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Development of a Closely Coupled Procedure for Dynamic 
Aeroelastic Analyses 

Erkut Başkut1) 
Ali Akgül1) 

In this paper, a numerical method is developed to predict the aeroelastic response and the flutter boundary of elastic 
structures. A closely coupled approach is used for time advancing. The flow solver relies on inviscid Euler equations with 
finite volume discretization. A modal approach is used for a structural response and the Newmark algorithm is used for 
time marching. In order to exchange displacement and pressure data between structural and aerodynamic grids, the 
infinite spline method is used. The Computational Fluid Dynamic mesh is moved based on the spring-based smoothing 
and the local re-meshing method provided by the FLUENT User Defined Function in order to adapt a new shape of the 
aerodynamic surface at each aeroelastic iteration. The AGARD Wing 445.6 is modeled and solved with the developed 
procedure. The obtained results are compared with numerical and experimental data available in the literature. 
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Notation and symbols 
b – Half chord length  
CFD – Computational Fluid Dynamics  
CSD – Computational Structural Dynamics  
FSI – Flutter speed Index  
Q  – Generalized unsteady aerodynamic forces  
δ  – Displacement  
ζ  – Damping ratio  

fV  – Flutter speed  
υ  – Mass ratio  
ω  – Natural frequency   

Introduction 
EROELASTIC problems should be considered in the 
early phase of the air-vehicle structural design since 

any unstable response to aerodynamic loading may rapidly 
lead to a disastrous structural failure, which may only be 
treated by major and usually expensive modifications. 
Wind-tunnel or flight tests are two expensive methods 
performed in the late phase of the design. Therefore, 
computational aeroelasticity methods are used in order to 
determine aeroelastic characteristics of an air vehicle during 
its development stages. Dynamic aeroelasticity is concerned 
with the oscillatory effects of the aerodynamic forces [6]. 
Flutter is the main area of interest of the dynamic 
aeroelasticity. Flutter can be defined as an unstable self-
excited oscillation in which the structure gains energy from 
the air stream and leads to a catastrophic structural failure. 

Different levels of complexity may be used in order to 
model the fluid and structure in computational 
aeroelasticity.  In general, as the complexity in physics and 
geometry increases, so does the accuracy of the obtained 

results and computational time. The accuracy of aeroelastic 
modeling can be improved by using high-level aerodynamic 
models based on the conservation laws and finite element 
formulation of the structure. These methods fully account 
for nonlinear effects during aeroelastic analysis, which 
results in a more accurate prediction of the aeroelastic 
response and instabilities. Continuity, momentum and 
energy conservation laws together with the equation of state 
are generally utilized by CFD methods in order to solve the 
flow around air vehicles. The Navier-Stokes equations may 
also be solved for viscous flows. The Euler equation, which 
assumes inviscid flow, is a reduced form of the Navier-
Stokes equations and gives acceptable results.  

The main objective of this study is to develop the 
interference between the two disciplines, namely structural 
dynamics and aerodynamics, in order to determine the 
dynamic aeroelastic properties of air vehicles. The present 
method is applied to solve the dynamic aeroelastic 
characteristics of the AGARD Wing 445.6. [15] 

Method 
For the dynamic aeroelastic analysis, a CFD solver, 

FLUENT, is coupled to governing equations of motion of 
the structure that are presented in the modal coordinates. 
The mode shapes and corresponding natural frequencies are 
obtained by using MSC/NASTRAN and used as an input 
for this approach. A FORTRAN code is developed in order 
to perform the entire computational procedure which is 
developed for the dynamic analysis. The flow chart of the 
iterative procedure is given in Fig.1.  

