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Fractional Order Control of a Robot System Driven by DC Motors 

Mihailo Lazarević1) 

This paper presents the new algorithms of  PID control based on fractional calculus (FC) and an optimal procedure in 
the position control of a 3 DOF robotic system driven by DC motors. The objective of this work is to find out the optimal 
settings for a fractional PI Dα β controller in order to fulfill the proposed design specifications for the closed-loop system, 
taking advantage of the fractional orders, α  and β . The effectiveness of the suggested optimal fractional PID control is 
demonstrated with a suitable robot with three degrees of freedom as an illustrative example. In addition, this paper 
proposes a robust fractional-order sliding mode control of a 3-DOF robot system driven by DC motors. Primarily, a 
conventional sliding mode controller based on a αPD  sliding surface is designed. Numerical simulations have been 
carried out to show the proposed control system's robustness properties as well as the significance of the proposed control 
which resulted in reducing output oscillations (chattering-free) of the given robot. The simulations also include a 
comparison of the fractional-order αPD  sliding mode controller with the standard PD sliding-mode controller. 

Key words: robots, DC motor, robust control, control algorithm, PID algorithm, fractional order control, vibration 
setting. 
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Introduction 
RACTIONAL calculus (FC) is a mathematical topic 
with more than 300 years old history, but its application 

to physics and engineering has been reported only in the 
recent years. The fractional integro-differential operators 
are a generalization of integration and derivation to non-
integer order (fractional) operators. There is an increasing 
number of studies related to the application of fractional 
controllers in many areas of science and engineering, where 
especially fractional-order systems are of interest for both 
modeling and controller design purposes. 

In the classical control theory, state feedback and output 
feedback are two important techniques in the system control. 
Due to its functional simplicity and performance 
robustness, the PID controller has been widely used in the 
process industries. The design and the tuning of PID 
controllers have been a large research area ever since 
Ziegler and Nichols presented their methods in 1942 [1]. 
Specifications, stability, design, applications and 
performance of the PID controller have been widely treated 
since then [2,3]. On the other hand, fractional calculus has 
the potential to accomplish what integer-order calculus 
cannot. Moreover, there is an increasing  number of studies 
related to the application of fractional controllers in many 
areas of science and engineering, where especially 
fractional-order systems are of interest for both modeling 
and controller design purposes. It has been found that in 
interdisciplinary fields, many systems can be described by 
the fractional differential equations i.e. in the fields of 
continuous-time modeling, fractional derivatives have 
proved useful in linear viscoelasticity, acoustics, rheology, 
polymeric chemistry, biophysics robotics, control theory of 
dynamical systems, electrical engineering, bioengineering, 
etc.[4-6].  

However,  in recent years,  the emergence of effective  

 
methods of solving differentiation and integration of 
noninteger order equations makes fractional-order systems 
more and more attractive for the systems control 
community. The fractional PDα controller [7], the fractional 
PIα controller [8], the fractional controller PIβDα [6], the 
CRONE controllers [9,10], and the fractional lead-lag 
compensator [11] are some of the well-known fractional 
order controllers. In this paper, we suggest and obtain new 
algorithms of PID control based on fractional calculus (FC) 
in the control of a robotic system driven by DC motors. The 
objective of this work is to find out suitable settings for a 
fractional PIαDβ controller in order to achieve a better 
transient response as well as to fulfill proposed design 
specifications for the closed-loop system, taking advantage 
of the fractional orders, α and β. 

In addition, a sliding-mode controller (SMC) is a 
powerful tool to robustly control incompletely modeled or 
uncertain systems [12] which has many attractive features 
such as fast response, good transient response and 
asymptotic stability. The conventional SMC law guarantees 
robustness of the sliding manifold if the model uncertainties 
are bounded with known bounds and comply with the 
matching condition. Once the system states hit the sliding 
surface, they stay there, and the equivalent system 
dynamics is predefined with a reduced order. However, an 
SMC has some disadvantages related to well-known 
chattering in the system. The main causes of chattering due 
to the discontinuous control action are neglected high order 
control plant dynamics, actuator dynamics, sensor noise, 
and discrete-time implementation in computer controlled 
applications. Chattering is undesirable in the control of 
mechanical systems, since it causes excessive control action 
leading to increased wear on the actuators and to the 
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excitation of the high order nonmodeled dynamics. 
Consequently, the demanded performance cannot be 
achieved, or even worse – the mechanical parts of the servo 
system can be destroyed. Therefore, chattering must be 
eliminated from the SMC system. Since chattering is 
caused by the discontinuous control, there exist several 
techniques to reduce a high switching amplitude [13]. 
Recently, a fractional-order sliding mode control technique 
by Monje et al. [14] has been successfully applied for a 
robot manipulator as well as in [15], or in [16] the results of 
combining the sliding mode control and the fractional order 
derivative are considered in two different approaches. In 
this paper, we suggest and obtain a chattering-free 
fractional PDα sliding-mode controller in the control of a 
robotic system driven by DC motors. In that way, one has 
used a fractional-order sliding surface to design a 
fractional-order sliding mode controller for a chattering-
free tracking robot system. 

