlinear
elasticity, damping and inertia of translation and rotation of the rolling part; d) a
rheological scheme of the rolling viscous nonlinear elastic discrete element.

The translational dynamics of the rolling disc gives the
sum of these two forces of inertia acting on upper and lower
plates:

__|d_OE OB\ [d_ OE _0OE \_
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The rotation dynamics of the rolling disc gives the
difference of these two forces of inertia acting on upper and
lower plates:

d OE. OE
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The elastic forces on upper and lower plates are:
OE,
Fy=-F, :—W—C[Wz W1]+,B[W2 Wl] +cl [Wz _Wl] )

The forces of viscouse damping on upper and lower
plates have the forms:
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The resulting force of the rolling visco-elastic nonlinear
element on the plate middle points has the form:

__%, o0 [dOE, 0K
B v \dt ow, ow, /> (11)

Hence, it follows that the resulting force of the rolling
viscous nonlinear elastic element the on upper (i=1) plate
middle point has the form:

¢ ow, Ow 3
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and the resulting force of the rolling viscous nonlinear

elastic element on the lower (i=2) plate middle point has
the form:
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The governing equations of the double plate system,

Figs.l.a) and 1l.c), are formulated in terms of two
unknowns, [12] and [25]: the transversal displacement

w, =w,(r,4,t), i=12 in direction of the axis z, of the

upper plate middle surface and of the lower plate middle
surface. We present the interconnecting layer as a model of

(12)

(13)
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distributed discrete rheological rolling visco-elastic
elements with nonlinearity in the elastic part of the layer as
shown in Figsl.b) and 1.d). Since these clements are
continually distributed on the plate surfaces, the generalized
resulting forces (12) and (13) are also continually
distributed onto the plate middle points. Our assumptions
for the plates are: they are thin with the same contours and
with an equal type of the boundary conditions and they
have small transversal displacements. The system of two
coupled partial differential equations is derived using
d’Alembert’s principle of the dynamic equilibrium in the
following forms:

o*w o*w ow, Oow
1 (1+a11)+a12 )?ZZ-FCG)AAWI 25 [67;—87;}
—0(21)[ wi] = &B [ Wl] +q
o*w, N |:6W2 ow,
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B = s , for i=1,2 and for the strong nonlinear
U piky

G (r.¢5t) are the

known functions of the external contlnually distributed load
on the plate surfaces.

characteristic. The functions ¢,

Asymptotic approximation of the solution
of PDE’s of transversal vibrations of a double
circular plate system

The system of partial differential equations (14)
describes the dynamics of the double plate - system with
the rolling viscous nonlinear elastic layer. By using the
Bernoulli’s method of particular integrals, we suppose the
solutions for that system are in the form of the eigen
amplitude functions W, (r,¢), n,m=12,..0, satistying
the same boundary conditions, expansion with time
coefficients in the form of unknown time functions
Tyum = Tiyum (2) » and describing their time evolution (see

[12]), in the form:
Wi (}", ¢9t) = I/V(i)nm (7‘, ¢)]—%1)nm (t) : (15)

After substituting this solution in the system of equations
(14), keeping in mind the orthogonality conditions of plate
amplitude functions, it turns into a system of differential
equations for the time function of one nm -mode of plates
transversal oscillations :

Til)nm + KIIEZ)nm - 25( 1) (ﬂZ)nm - T& 1)nm )+ &)(21)r1n172 1)nm
112 - {;‘ﬁ ( )[]Ez)nm —1a nm:' + f

7.;(2) + KZ )nm + 25 (2) ( Jnm 7}l)nm ) + 03(22)nm]—i Ynm

2
- 3 (16)
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2
~2 a)(i)nm

where @i =77 A0 @ = Ky +
i=1,2 are the eigen circular frequencies of coupled plates,
r2r
Wetym (7, @) rdrdg . )
-” (m (r,#) rdrd is the coefficient of the
(W"m ) r 27r

J j Wy (r, @) rdrd ¢

00
nonlinearity

r2r

j G (1o, )W,y (1, 8) rdrd
f(i)nm (Z) = Or 27
jj[mi)"m (r,¢)]2 rdrd ¢
00

influence  of the elastic layer,

are the known

functions of external forces and the coefficients of

. py; 2 -~ 20
reduction are: & =20 g2 - %) o5 20
1+a; D" 1+a, 1+a;
> ﬂ nm (l)
By = Trg and f)nm (t)— ) .

Havmg in mind the form of solutions for the
corresponding homogeneous system of (14), we suppose
the solution of that system in the following form:

l)nm (t) 211nm _élnmtRlnm (t)cosq)lnm (t)—"_
+K2) e miR,y, (1) cos Dy, (1)

]—62) (t) = Ké;)nme_glnmtRlnm (l‘)COS(Dlnm (t) +

Q (17)
+K§§Lme—b2nmtR2nm (t)cos@,,, (1)

where: K¢

ijnm

are the cofactors of determinant corresponding

to the basic homogeneous coupled linear system (see [27] ,
[5] and [22]), and the amplitudes R,,, (#) and the phases

D@, (1) = ¢t + @i (¢) are unknown time functions which

mm

we are going to obtain using the asymptotic Krilov-
Bogolyubov-Mitropolyskiy averaging method (see [5, 6,
241). It is taken into account that the defined task satisfies
all necessary conditions for applying the asymptotic Krilov-
Bogolyubov-Mitropolskiy method concerning the small
parameter.

We suppose that the functions of the external excitation
at nm -mode of oscillations are the two-frequency process
in the form:

ﬁi)nm (t) = hOlnm COS[Qlizmt+¢lnm]+ (18)
+h02nm COsS [Qant + @oum ] ’

and that the external force frequencies Q,,, and Q,,, are
in the range of two corresponding eigen linear damped
coupled system frequencies Q,,,, * Pium and Qs ~ Doy
of the corresponding linear and free system to system (14)
and that the initial conditions of the double plate system
permit the appearance of the two-frequency like vibrations
regimes of the system. Also, we accept that nonlinearity is
small introducing the small parameter ¢. p,, are the
frequencies of visco-elastic coupling obtained as the
imaginary parts of the solution 4 ,,, =- Sm FiDum O the
characteristic equations of system (14). For details see [26,
27] and [14, 21-23].