In the developed coupling scheme, the dynamic 
aeroelastic simulation is started by computing an initial, 
steady-state solution for the undeformed wing which is 
used as the starting point of the unsteady dynamic 
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aeroelastic computations. At the start of the unsteady run, 
the pressure forces calculated at the wall-face centroids are 
splined to the structural grid nodes using the infinite spline 
method. The pressures calculated at the cell centers using 
FLUENT are used with the cell wall-face area vectors in 
order to calculate the pressure forces. Since the forces are at 
the cell centroids and not at the aerodynamic grid points, a 
spline matrix [S1] is created to spline forces between the 
wall-face centroids on the aerodynamic grid and the 
structural grid points using the transpose of the created 
spline matrix. 
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Figure 1. Flow Chart of the Dynamic Aeroelastic Procedure 

The new deformed structural grid coordinates are then 
calculated in the modal coordinates using the linear modal 
structural model which is time marched using the Newmark 
method. In order to obtain the new coordinates of the 
aerodynamic grid, structural displacements are transformed 
to physical coordinates and splined using the second spline 
matrix [S2] between the structural grid points and the 
aerodynamic grid points. The computational fluid dynamic 
mesh is then deformed by using the FLUENT moving mesh 
algorithm. Finally, new flow variables are calculated for the 
next time-step. This process is repeated until a specified 
flow time is reached.   

Since the AGARD Wing 445.6 has a symmetric NACA 
65A004 airfoil, and the angle of attack is zero degree, an 
initial perturbation must be given in order to start the 
oscillations. One can use an initial force applied at some 
area of the wing, or can use an initial condition in the form 
of a velocity distribution. In the present study, the first 
mode shape of the structural model is used to create a 
sinusoidal velocity variation for one cycle with an 
amplitude of 0.5 m/s for the first mode frequency of the 
wing. Afterwards, unsteady coupled calculations are 
continued by removing the excitation and the wing is 
allowed to respond to unsteady aeroelastic loads.  

The flutter points are calculated by using the aeroelastic 
model for different Mach numbers. At a selected dynamic 
pressure, the solution is computed for four cycles of the 
response. If the oscillations in the cycles are growing, a 
lower dynamic pressure value is chosen and the solution is 
recomputed. If the oscillations are convergent, higher 
dynamic pressure is chosen. This procedure is continued 
until the oscillations are neither decaying nor growing. 

Then, the dynamic pressure is determined which leads to 
neutral oscillations. This point of neutral oscillations is 
defined as the flutter point. 

It may be possible to estimate the damping ratio, ζ, 
which yields a positive value for a stable solution, and a 
negative value for an unstable solution from a single 
response. For the dynamic aeroelastic calculations 
performed in this study, the structural damping was set to 
be zero, so the calculated damping ratio is purely of the 
aerodynamic origin. For a free-decaying, damped 
oscillation, the aerodynamic damping can be derived from 
the logarithmic decrement which is shown in eq.(1).  

 
1

1 ln i
n

i

x
n xζ

+

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1) 

where ix  and i nx +  are the peak amplitudes at a certain 
instant of time and taken after the n cycles of vibration, 
respectively.  

Damping values are estimated for a large set of test 
points at constant Mach numbers for varying dynamic 
pressure values. The flutter boundary can then be 
determined by using linear interpolation in order to 
determine the dynamic pressure which yields the zero 
damping ratio. The accuracy of this method depends on the 
test points near to ζ=0; therefore, the flutter boundary 
estimation is improved by refining the study with more test 
points. 

For the unsteady flow calculations, the pressure-velocity 
coupling algorithm, Pressure-Implicit with Splitting of 
Operators (PISO), is used with the second order upwinding 
scheme for density, momentum and energy equations. The 
MSC/NASTRAN finite element program is used to get the 
modal matrix and the corresponding natural frequencies, 
which are the main inputs of the coupling scheme. 

The Flutter Speed Index (FSI) represents the condition 
where the magnitudes of the oscillations neither decrease 
nor increase, and is given by eq.(2): 
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where b is the half chord length at the wing root, αω  is the 
first torsion frequency and υ  is the mass ratio described as 
eq.(3)  
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where 30.0043584 mwingV =  and 30.13054 mconeV = , 
which is the volume of the truncated right cone enclosing 
wing. 

Table 1. Experimental Flutter Data for the Weakened AGARD Wing 
445.6 

Mach fp  [kg/m3] fV  [m/s] FSI / αω ω  

0.499 0.42770 172.5 0.4459 0.5353 
0.678 0.20818 231.4 0.4174 0.4722 
0.960 0.06338 309.0 0.3076 0.3648 
1.072 0.05512 344.7 0.3201 0.3617 
1.141 0.07883 364.3 0.4031 0.4593 

From the measured ρ∞ and V∞  values from the 
experiment [7], taking a gas constant of R = 287.05 Ks2/m2 
and a specific heat constant of γ = 1.4 from gas dynamics 
and ideal gas assumption, one may obtain a temperature 
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value of T∞  and a pressure value of P∞ . The experimental 
flutter data is shown in Table 1 for the AGARD Wing 
445.6 at several points between Mach 0.499 and Mach 
1.141.  