In addition, it is necessary to point out that all previous
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expressions are valid for the cases of the same plate
contours, as well as for the equal boundary conditions of
both plates. The previous system of equations and solutions
are uniquely determined for corresponding initial
conditions determining the initial middle surface of the
plate forms (positions) and the corresponding initial
velocities of the middle surface points.

By introducing the condition that the first derivatives

T(l.),,m (t) have the same forms as in the case where the

amplitudes R,,, (¢) and the difference of the phases

inm

@um (1) are constant and after introducing the first T?i)nm (¢)

and the second ﬁi)nm (t) derivatives in the system of

nonlinear equations (14), we obtain a system of equations
in respect of the derivatives of the unknown functions

Ry (t) and ¢, (¢). After applying the method of
averaging to the right-hand sides of that system with respect
to the full phases ®(" (1) and @) (¢), we obtain the first
asymptotic averaged approximation of the system of
differential equations for the amplitudes R,,, (¢) and the
difference of the phases ¢,,, (¢) as follows:

. B
A \T) = =4 am @ _L’WLCOS nm 19
: ( ) : : ( ) (anm +p1nm) ” ( )
- ~ 3Cum 2 1 ﬂlnm 2 SHnm :
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where @, (t) = Ry, (t)e"%"M’ is the change of variables cofactors and é):([)nm on the damping coefficients of the
hence i (£) = ( Ripm (£) = Srn Rim (;))e*(%nmf , and viscous elastic layer too, the coefficients &Py, and &P,,,
-~ . of excited forces amplitudes, and the coefficients «;,,, ,
KK,, = (K O gk gl g ) I—M . Binm of the non-linearity layer properties too, in the
nm 22nm*>21nm 21nm*>22nm (1 + 522 )(1 + dll ) inm >

The coefficients J;,, depend on the coupling properties via

(2

following forms:
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We observed the case when the external distributed two-
frequencies force acts at upper surfaces of the upper plate
with frequencies near the circular frequencies of the
coupling Q,,,, = pi,, and Q,,. = p,..., and that the lower

plate is free of excitation §,),, (¢) =0 .This means that the
passing thought the main resonant state corresponding to
the frequencies of the viscous elastic coupling Q;,,,» Pium
was observed.

Analysis of the stationary regimes of transversal
vibrations of a double plate system
For the analysis of the stationary regime of oscillations,
we equal the right-hand sides of differential equations (19),
(21) for the amplitudes R,,,(¢#) and (20), (22) for the

difference of the phases ¢,,, () with null. Eliminating the
phases ¢, and @,,,, we obtained a system of two

algebraic equations by the unknown amplitudes «;,, and

a,,, inthe following form:

2
~ 2 2 2
(pnml + anm ) 5nma1nm + Aiym

2

A Anm +Q nm

[pnml_ Q%r1m%(3alnm alznm—"_zﬁlnma%nin )] - (243)
nml

_1312 0

nm—

2
~ 2 2 2
(pan + Qan ) 5nm02nm + Aoum

A 2
{ﬁan_ Q%nm_ pnn872ﬁ+92nm (3a2nma22nm+2ﬁ2nma12nm )j - (24b)
nm?2

_})22nm =0

Also, with the elimination of the amplitudes «,,, and

a,,, » we obtained the forms for the phasesd,,, and ¢,

in the case of two-frequencies forced oscillations in the
stationary regime of one nm mode of double plate system

K(l)
1_,’_511)( 22nm

~ K(l) ~ K(l)
+ a12(2) ~21nm + ﬁ(i) Kéll)nm 4 (1) ~22nm (23h)
(1+Cl22) (1+Cl22) (1+(111)

oscillations:

f)nml — Szlnm
¢ = arct; -
1nm g( S

nm

3alnm a12nm + 2ﬂlnma22nm (253)
8131171115

nm

and

f’an _Qan _ 3052nma22nm + 2A?2nmalznm j . (25b)

m = arct "
('02 g ( nm 8pnm2 5nm

Solving systems (24a,b) and (25a,b) by the numerical
Newton-Kantorovic's method in the Mathematica computer
program, we obtained the stationary amplitudes and phases
curves of the two-frequencies regime of one eigen nm -
shape amplitude mode oscillations in the double plate
system coupling with a rolling viscous nonlinear elastic
layer depending on the frequencies of the external
excitation force. If we fix the value of one external
excitation frequency of two possible ones, we obtain
amplitude-frequency curves as well as phase-frequency
curves of the stationary states of the vibration regime in the
following forms:

1* for the second external excitation frequency with a

constant discrete value (€,, =const) corresponding
amplitude-frequency and phase-frequency curves:

Ay = fi(anm )’ Dy = ﬁ(anm )’ ¢lnm = f;(anm)

and

¢2nm = f;t(anm)

and
2* for the first external excitation frequency with a

constant discrete value (€, =const) corresponding
amplitude-frequency and phase-frequency curves:

A = f‘S (Qan )’ Dyum = ﬁ) (Q2nm)’ ¢1nm = f7 (Qan)
and

¢2nm = fx (QZHM ) :

We will present the amplitude-frequencies and phase-
frequencies curves of the stationary state in a continuous
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exchange of fixed discrete values of external excitation
frequencies and in that sense consider the system in the
stationary regime. Some characteristic diagrams of these
amplitide-frequency and phase-frequency curves are
presented in Fig.2-17.

The following analysis considers changing the rolling
element masses that affect the kinetic energy of the
interconnecting layer. Since the visco-elastic part of the
interconnecting elements has negligible mass, it follows
that the mass of the rolling elements does not influence the
part of the potential energy of the interconnecting layer.
This is obvious from forms (2) and (3). For further
numerical solutions, we present three cases of the
interconnecting layer rolling elements. We change their
masses per unit of plates surfaces from m = 240 kg and
m = 100 kg to a case when we do not have rolling elements
for m =0 kg.

The numerically considered plates are with the same
material characteristics with a radius of 1m, heights /#,=0,01
m and /,=0,005m, made of still with a density of
p, =7.849-10°kgm™, Poisson’s ratio g =0.33and

Young's modulus E; =21-10°°Nm™. The plates are

connected with a layer of continually distributed viscous
nonlinear  elastic  rolling elements of stiffness

¢=2-1°Nm™" and ¢, =0,5-10°Nm ™" and a coefficient of

' all per one square meter of plate

damping b =0.5 kgs~
surfaces. This is the case when the lower plate has the
height twice greater than the upper plate, 4, =/ /2, and
when we modify the mass of the rolling elements, the
solutions of characteristics equations of system (19)
A1 20m = 31 FiPran and s 4nm = ~sm FiPaum have the
different values and therefore the coefficients (23a-h) have
different values. The solved values of the circular
frequencies of the coupling p,,, and the coefficients
(23a-h) are presented in Table 1. Here we present the
solutions for the case of the first eigen mode of the plates
oscillations for n = 0 and m = 1 for which the characteristic
eigen number of the clamped circular plate is k;; =3.196 .
The value of the coefficient of nonlinearity influence is
N(W)=0.117, and the value of the coefficient of the

nonlinearity of the layer is =5 m?s™, reduced values of

the amplitude of excitations are /(1) = 10"Nm™ for the

value of the dimensionless parameters & =107.

Table 1. The values of the circular frequencies of the coupling p,, , and the coefficients 8, 5 Spw and B » Poum » for i=1,2 in first mode of plate

system oscillations ( n = 0,m =1), for three different values of the rolling elements masses.

m(kg) | A (571) 132(571) 2 123 (e} (2] A B R B
0 108.33 | 174.49 11 8 12210 | 96220 [267100| 17590 | 2945 534
100 87.33 [ 14842 | 6.273 | 2.151 | 25480 | 15720 | 91720 | 17470 | 1402 | 358.5
240 71.61 | 126.82 | 3.326 | 0.7554 | 18640 | 3538 | 30310 | 8704 1082 289

As expected, the increasing of the mass of rolling
elements has reduced the circular frequencies of the
coupling p,,, anf the coefficients of the damping influence

Opum 5 thus the impact of the nonlinearity should be grater.
All the phenomena of the resonant transition for the
stationary regime need to be more evident for the same
values of the amplitude of external excitations. These are
the characteristic jumps of the amplitude and the phase
response in the vicinity of the resonant values Q,,,, = P »

the appearance of new stable and unstable branches which
conditions the more-values responses of system and the
emergence of two stable solutions of the system in the area
of these new branches, the mutual interaction of the
harmonics and the jumps of the system energies. All these
phenomena we will present through the series of the
amplitude-frequency and phase-frequency diagrams for
both harmonics in the mentioned three cases of rolling
element masses. Also, presented are the shapes of the
corresponding branches of the amplitude-frequency and
phase-frequency curves are presented for stationary non-
linear vibration regimes, for the first time harmonic

amplitude ay,, (€;,Q,) and the phase ¢, (2,,Q,), and
for the second time harmonic amplitude a,,, (€;,€,) and

the phase ¢, (€,€Q,) in the one nm - th eigen amplitude

shape mode of plate.
These shapes are the results of the modes interaction and
of the particular discrete values choice of the external

excitation frequencies Q,,,, and Q,,,, used in the resonant
frequencies intervals belonging to the corresponding eigen
frequencies p,,, and p,,, of the corresponding nm - th
eigen amplitude shape mode of the plate linear system
taken in the simulations. Strong interactions between the
time modes in the nm - th eigen amplitude shape mode of
plate pairs appear only in the case that both values of the
both external excitation frequencies Q,,, and Q,,, are
simultaneous in the corresponding resonant frequency
interval Q,,,, ® Piam  a0d Qs ® Doy - If one of the

external excitation frequencies, Q,,, or Q,,, , is outside
the  corresponding  resonant  frequency interval,
Qi N0~ Piyy and Qs & oy 08 Quyy ® Pray and
Qy.m 1O = Dy, , the interactions between modes are small.

For that case, a specific change of the corresponding
amplitude-frequency and phase-frequency curves is not
visible and looks like the one in the case of the single
frequency external excitation in the corresponding resonant
frequency interval, Q,,, no= p,,, and Q,,, = Pry, OF

anm ~ ﬁlnm The

frequency curve for the second time harmonics in the
interval of the frequencies which are not close to the
external excitation frequency, Q,,, "0~ Dy,  OF

and  Q,,, 10X Py - amplitude-

Qim MO~ P, and outside the resonant frequency

intervals is practically a straight line, and practically has a
constant value. Hence, there is no interaction between time
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modes in the first asymptotic approximation. This is visible
from Fig.2-15 at the beginning or at the end of the external
excitation frequency intervals.

The first eight Fig.2-7 present the amplitude and phase
responses for both harmonics for the case of the greatest
mass of the rolling elements m=240 kg per unit of plate
surface.

The amplitude-frequency responses for two frequencies
like stationary vibration regimes contain the amplitudes q,
and a,, Figures 2 and 4. The shown figures exhibit a strong
characteristic as nonlinear interactions between the time
modes of the two-frequency external excitation in the
resonant interval of two external excitation frequencies
close to the eigen linearized system frequencies.