Time Advancing Scheme 
In the present study, a closely coupled approach is used 

for time advancing as illustrated in Fig.2. In this approach, 
corrective sub-iterations are performed at each time step 
until the fluid and the structure are synchronized and the 
entire aeroelastic system is fully converged. Then, new 
unsteady aerodynamic loads and corresponding structural 
displacements are calculated for the next time step. This 
process is repeated until a specified flow time is reached.  

 

Figure 2. Closely Coupled Approach 

In the closely coupled approach, fluid and structure 
systems are synchronized at each time step. A partitioned 
scheme is used for synchronization where fluid and 
structure solvers are separate. Fluid loads and structural 
displacements are exchanged within a single time step. The 
main advantages of the closely coupled approach are a 
synchronicity property and algorithmic flexibility for 
physically different systems [9]. 

Mesh Deformation 
Mesh deformation in computational aeroelasticity 

applications is one of the important aspects and therefore it 
must be handled carefully. In order to represent the 
deformation of the structure during the aeroelastic 
simulation, the aerodynamic grid must be deformed 
consistently and the mesh quality must be maintained to 
avoid any numerical problem. Simply deforming the CFD 
grid is considerably cheaper and more convenient than the 
re-meshing of the entire CFD domain; therefore, it is 
commonly used in computational aeroelasticity.  

FLUENT has the capability to interact with user-written 
programs, which allows a structural model to be coupled 
with it. FLUENT also has deforming mesh capabilities that 
can be controlled through a user-written subroutine referred 
to as a user-defined-function (UDF) in order to simulate the 
flow around a moving structure. In order to deform the 
CFD mesh using the results of the modal structural 
solution, the UDF code is developed. 

In this study, the FLUENT moving mesh algorithm is 
used since the quality of the mesh can be easily controlled 
and preserved according to the pre-defined parameters. 
FLUENT consists of three mesh deformation methods 
which can be used to update the volume mesh in the 
deforming regions at the boundaries subject to the motion 
[2]. These methods are called spring-based smoothing, 
dynamic layering and local re-meshing. 

In the spring-based smoothing method, the edges 
between any two mesh nodes are idealized as the 
interconnected springs which form a network. A 

displacement at a given boundary node will generate a force 
proportional to the displacement along all the springs 
connected to the node [2]. The spring-based method 
preserves mesh connectivity but needs a large amount of 
CPU time and memory. It is also limited to relatively small 
deformations when it is used as a standalone mesh 
deformation scheme. The second method, dynamic-
layering, can be used in prismatic (hexahedral or wedge) 
mesh zones in order to add or remove layers of cells 
adjacent to a moving boundary, based on the height of the 
layer adjacent to the moving surface [2]. The third method 
is re-meshing. The cell quality may deteriorate and cells 
may degenerate if the boundary displacement is large 
compared to the local cell sizes. This leads to negative cell 
volumes which results in convergence problems in the flow 
solution. Re-meshing can eliminate the collapsed cells, but 
it adds extra computational costs. FLUENT replaces 
degenerated cells locally until new cells or faces satisfy the 
size and skewness criteria [2].  

Interference between the Grids  
Computational aeroelasticity requires a fluid-structure 

interface to transfer the aerodynamic loads and structural 
displacements at this common boundary, which is usually the 
wetted surface on the structure. The aerodynamic and 
structural grids generally do not coincide and do not lie on the 
same surface since the requirements are different for the 
corresponding systems. Therefore, the interpolation of 
aerodynamic pressure loads and displacements must be 
implemented between the two systems by a carefully 
implemented method. The performance of such a method 
depends on the accuracy and robustness of the interpolation 
scheme. Several studies in the literature raised the importance 
of the conservation of momentum and energy in the transfer of 
loads and displacements [9]. In order to transfer aerodynamic 
pressure loads from the CFD grid points to the CSD grid 
points, the transpose of the displacement transformation 
matrix, which ensures a conservative transfer of energy 
between the two systems, is used. 

The prediction of complex dynamic aeroelastic 
phenomena such as flutter and limit cycle oscillations is 
sensitive to the conservation properties. An imbalance in 
the energy transfer between the fluid and structure systems 
causes instability and must be avoided [10]. 

The infinite plate spline method which is commonly 
used in aeroelasticity was firstly proposed by Harder and 
Desmarais [11]. This method is suitable for displacement 
and force transfer of wing-like components modeled by 
plate or shell elements. The infinite plane spline method 
solves the partial differential equation of equilibrium for an 
infinite plate with uniform thickness. Once the partial 
differential equation is solved, the deflection at other 
points, e.g. the aerodynamic points, on the plate can be 
determined [12]. 

Once the spline matrix is obtained, the displacements 
and the coordinates of the aerodynamic grid points can be 
computed from the displacements of the structural grid 
points with the following: 

 [ ] [ ][ ]a sSδ δ=  (4) 

 [ ] [ ] [ ]0q q δ= +  (5) 

where [ ]0q  is the original undeformed grid. The grid 
coordinate matrices are defined as: 
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The transformation of the forces from the aerodynamic 
grid to the structural grid can be performed by the transpose 
of [ ]S . Eq.(6) ensures the conservative transfer of energy 
between the flow and the structural systems [9]. 

 [ ] [ ] [ ]T
s aF S F=  (7) 

where the force matrix is defined as: 
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The aerodynamic grid, used in the CFD calculations, is 
three-dimensional. In order to perform the infinite spline 
method, it is required that all structural grid points and 
aerodynamic grid points are located on the same plane. 
Therefore, the aerodynamic grid points are projected to the 
spline plane on which the structural grid points lie, in order 
to create the spline matrix. For the infinite spline method, 
two or more than two structural grid points cannot be 
located at the same x and y location. It is also important that 
for a given set of normal displacements at the structural 
grid points, the infinite spline method gives the 
displacements at the aerodynamic points only in the normal 
direction of the spline plane [12]. 

Structural Modal Approach  
An aeroelastic simulation consisting of the non-linear 

CFD analysis coupled to a dynamic structural model is 
performed in order to investigate the structural deformation 
under an unsteady aerodynamic loading. This method 
allows a time-accurate non-linear analysis of dynamic 
behavior, leading to a much more accurate investigation of 
flutter [13]. The majority of such methods rely on the 
prediction of a structural response by the summation of a 
limited number of modes derived from the modal analysis 
using a commercial finite element solver. 

The governing equation of motion of a structure can be 
written as: 

 [ ] [ ] [ ] { }
2

2 ( )d w dwM C K w F tdtdt
+ + =  (9) 
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where N is the total number of the structural node. iw  and 
iF  are expressed as: 

 ( )i ix iy izw w w w=  (11) 

 ( )i ix iy izF F F F=  (12) 

The displacement and force vectors at the node point i 

have three components in the 3-D space. Using the modal 
analysis, the dependent variables are expanded in terms of 
the natural free vibration modes as: 

 ( ){ } ( ) ( ){ }
1

, , , , ,
N

i i
i

w x y z t q t x y zϕ
=

=∑  (13) 

where ( )iq t  and ( ){ }, ,i x y zϕ  are the generalized 
displacement vector and the mode shape matrix, 
respectively. The mode shape matrices are obtained by 
solving the eigenvalues of the free vibration problem. The 
modal decomposition of the structure motion is expressed 
as: 

 K Mϕ ϕ= Λ  (14) 

or 

 j j jK Mϕ λ ϕ=  (15) 

A finite element structural solver may be used to solve 
eq.(15) and to obtain the mode shapes. The modal matrix 
and the eigenvalue matrix Λ  is expressed as: 

 [ ]1 3,..., ,...,i Nϕ ϕ ϕ ϕ=  (16) 

 [ ]1 3,..., ,...,i Ndiag λ λ λΛ =  (17) 

The j-th eigenvalue can be defined by the natural frequency 
(ω ) as: 
 2

j jλ ω=  (18) 