I* In Fig2, the amplitude-frequency
A1 (Q1,Q, = const) , in Fig.3 the phase-frequency curves

¢lnm (QIJQZ = CO}’lSt) >
TeSponse  ay,, (QI,QZ =const) and in Fig.5 the phase-

curves

in Fig.4 the amplitude-frequency

frequency curves ¢, (Q,Q, = const) for two frequency

like nonlinear stationary vibration regimes are presented for
the discrete values of  the Q,,., =const ,

Q,,,=100s",130s™", 132s7", 135s7!,  140s™', 14557,
150s™", 15557, for the Q
interval Q,,, 6[505_1,2508_1] and the discrete values of

1 CONtinuously  from  the
nm

Q. = const in the interval Q,,, €[100s™,155s7" |.

The amplitude-frequency and phase-frequency curves
W (Q1,Q, =100s7)

B (.9, =100s™) as for @, (Q.Q, =160s™),
Do (QI,QZ = 1605’1) presented in Figures 2. and 3 have

the shapes as in the case of the corresponding single
frequency amplitude-frequency and phase-frequency curves
with only one pair of resonant jumps in each pair of the
corresponding curves.

2* In Fig.6 the amplitude-frequency

A1 (Q) = const, Q,), in Fig.7 the amplitude-frequency

for the cases:

curves

response  d,, (Q = const, Q,) for two frequencies like

nonlinear stationary vibration regimes are presented for the
discrete values of the Q,,, =const,

Qm=85s71,110s7",120s7",190s™",2205™",26057",300s™",3205 ™"
from the interval Q,,, € [855‘1, 3205‘1J and the discrete

values of €,,, =const continuously in the interval

Qym € [60s’1 ,200s™! ] . In this case, we did not present the

phase-frequency diagrams because, as we notice in the
previous series of the Figures, the phase transient through
the resonant regime is simultaneous to that of the amplitude
and gives the same quantitative conclusions.

Comparing the first and the last diagrams in Figures 2, 3
and 6, we may conclude that the amplitude and phase
responses of the first harmonic have small changes after the
transient regime while the amplitude and phase responses
of the second harmonics have significant changes of the
values and the shapes, Figures 4, 5 and 7. Therefore, we
conclude that the influence of the first harmonics on the
second one, in the resonant region of the frequencies
Q,,., of the external excitation, is greater than vice versa in

the resonant region of the frequencies Q,,,, of the external

excitation.
L ;/ a0, =132f ]

e B .__/ \_!L_—/I\\

a1, =120p =145 '] d 0, 1sof ']
—\'».___.ﬁ \____‘____

Figure 2. Amplitude-frequency characteristic curves for the amplitudes of
the first time harmonics aj,, = f;(Qy,,) on the different value of the

o, =15k

excited frequency Q,,, for the discrete value of the excited frequency

Q,,, = const with noted corresponding one or more resonant jumps for

m =240kg . The arrows designate the directions of the resonant jumps

Figure 3. Phase -frequency characteristic curves for the amplitudes of the
first time harmonics @, = f3(Qu,,) on the different value of the excited

frequency Q,,,, for the discrete value of the excited frequency

Q,,,, =const with noted corresponding one or more resonant jumps for
m =240kg . The arrows designate the directions of the resonant jumps

Figure 4. Amplitude-frequency characteristic curves for the amplitude of
the second time harmonics a,,,, = f (Q,,,) on the different value of the

excited frequency Q,,, for the discrete value of the excited frequency

Q,,., =const with noted corresponding one or more resonant jumps for
m=240kg

S o, =100s]

e

Q,=130)"]

_'qu;;— —M Q- 150[;

Figure 5. Phase-frequency characteristic curves for the phases of the
second time harmonics ¢, = f3(Q,,) on the different value of the
excited frequency Q,,, for the discrete value of the excited frequency

Q,,,, =const with noted corresponding one or more resonant jumps for
m=240kg

In the second case, we presented the amplitude-
frequency diagrams for other values of rolling element
masses for m =100kg at Figures 8 - 11.
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Figure 6. Amplitude-frequency characteristic curves for the amplitudes of
the first time harmonics aj,, = f5(,,) on the different value of the

excited frequency Q,,, for the discrete value of the excited frequency

Q. = const with noted corresponding one or more resonant jumps for
m=240kg

& p— ————— 4 / a,
f——— —— ]

i :.:rsz‘ nos ) T

Lo, =ssls]

“ra, ; - : e, ) g,

Q,=220)s"]

Figure 7. Amplitude-frequency characteristic curves for the phases of the
second time harmonics a,, = fs (Q,,,) on the different value of the

excited frequency Q,,, for the discrete value of the excited frequency

Q. =const with noted corresponding one or more resonant jumps for
m=240kg

In Figures 8-11, for this case and select numerical
particular values of the system parameters, that mutual
interactions between two time modes belonging to one nm -
th eigen amplitude shape mode of plates oscillation are
presented at the following discrete values of the frequencies
and resonant frequencies intervals:

1* Amplitude-frequency curves aj,, (€;,Q, = const),
in Fig.8, and ay,, (9,Q, =const) in Fig9, for two

frequency like nonlinear stationary vibration regimes,
strong resonant interactions between time modes in the
nm-the eigen shape amplitude mode are visible and

presented for the discrete values of the Q,,, =const,
Q, =145s"156s",158s7",160s"',170s™',180s"  from
the interval Q,,, 6[145871,180871:| and the values of
Q. =const continuously in the interval
Q,, €[ 50s7,250s7" .

2* Amplitude-frequency curves ay,, (Q; = const,Q,),
in Fig.10, and a,,, (Q; =const,Q,) in Fig.11 for two

frequency like nonlinear stationary vibration regimes,
strong resonant interactions between modes are visible and
presented for the discrete values of the Q,,, = const,

Q,,,=100s"120s", 160s™",170s", 180s~!, 190s~!, 21057,
220s™! from the interval Q,,, e[lOOs‘l,ZZOs‘lJ and the

values of ,,, =const continuously in the interval

Qy,, €[100s7,250s™" |.
In this case the difference among first p, = 87.33({1)
and the second p, :148,42(5-1) frequencies is greater than

in the previous case for m=240 kg. Therefore, the overlap

of the resonant regions of the first ©,,, €[120, 210](s’1)
and the second €, €[156, 175](5’1) frequencies is

smaller and the mutual interactions of the modes are less
obvious.