The mode shape matrix is normalized with respect to the 
mass matrix and substituting eq.(18) into eq.(15)(and then 
multiplying by Tϕ ) yields: 

[ ] [ ] Qqqq =++ ωξ  (19) 

where: 

 [ ] [ ]T Cξ ϕ ϕ=  (20) 

 [ ] [ ]T Kω ϕ ϕ=  (21) 

 [ ]TQ Fϕ=  (22) 

the [ ]ω  and [ ]ξ  matrices are diagonal and their terms are 

iω  and 2 i iξ ω , respectively. Q  is the generalized unsteady 
aerodynamic forces. The coupled system of equation can be 
rewritten as:  

 2i i i i i i iq q q Qξ ω ω+ + = ,   i=1,2,...,N (23) 

where iξ  and iω  are the modal damping and the natural 
frequency for the ith mode, respectively. In this initial value 
problem, the Newmark algorithm [5] is used to solve 
eq.(23) for , 1i nq +  with the following set of equations, 
assuming a linear acceleration and no structural damping: 
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 { } { } { } { }( )1 12n n n n
tq q q q+ +

Δ= + +  (25) 

 { } { } { } { } { }( )
2

1 126n n n n n
tq q t q q q+ +

Δ= + Δ +  (26) 

where  n is the time step. 

CFD Modeling and Simulation 
The computational grids for the CFD simulations were 

generated by using GAMBIT commercial programs. The 
analyses were done with an unstructured commercial CFD 
solver FLUENT. The developed method is applied to solve 
the dynamic aeroelastic characteristics of the AGARD 
Wing 445.6, which is a well known test case for aeroelastic 
problems. Wind tunnel experiments have been conducted 
on the AGARD Wing 445.6 in the Langley Transonic 
Dynamics Tunnel in order to predict the dynamic response 
characteristics and the flutter boundary [7]. The AGARD 
445.6 Wing has a taper ratio of 0.66, an aspect ratio of 1.65 
and a wing swept of 45° at the quarter chord. It has the root 
and tip chords of 0.558m and 0.368m, and a semi span of 
0.762m. The airfoil section in the stream--wise direction is 
a NACA 65A004 airfoil, which is a symmetric airfoil with 
a maximum thickness of 4 % of the local chord.  The wing 
planform is shown in Fig.3. 

 

Figure 3. AGARD Wing 445.6 Planform 

The dimensions of the computational domain and the 
defined boundary conditions for the AGARD Wing 445.6 
are shown in Fig.4. The aerodynamic surface is defined as 
wall boundary conditions. The flow conditions such as 
Mach number, operating pressure, temperature and angle of 
attack are defined in the far-field boundary condition. In 
this study, the pressure-velocity coupling algorithm of 
PISO is applied with the second order upwinding scheme 
for density, momentum and energy equations. 

 

Figure 4. Dimensions of the CFD Domain 
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The pressure-based method linearizes the governing 
equations and solves the flow variables implicitly.  

The optimum number of the surface triangular elements 
and the volume tetrahedral elements which are determined 
by the grid sensitivity analyses are shown in Table 2. The 
flow solution calculated with this grid is compared with the 
numerical results conducted by Cai [4], Lee and Batina [3].  

 
Figure 5. Computational Fluid Domain of the AGARD Wing 445.6  

Table 2. Number of Surface Triangular and Volume Tetrahedral Elements 

Number of Surface Triangular Elements 3,798 
Number of Tetrahedral Elements  158,161 

The pressure coefficient distribution over the AGARD 
Wing 445.6 is compared with the study of Cai [4]. Cai 
conducted a static aeroelastic analysis of the AGARD Wing 
445.6 at the flow conditions M=0.85 and α=5°. The pressure 
coefficient distributions over the wing at % 34 span-wise 
locations for this flow condition are shown in Fig.7.  

 

Figure 6. Pressure Contours over the AGARD Wing 445.6  

The pressure coefficient distribution over the AGARD 
Wing 445.6 is compared with the study of Lee and Batina [3]. 
Lee and Batina conducted a dynamic aeroelastic analysis of 
the AGARD Wing 445.6 at the flow conditions M=1.141 and 
α=0°. The pressure coefficient distributions over the wing at 
26% span-wise location are shown in Fig.8.  