The appearance of new resonant branches has the
identical mechanism as in the first case. The branches
appear first on the right lower side of the main resonant
curve for the second resonant region at the value

Qs = 156(s’1 ), Figures 8 and 9, and for the first resonant

region at the value Q,,, :120(5*1), Figures 10 and 11.

Again, the resonant region of the first frequency of the
external excitation is wider from the resonant region of the
second frequency and the amplitude-frequency curves of
the first harmonics are practically the same after the
resonant transition, Figures 8 and 10, while the curves of
the second harmonics undergo major changes by rotating,
summarizing and covering a narrower frequency range,
with the decrease of values, Figures 9 and 11.

| 0, =145]s"'] a %2:156[57]] ﬁ //Q =158fs]

b M)

Figure 8. Amplitude-frequency characteristic curves for the phases of the
first time harmonics ay,, = fi (Qy,,) on the different value of the excited

frequency Q,, for the discrete value of the excited frequency

Q,,. = const with noted corresponding resonant jumps for m=100 kg.

2

s

Q, =156[s"|

Figure 9. Amplitude-frequency characteristic curves for the phases of the
second time harmonics aj,, = f5(€,,) on the different value of the
excited frequency Q,,, for the discrete value of the excited frequency
Q,,,, =const with noted corresponding resonant jumps for m =100kg .

T ol :100[;"]:'5 a 0, =120 fa, Q= 160)5" e —
o =sols )

i, AL —180fs '},

!.n‘:wu[s 1] u T .Ig‘
_‘ gl

fa- 2107}

19, =205

Figure 10. Amplitude-frequency characteristic curves for the phases of the
first time harmonics aj,, = f5(€2,,) on the different value of the excited

frequency €,,, for the discrete value of the excited frequency

Q,,.» = const with noted corresponding resonant jumps for m =100kg .
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Figure 11. Amplitude-frequency characteristic curves for the phases of the
second time harmonics a,,, = fs (Q,,,) on the different value of the
excited frequency Q,,, for the discrete value of the excited frequency

Q,,.,, =const with noted corresponding resonant jumps for m =100kg .

For the third, last, case, we practically consider the case
without rolling elements in the connecting layer of two
plates, m=0kg. For the same selected numerical
particular values of the other system parameters, the mutual
interactions between two time modes in one nm -the eigen
amplitude shape mode of plates vibration regimes are
presented at Figs.12-15 for the following discrete values of
the frequencies and the resonant frequencies intervals:

1* Amplitude-frequency curves aj,, (€;,€, = const),
in Fig.12, and aj,, (€,,Q, =const) in Fig.13, for two
frequency like nonlinear stationary vibration regimes. The
light resonant interactions between time modes in the nm -

the eigen shape amplitude mode are visible and presented
for the discrete values of the Q,,, =const,

Q,,,, =100s71,190s7",200s",201s7",210s™!  from the
interval anme[loos’l,Zlos’lj and the values of

Qy,,, = const continuously in the interval

Qy, €[ 50s7',250s7" .

2* Amplitude-frequency curves ay,, (Q; = const,Q,),
in Fig.14, and a,, (€, =const,Q,) in Fig.15 for two
frequency like nonlinear stationary vibration regimes. The
light resonant interactions between modes are visible and

presented for the discrete values of the Q,,, =const,
Q,,, =90 s7,100s7",120s™ from the interval

Qm 6[90571,120871] and the values of ,,, =const

e [100s™ 25057

From Fig.12 and 13 it can be seen that the amplitude-
frequency curve of the first harmonics passes through the
resonant regime of the second frequency of the external
excitation without characteristic resonant jumps, but the
amplitude response of the second harmonics has resonant
jumps in the resonant range of the second frequency of the

! and after the

resonant transition undergoes changes of values and shape.
This leads to the conclusion that the first harmonics has
more influence on the second one than in the opposite case.
In the case of the amplitude frequency curves of both
harmonics in the resonant region for the discrete values of

the first frequency Q,,, =90s™',100s™",120s™", Fig.14 and

15, we cannot notice the characteristic phenomenon of
passing through the resonant regime; there are no resonant
jumps but the curves of the amplitude for the second
harmonics undergo the decrease of the value, Fig.15.

continuously in the interval Q,

external excitation Q,,, €[185,201]s

P =200[s]

/52,400[\‘

) - 2 0, =210
/ / £ = 190fs / /xz -0 /
4 s X :. L~

Figure 12. Amplitude-frequency characteristic curves for the phases of the
first time harmonics ay,, = fi (Qy,,) on the different value of the excited

frequency €, for the discrete value of the excited frequency

Q,,,, =const with noted corresponding resonant jumps for m =0kg .

/ T/ A+ el

g —

L =i L 1 AL 1

Figure 13. Amplitude-frequency characteristic curves for the phases of the
second time harmonics ay,, = f>(,,) on the different value of the

excited frequency Q,,, for the discrete value of the excited frequency

Q,,., = const with noted corresponding resonant jumps for m =0kg .

o

Figure 14. Amplitude-frequency characteristic curves for the phases of the
first time harmonics aj,, = f5(€,,,) on the different value of the excited

frequency €,,, for the discrete value of the excited frequency

Q,,.» = const without noted corresponding resonant jumps for m =0kg .

— —

w0 =120 [

Q,

Figure 15. Amplitude-frequency characteristic curves for the phases of the
second time harmonics  d,, = f5(Q,,) on the different value of the

excited frequency Q,,, for the discrete value of the excited frequency

Q.. =const without noted corresponding resonant jumps for m =0kg .