The results appear to agree well except for the leading 
edge. This difference may be attributed to the meshing 
technique. Cai [4] uses the O-Type structured grid, Lee and 
Batina [3] use the C-H type of grid which captures the 
leading edge radius accurately and gives a better resolution 
of the leading edge radius as compared to the present study. 



 BAŞKUT,E., AKGÜL,A.: DEVELOPMENT OF A CLOSELY COUPLED PROCEDURE FOR DYNAMIC AEROELASTIC ANALYSES 35 

In the present work, the unstructured grid and a limited 
number of triangular meshes are used [15]. 
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Figure 7. Comparison of Cp Distribution at %34 Semispan (M=0.85 α=5o) 
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Figure 8. Comparison of Cp Distribution at %26 Semispan (M=1.141 
α=0o) 

CSD Modeling and Simulation 
In this part, the details of the finite element analyses and 

the results of the modal analyses are given for the AGARD 
Wing 445.6. The finite element mesh for CSD analyses 
were generated by using the PATRAN commercial 
program. The analyses were done with a finite element 
structural solver, MSC/NASTRAN. The modal frequencies 
are compared with experimental data [7] in order to validate 
the structural finite element model used in the calculations 
in the following sections. In addition to the calculated 
modal frequencies, the mode shapes of the structure are 
also compared with the experimental study [7].  

A weakened AGARD Wing 445.6 is modeled with the 
plate elements as a single layer orthotropic material the 
property of which is given in Table 3.  

Table 3. Mechanical Properties for the Weakened AGARD Wing 445.6 

Material Property Value [Gpa] 
E1 3.1511 Gpa 
E2 0.4162 Gpa 
G 0.4392 Gpa 
ρ 381.98 kg/m3 
ν 0.31 

The rotations and translations of the nodes at the root 
section of the finite element model are fixed. Other nodes 
are allowed to translate in the out-of-plane direction. The 
CQUAD4 type of element is used for the finite element 
discretization. The grid sensitivity analysis for the structural 
grids is performed and the numbers of nodes for the span-
wise and chord-wise directions for each finite element 
model are shown in Table 4. 
Table 4. Number of Elements Used in the Finite Element Model  

Number of Nodes for the Span-wise Direction 12 
Number of Nodes for the Chord-wise Direction  12 

Total number of Structured Element 121 

The modal analysis of the weakened AGARD Wing 
445.6 is performed using MSC/NASTRAN. The first four 
natural frequencies are given in Table 5 along with the 
experimental results [7] and those computed by Kolonay 
[8], Lee and Batina [3].  

Table 5. Calculated Natural Frequencies for the Weakened AGARD Wing 
445.6 [Hz] 

 Mode 1 Mode 2 Mode 3 Mode 4 
Present Study 9.41 39.46 48.96 94.35 

Exp. (Yates) [7] 9.60 38.10 50.70 98.50 
Kolonay [8] 9.63 37.12 50.50 89.94 

Lee and Batina [3] 9.60 38.17 48.35 91.54 

The mode shapes obtained from the finite element 
analysis of the weakened wing are scaled up so that the 
maximum and minimum values are the same as those in the 
experiments. The out-of-plane deflection contours are 
compared in Fig.10. It can be concluded that the results 
obtained from the finite element model appear to agree well 
with the experimental results. 

 

 

 

 
Figure 10. Comparison of the Calculated Mode Shapes of the AGARD 
Wing 445.6 (left) with the Experiments (right) 
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Time Interval Size 
In order to determine the optimum time interval size, it is 

reduced until the aeroelastic simulation does not change by 
further decrease in the interval size. To achieve this, four 
different time interval sizes are examined. As it can be seen 
in Fig.9, the solution is affected by decreasing the time 
interval size up to the value of 0.001. A further decrease in 
the time interval size does not change the solution 
significantly. In this test case, the wing motion is mostly 
dominated by the first bending and the first torsion modes, 
which have natural frequencies of 9.6 Hz and 38.10 Hz, 
respectively [7]. The total time of a single period for these 
modes shall be 0.104 s and 0.025 s. These frequencies may 
change due to the unsteady aerodynamic forces. As the first 
estimate, choosing a time interval size of Δt = 0.001 will 
resolve these modes at 104 and 25 time steps, respectively. 
The time increment in the present study is the same in both 
aerodynamic and structural analyses. 
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Figure 9. Examination of Time Interval Size 

Results 
The time histories of the first four generalized 

coordinates at FSI=0.4527, 0.4541, and 0.4557, M=0.499 
are shown in Figs.11-13. The amplitude of the motion 
reduces at FSI=0.4527, when the flutter speed index is 
lower than the flutter critical speed. The amplitude of the 
motion is constant at FSI=0.4541, when the flutter speed 
index is equal to the flutter critical speed. The amplitude of 
the motion is growing at FSI=0.4557. It can be concluded 
that at M=0.499, the AGARD wing 445.6 has the flutter 
conditions with FSI=0.4541. 

In order to determine the flutter boundary, damping 
estimations are collected for a large set of test points at 
M=0.499 for varying dynamic pressure values. For these test 
points, the estimated damping coefficients and the time 
histories of the first four generalized coordinates are given in 
Fig.14. The critical flutter speed can be determined from the 
flight conditions where damping coefficient is zero. At this 
Mach number, the static pressure is 36230.5 Pa, and the 
corresponding flutter speed is calculated as 171.84 m/s, which 
is very close to the experimental value of 172.46 m/s. 

The results of the flutter analysis of the AGARD Wing 
445.6 are compared with the experimental data and the 
results of the previous studies in Figs. 15-16 and 17, 
respectively. It can be concluded that the results of the 
flutter boundary and the flutter frequency of the AGARD 
Wing 445.6 for the Mach numbers ranging from 0.499 to 

1.141 are in good agreement with the experimental results 
except for the region of the transonic dip where lower 
flutter speed is predicted. This can be attributed to the 
inviscid flow assumption. Including the viscous effects may 
improve the prediction of the FSI at this regime. 
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Figure 11. Time history of the first four generalized coordinates 
(M=0.499, FSI=0.4527) 
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Figure 12. Time history of the first four generalized coordinates 
(M=0.499, FSI=0.4541) 
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Figure 13. Time history of the first four generalized coordinates 
(M=0.499, FSI=0.4557) 
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Figure 14. Flutter boundary test points, estimated damping coefficients 
and generalized displacements  

Mach

Fl
ut

te
rS

pe
ed

In
de

x

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Present Study
Experiment [1]

 

Figure 15. Comparison of the computed flutter speed index values and the 
experimental data  
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Figure 16. Comparison of the computed flutter frequency ratio with the 
experimental data of the AGARD wing 445.6 
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Figure 17. Comparison of the computed fsi values, the numerical data, and 
the experimental data of the AGARD wing 445.6 

Conclusion 
In this paper, a closely coupled approach is developed to 

solve the dynamic aeroelastic problems. A numerical 
method is developed to predict the aeroelastic response and 
the flutter boundary. The modal approach is used for a 
structural response and the Newmark algorithm is used for 
time marching. The mode shapes and corresponding natural 
frequencies are calculated by using MSC/NASTRAN. The 
unsteady flow field is solved by using a commercial CFD 
solver, FLUENT, in a parallel computing environment. 

Mesh deformation techniques are investigated as a part 
of this research. In this study, the mesh deformation 
methods based on the FLUENT mesh deformation 
algorithm are used.  

Predictions of complex dynamic aeroelastic phenomena 
such as flutter are sensitive to the energy conservation at 
the fluid-structure interface. An imbalance in energy 
transfer between the CFD and the CSD systems causes 
instabilities and an incorrect prediction of the aeroelastic 
behavior. Spline methods conserve the total force and 
moments on each system and are applicable to the dynamic 
aeroelastic problems.  

The dynamic aeroelastic problem of the AGARD Wing 
445.6 is solved with the developed procedure and the 
obtained results are compared with the numerical and 
experimental data available in the literature.  