Hence, the amplitude responses in this case are similar to
the case when there is no nonlinearity; we may conclude
that the influence of the nonlinearity in the coupling layer is
insignificant for such a selection of all other system
parameters. The influence of the nonlinearity in the
interconnecting layer may be less or more present
depending on the parameters of the system. For example,
by changing the value of the amplitude of the external
excitations or the damping coefficient, we may find the
same phenomena of resonant transition, resonant jumps and
mutual modes interactions.

The characteristic of the presented series of the
amplitude-frequency and phase-frequency curves for two-
frequency like nonlinear stationary vibration regimes is that
more than one pair of the resonant jumps appear, together
with more than one instability branch in the corresponding
amplitude-frequency and phase-frequency curves. It is
visible that in the listed discrete values of the external
excitation frequency from the corresponding resonant
intervals two pairs plus one or three pairs with one more
resonant jump appear together with a corresponding non-
stable branch.
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For obtaining data on stability or non-stability of the
stationary amplitude and phase, it is necessary to use
linearization of the system of the first approximation
differential equations for two amplitudes and two phases in
each discrete stationary vibration state and to compose a
corresponding characteristic equation. Using real parts of
the roots of the corresponding characteristic equation, it is
possible to conclude whether the stationary two frequency
like nonlinear vibration regimes are stable or not. If all real
parts of all the roots of the characteristic equation are
negative, then the regime is stable, or if only one is
positive, then the regime is non-stable.

Analysis of non-stationary regimes of transversal
vibrations of a double plate system

In order to investigate non-stationary regimes of
transversal nonlinear oscillations of a double circular plate
system as nonlinear dynamics for the presented model, we
have numerically integrated the obtained system of DE’s of
the first approximation (19-22). We have used the Runge-
Kutta’s method of IV order in the MathCAD computer
program and obtained the amplitudes-frequencies
characteristics for the system of two circular plates
connected with a viscous nonlinear elastic rolling layer
shown in Fig.16. In such a manner, by changing the external
excitation frequency, we can explain the passing through
resonant intervals depending on the exchange velocity of

external excitation frequencies Q, (7).

The numerical consideration of the system (19-22) of
differential equations in the first asymptotic approximation

R, (t) and the
difference of phases ¢, (f) of two frequency like

for the corresponding amplitudes

vibration regimes in the light of the stationary and non-
stationary resonant regimes gives us the graphic results and
the corresponding conclusions.

Q,=118-200 | ' = T T

a)

Figure 16. Amplitude-frequency curves a,, =f(Ql,,m) of the passing

through the resonant non-stationary kinetic states by the external excitation
frequency change and for the cases with slow changing frequency with
different velocities as well as by increasing and also decreasing values in
the interval around the value of the eigen frequency of the corresponding
linearized coupled double plate system. a) decreasing of the external

excitation frequency Q, = A— Bt by diferent velocities: Q,,, =118-5t,
Q,,, =118-10t and Q,,, =118—-15t ; and b) increasing of the external
excitation frequency €); = A+ Bt by different velocities Q,, =264+5t,

Q,, =264+10t and Q,, =264+20t ; of the first harmonics of the

external excitation, with the initial values on the borders of the considered
frequency interval and for the external excitation second frequency

constant Q,,,, = 360(3’1) .

Fig.16 presents the amplitude-frequency curves

Ay = [ (Qum ) of the passing through the resonant non-

stationary kinetic states by the external excitation frequency
change and for the cases with slow changing of frequency
with different velocities as well as by increasing and also
decreasing values in the interval around the value of the
eigen frequency p,,, of the corresponding linearized

coupled double plate system. Fig.16a) presents the
amplitude-frequency curves for non-stationary regimes fot

the decrease of the external excitation frequency
Q,=A-Bt by different velocities: Q,,, =118-5¢,
Q,,, =118-107 and Q,,, =118-15¢. Fig.16 b) presents

the amplitude-frequency curves for non-stationary regimes
for the increase of the external excitation frequency
Q, =A-Bt by different velocities Q,,, =264+5¢,

Q =264+10¢t and €, =264+20¢t; of the first

1nm
harmonics of the external excitation, with the initial values
on the borders of the considered frequency interval and for
the second external excitation second frequency constant

Q0 =360(s™").

From the amplitude frequency characteristics presented
in Fig.16 for the passing through the resonant interval by
these different velocities of the external excitation
frequency change, we can conclude that, for lower
velocities of the external excitation frequency change
through the resonant frequency interval, non-stationary
amplitudes take larger values than in the case of higher
frequency velocities.

In the same Fig.16 a) and b) the amplitude-frequency
curves for the stationary resonant regimes are included.
Then it is possible to compare the values of the amplitudes
of the stationary and non-stationary regimes for passing
through the resonant range by the external excitation
frequency with different velocities. By this comparison we
can conclude that non-stationary amplitudes for the passing
through the resonant range frequency interval with
slowchanging external excitation frequency follow the
stationary stable amplitude branch and on the resonant
jumps appear “resonant jumps oscillations with jumps
from higher to lower amplitudes for decreasing frequency,
such as from lower to higher amplitudes for the external
excitation frequency increasing on the corresponding
resonant jumps frequency for stationary amplitudes.

Concluding remarks

The phenomena such as enlargement and jumps of
amplitudes and phases of system oscillations, transition
processes or hysteresis in the dynamics of systems, mutual
interaction of modes in multi-frequency regimes may be
explained by introducing the nonlinear elements in
mathematical modeling of material properties of system sub
elements. This paper explained these phenomena caused
not only by nonlinearity but also by the presence of rolling
elements with their translation and rotation without sliding.
The viscous non-linear elastic rolling element modeled in
the manner of rheological models presents the Kelvin-Voigt
material with added spherical material particles.

We have analyzed stationary and non-stationary regimes
of nonlinear oscillations for the presented model to explain
the passing through the resonant regimes, amplitude and
phase jumps and multi modes mutual interaction. A
mathematical model of a two-plate sandwich system, a
system of PDE’s (14), was used for solving an averaged
asymptotic first approximation semi analytically and semi
numerically. One part of the solutions was obtained
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numerically presenting amplitudes-frequencies and phase-
frequency characteristics. These characteristics explained
the interaction of the nonlinear component modes and
nonlinear resonant interactions in the first asymptotic
approximations of the displacement of the plate middle
surface points. We concluded that the complexity in the
system nonlinear response for the two frequency external
excitations and the resonant range of the frequencies
depends on the initial conditions and also on other system
kinetic parameters and the corresponding relation between
these sets of kinetic parameters.

The presented model of new features in the
interconnecting layer introduced with rolling elements with
their inertia of rolling without sliding and of translation of
mass center is a novelty in the modeling of rheological
elements. The presence of rolling elements in the
interconnecting layer introduces the part of the dynamic
coupling into the system of the obtained PDE’s describing
the nonlinear dynamics of the presented plates system.
Based on the numerical comparisons, we conclude that the
dynamic coupling intensifies the phenomenon of resonance
transition caused by the mutual interaction of harmonics.
Non-linearity is a source for the appearance of two resonant
jumps in the amplitude-frequency and phase-frequency
curves inside the interval of the resonant frequency. Three
or five, or seven on more singular values of the stationary
amplitudes and phases appear between two jumps together
with alternatively stable and unstable values that build
coupled singularities and trigger of coupled singularities.
The trigger of coupled singularities consists of two stable
amplitudes and phases around one unstable one. The unique
values of the amplitudes and phases lose their stability and
split into the trigger of three coupled singularities such as
two stable values and one unstable passing through
resonant intervals for a simple case without nonlinear
interactions between time modes. But, in the case when
there are resonant interactions between modes, more than
one pair of the resonant jumps appear, and there are
possibilities for the appearance of coupled triggers of
coupled singularities containing odd number of alternating
coupled stable and unstable singularities.

A trigger of coupled stationary amplitude and phase

values, of two stable and one non-stable (saddle point) on
the one external force frequency of two- or multi-frequency
resonant regimes is presented in the considered nonlinear
dynamics of the double plate system. More than one trigger
of coupled stationary amplitude and phase values, of two
stable and one non-stable (saddle point) on the one external
force frequency are presented for the case of the
interactions between resonance nonlinear modes. The
coupled trigger of coupled singularities is presented as well
in the resonant stationary coupled states.
The results presented in Section 5 lead to a conclusion
about transient processes of system dynamics. Regimes of
turning on and turning off the systems may be examples of
transient processes in terms of non-stationary system
regimes. For turning on regimes, it is better to use low
velocities of external frequency changes because of a
smaller number of amplitude jumps which happen on lower
values of the external excitation frequency, Fig.16 b). For
turning off regimes, in the sense of frequency decrease, it is
better to use higher velocities of the external frequency
changes because of a smaller number of amplitude jumps
which happen on lower values of the external excitation
frequency, Fig.16 a).
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Nelinearna dinamika sistema dve plo¢e spregnute slojem
visko-elasti¢nih i inercijalnih svojstava

U radu su prikazane viSe frekventne oscilacije sistema dve izotropne kruZne ploce spojene slojem kotrljajnih visko-
elasti¢nih nelinearnih elemenata. Ovakav fizicki sistem imam veliki znacaj u proucavanjima vibracionih i akustickih
apsorbera. SpreZudi sloj je modeliran kao kontinualno raspodeljen sloj diskretnih standardnih reoloskih elemenata sa
svojstvima prigusenja, nelinearne elasti¢nosti i inercije kotrljanja bez klizanja.

Matematicki model sistema predstavljen je u obliku sistema parcijalnih diferencijalnih jednacina prinudnih
transverzalnih oscilacija tataka srednjih ravni plo¢a spregnitih slojem Kkotrljajnih visko-elasti¢nih elemenata pod
dejstvom harmonijske kontinualno raspodeljene po povrSinama plo¢a pobude. Sistem obi¢nih deiferencijalnih jednacina
prvog reda po amplitudama i faznim kasnjenja vremenskih funkcija, odgovarajucih sopstvenih oblika oscilovanja ploca,
u prvoj asimptotskoj aproksimaciji izveden je za razli¢ite odgovarajuce vise frekventne reZime oscilovanja. Potom je taj
sistem analiti¢ki i numeric¢ki posmatran u svetlu stacionarnih i nestacionarnih rezonanatnih reZima i meduinterakcija
nelinearnih modova, kao i broja rezonantnih skokova i to u slu¢ajevima kada nema kotrljajuéih elemenata u sloju i za

dve razli¢ite vrednosti masa kotrljajucih elemenata.

Ovakva analiza pokazuje da prisustvo kotrljajuceg elementa kao reprezenta dinamicke sprege plofa uzrokuje
preklapanje rezonantnih oblasti nelinearnih modova $to u isto vreme izaziva uveéanje njihove meduinterakcije.

Kljucne reci: dinamika sistema, nelinearna dinamika, oscilacije, plo¢a, rezonantni reZim, rezonantni skokovi, matematicki

model, parcijalne difernecijalne jednacine.