For the dynamic aeroelastic analysis, the FSI is 
determined for the AGARD Wing 445.6 at different Mach 
numbers ranging from 0.499 to 1.141. The flutter points are 
determined by running a solution for a significantly long 
period of time to arrive at a neutrally stable solution. 
Damping estimations are collected for a large set of test 
points at constant Mach numbers for varying dynamic 
pressure values. Then, the flutter boundary is determined  
yielding the zero damping ratio, ζ=0, where the amplitude 
of oscillations of the generalized displacement is neither 
decaying nor growing. The results of the present study are 
in good agreement with the experimental results except for 
the region of the transonic dip. Including the viscous effects 
may improve the prediction of the FSI at the region of the 
transonic dip. 
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Razvoj spregnute procedure za dinamičku aeroelastičnu analizu 
U radu je je razvijen numerički metod za analizu aeroelastičnog odgovora i flatera elastičnih struktura. Spregnuti 
pristup je korišćen za vremensku analizu. Solver za opisivanje strujanja bazira na Ojlerovim jednačinama sa 
diskretizacijom primenom konačnih zapremina. Modalna analiza je korišćena sa strukturalni odgovor u sprezi sa 
Newmark-ovim algoritmom za vremenski odgovor. Da bi smo menjali podatke pomeranja i pritiska između strukturne i 
aerodinamičke mreže korišćen je beskonačni metod splajna. Mreža CFD je pomerana na principu opruge i metodi 
lokalne reformulacije mreže kakva je korisniku na raspolaganju u okviru softverskog paketa FLUENT da bi adaptirao 
novi oblik aerodinamičke površine u svakoj aeroelastičnoj iteraciji. Krilo tipa AGARD 445.6 je modelirano i rešeno sa 
razvijenom procedurom a dobijeni rezultati su upoređeni sa raspoloživim numeričkim i eksperimentalnim rezultatima iz 
literature.  

Ključne reči: aeroelastičnost, dinamička aeroelastičnost, krilo, flater, metoda konačnih razlika, algoritam. 

Порядок разработки связанной методики для динамического 
аэроупругого анализа  

В настоящей работе разработан численный метод для анализа аэпоупругого ответа и трепета упругих 
конструкций. Связанный подход использован для временного анализа. Решатель для описания потока  
основывается на уравнениях Эйлера с конечным объёмом дискретизации. Модальный анализ был использован 
со структурными ответами в сочетании с алгоритмом Ньюмарка для временного отклика. Для того чтобы 
изменить данные движения и давления между структурными и аэродинамическими сетками используется 
бесконечный метод сплайн. Сеть CFD перемещается принципом пружины и метода местных источников и 
переработки в сторону такой сети доступной  пользователю в пакете программного обеспечения FLUENT, 
адаптированного к новой форме аэродинамических поверхностей на каждой аэроупругой итерации. Крыло типа 
AGARD 445.6 смоделировано и решено с разработанной методикой и полученные результаты были 
сопоставлены с имеющимися расчётными и экспериментальными результатами  из литературы.  

Ключевые слова: аэроупругость, динамическая аэроупругость, трепетание крыльев, метод конечных разниц, 
алгоритм. 
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Développement de la procédure couplée pour l’analyse dynamique de 
l’élasticité aérienne  

Dans ce papier on a développé une méthode numérique pour l’analyse de la réponse élastique aérienne et des battements 
des structures élastiques. L’approche couplée a été utilisée pour l’analyse temporelle. Le solveur pour la description des 
courants est basé sur les équations de Euler avec la discrétisation par l’emploi des volumes finies. L’analyse modale a été 
utilisée pour la réponse structurale couplée avec l’algorithme de Newmark  pour la réponse temporelle. Dans le but de 
changer les données de déplacement et de la pression entre le réseau structurale et celui aérodynamique on a utilisé la 
méthode infinie spline. Le réseau CFD a été déplacé  sur le principe du ressort et de la méthode de formulation locale du 
réseau dont l’utilisateur dispose dans le cadre du progiciel FLUENT pour adapter une nouvelle forme de la surface 
aérodynamique dans chaque itération aérienne élastique. L’aile AGARD 445.6 a été modelée et résolue par la procédure 
développée et les résultats obtenus ont été comparés avec les résultats numériques et expérimentaux disponibles dans la 
littérature.  

Mots clés: élasticité aérienne, élasticité aérienne dynamique,aile, battement, méthode des différences finies, algorithme.  

 