AHaJN3 HeJIMHENHOW TMHAMMKN CUCTEM U3 IBYX IJIACTHH
COeIMHEHHBIX CJI0€M HEeJIMHENHBIX 3JIEMEHTOB
BSI3KOYNPYIOro Ka4eHus

B HacTosineii padoTe npeacTaB/IeHbl HEKOTOpPbIE KOJ1e0aHUsI YaCTOTHI CHCTeM JBYX M30TPONHBIX KPYroBbIX ILNIACTHH,
COeTMHEHHBIX €J10eM HeJMHEeHHbIX 2J1eMEeHTOB BSA3KOYNpyroro kadyenusi. Takue pusnyeckue cucteMbl MMEIOT 00/1b1I0E
3HAYeHHe B U3Y4YeHHM K0/1e0aTeJbHBIX M aKyCTHYeCKHX NOorioTureseil. CoelHHHTeIbHBIH €JI0H MojeaHpyercsi Kak
CIVIONIHOM ¢€JI0H pacnpefeIéHHBIX JMCKPETHBIX 3JIEMEHTOB CO CTAaHJAPTHBIMH pPEOJOrH4eCKHMMH CBOiicTBaMH
3aTyXaHHsl, HeJIHHeHHOii TeopHH YNPYrocTH U HHePIHH KaueHHs §e3 CKOJIbKeHHsl.

MaremaTnyeckasi MoJeJb CHCTeMbI IPEACTABJIEHA B BHIEe CHCTeM YacTHYHBIX Ju(¢epeHIHAIbHbIX yPABHEHHI
NPHHYIUTEIbHBIX MONEPEYHbIX KO/1e0aHHH BBICOKOH TOYKH CPEJIHHUX IUIOCKMX MaHeJeil, COeIHHEHHBIX CJI0eM
HeJIMHEHHBIX 3JeMEeHTOB BSI3KOYNIPYIOro KayeHHsi, II0J BJHsSHHEM TIapMOHHYECKOro BO30Y:KIeHHs HeNpepbIBHO

pacnpeaesiéHHOr0O B COOTBETCTBHH €

MMOBEPXHOCTHIO

MaHeJIH.

Cucrema 00BIKHOBEHHBIX YaCTHYHBIX

anddepeHIMANLHBIX YPABHCHMII NePBOr0 NOPsiikKa MO aMIuiMTyde M (ase BpeMeHHOH 3aep:KKH (QYHKUHUM,
COOTBETCTBYIOIIMX COOCTBEHHBIX (JOPM IUIACTHHBI K0JIeOAHMUSI, B IEPBOM ACHMIITOTHYECKOM NPUO/IMKEHUH N0JTyqaeTcst
foJiee mMOAXOAANIEH /1151 PA3IMYHBIX COOTBETCTBYIOLINX PE:KHMOB 4acTOThI Kosiedannii. [ToToM cicTeMa aHATHTHYECKH
U YHCIEHHO PacCMATPUBAHA B CBeTe CTAMOHAPHBIX H HECTAIMOHAPHBIX PE30HAHTHBIX PEeXKMMOB M B3aHMOJeiicTBUSA
HeJIMHEHHBIX PEeKMMOB, 2 B TOM YHCJIe M KOJIMYECTBA PE30HAHTHBIX MNPBIKKOB, H TO NPU OTCYTCTBUU KaYeHUS
3J1€MEHTOB B €JIO€ M IJIs IBYX Pa3/IM4YHBIX 3HAYEHUI MacChl Te1a KaueHHs.
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ITOT aHAJIH3 MOKa3bIBaeT, YTO0 HAJIMYHE NMOABHKHOIO JJ1eMEeHTa B KauecTBe MpPeACTABHTEIs] JUHAMUYECKOH INIHTBI
CBSI3H BbI3bIBACT INEPEKPbITHE PE30HAHCHBLIX 00JacTell HeJIMHEHHBIX PEKUMOB, YTO B TO Ke BpeMs BbI3bIBaeT
yBeJIMUeHHe NPUYMHBI MX B3aHMO/eiicTBHIA.

Kntouegvle cnosa: NMHAMHKA CHCTEMbl, HeJIMHEHHAsl IMHAMUKA, KOJ1e0aHusl, IVIUTA, PE30HAHCHBIA PeKUM, Pe30HAHCHbIE
NPBIKKH, MATEMATHYECKAsI MO/IE/Ib, YaCTHYHbIE Tu( depeHIInaIbHbIE YPABHEHUS.

Analyse de la dynamique non linéaire du systéme de deux
plaques couplées par une couche d’éléments roulants
hautement ¢lastiques

Les oscillations multi fréquentes du syst¢éme de deux plaques circulaires isotropes connectées par une couche d’éléments
roulants non linéaires et hautement élastiques ont été présentées dans ce travail .Ce systéme est trés important pour les
recherches des absorbeurs vibratoires et acoustiques. La couche connectée est modelée comme une couche distribuée
continuellement composée des éléments discrets standards rhéologiques avec les propriétés d’étouffement, d’élasticité
non linéaire et de ’inertie de roulement sans glissement.

Le modéle mathématique du systéme est présenté sous la forme du systéme des équations différentielles partielles des
oscillations forcées transversales des points de moyens plans des plaques couplées par une couche d’éléments roulants
hautement élastiques sous I’effet de ’excitation harmonique distribuée continuellement sur les surfaces des plaques. Le
systéme des équations différentielles simples du premier ordre sur les amplitudes et les fonctions temporelles du délai en
phase, des formes propres d’oscillations des plaques, dans la premiére approximation asymptotique a été dérivée pour les
différents régimes d’oscillations multi fréquents. Ce systéme a été ensuite examiné analytiquement et numériquement
sous I’aspect des régimes des résonances stationnaires et non stationnaires et des interactions des modes non linéaires. On
a considéré également le nombre des sauts de résonance pour les cas ou la couche ne contient pas d’éléments roulants et
pour deux différentes valeurs des masses des éléments roulants.

Cette analyse démontre que la présence de I’élément roulant en tant que le représentant du couplage dynamique des
plaques provoque le chevauchement des régions de résonance chez les modes non linéaires causant en méme temps
I’augmentation de leur interaction.

Mots clés: dynamique de systéme, dynamique non linéaire, oscillations, plaque, mode de résonance, sauts de résonance,
modéle mathématique, équations différentielle partielles.