Preliminaries on the fractional calculus  
The fractional integro-differential operators-(fractional 

calculus) are a generalization of integration and derivation 
to non-integer order (fractional) operators. The idea of FC 
has been known since the development of the regular 
calculus, with the first reference probably being associated 
with Leibniz and Marquis de l’Hopital in 1695. Both 
Leibniz and L`Hospital, aware of ordinary calculus, raised 
the question of a noninteger differentiation (order 1/ 2n = ) 
for simple functions. It had always attracted the interest of 
many famous ancient mathematicians, including L'Hospital, 
Leibniz, Liouville, Riemann, Grünward, and Letnikov [4-
6]. In that way, the theory of fractional-order derivative was 
developed mainly in the 19th century. As a foundation of 
fractional geometry and fractional dynamics, the theory of 
FO, in particular, the theory of FC and FDEs  and  research 
of application  have  been  developed rapidly in the world 
since 19th century. The modern epoch started in 1974 when 
a consistent formalism of the fractional calculus was 
developed by Oldham and Spanier[4], and later Podlubny 
[6]. The applications of FC are very wide nowadays, in 
rheology, viscoelasticity, acoustics, optics, chemical 
physics, robotics, control theory of dynamical systems, 
electrical engineering, bioengineering, etc. [4-12]. In fact, 
real world processes generally or most likely are fractional 
order systems. The main reason for the success of FC 
applications is that these new fractional-order models are 
more accurate than integer-order models, i.e. there are more 
degrees of freedom in the fractional order model. 
Furthermore, fractional derivatives provide an excellent 
instrument for the description of memory and hereditary 
properties of various materials and processes due to the 
existence of a “memory” term in a model. This memory 
term ensures the history and its impact on the present and 
future. A typical example of a non-integer (fractional) order 
system is the voltage-current relation of a semi-infinite 
lossy transmission line or diffusion of the heat through a 
semi-infinite solid, where heat flow is equal to the half-
derivative of the temperature [4,6].  

The modern epoch started in 1974 when a consistent 
formalism of the fractional calculus was developed by 
Oldham and Spanier [4]. The theory of FC is a well-adapted 
tool to the modeling of many physical phenomena, allowing 
the description to take into account the same peculiarities 
that classical integer-order models simply neglect. The 
main reason for the success of FC applications is that these 

new fractional-order models are more accurate than integer-
order models and fractional derivatives provide an excellent 
instrument for the description of the memory and hereditary 
properties of various materials and processes due to the 
existence of a ”memory” term in a model. There are today 
many different forms of fractional integral operators, 
ranging from divided-difference types to infinite-sum types, 
Riemann-Liouville fractional derivative, Grunwald - 
Letnikov fractional derivative, Caputo’s, Weyl’s and 
Erdely-Kober left and right fractional derivatives, etc, 
Kilbas et al.[48]. The three most frequently used definitions 
for the general fractional differintegral are: the Grunwald-
Letnikov (GL) definition, the Riemann-Liouville (RL) and 
the Caputo definitions, [4-6]. The first one is the GL 
definition i.e Grunwald-[17] and Letnikov [18] developed 
an approach to fractional differentiation based on the 
definition 
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which is the left Grunwald-Letnikov (GL) derivative as a 
limit of a fractional order backward difference. Similarly, 
we have the right one as 
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As indicated above, the previous definition of GL is 
valid for α > 0 (fractional derivative) and for α < 0 
(fractional integral) and, commonly, these two notions are 
grouped into one single operator called differintegral. The 
GL derivative and RL derivative are equivalent if the 
functions they act on are sufficiently smooth. For the 
generalized binomial coefficients calculation for Rα ∈  and 

0k ∈` we can use the relation between Euler’s Gamma 
function and factorial, defined as 

 ( )
( ) ( )

( )
( ) ( ) ( )0

1 ... 1!
!! !

1
, 1

1 1

j
j jj j

j j
α

α α αα α
α

α
α

− − +⎛ ⎞ = = =⎜ ⎟ −⎝ ⎠
Γ +

= =
Γ + Γ − +

 (3) 

If we consider / ,n t a h= −  where a  is a real constant 
which expresses a limit value, one may write 
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where [x] means the integer part of x, a and t are the bounds 
of the operation for , ( )GL a tD f tα . For the numerical 
calculation of fractional-order derivatives we can use the 
following relation (5) derived from the GL definition (4). 
This approach is based on the fact that for a wide class of 
functions, three definitions - GL, RL, and Caputo’s - are 
equivalent. The relation to the explicit numerical 
approximation of the α -th derivative at the points kh, 
(k=1,2,...) has the following form, [6] 
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where L is the "memory length", h is the step size of the 
calculation, 
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[ ]x  is the integer part of x  and ( )
jb α±  is the binomial 

coefficient given by 
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For the expression of the Riemann-Liouville definition, 
we will consider the Riemann-Liouville n-fold integral for 

, 0n N n∈ >  defined as 
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The fractional Riemann-Liouville integral of the order 
α  for the function ( )f t  for ,a Rα ∈  can be expressed as 
follows 
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Here, (.)Γ  is the well known Euler's gamma function 
which is defined by the so-called Euler integral of the 
second kind: 
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For this function the reduction formula holds, for 
{ }\ 0, 1, 2, 3,...z∈ − − −^ : 
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The second important property of the gamma function is 
that it has simple poles at the points , ( 0,1, 2,...)z n n= − = . 
Another important relationship for the gamma function is 
the Legendre formula: 
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Taking 1/ 2z n= +  in the previous relation, one can obtain 
a set of particular values of the gamma function: 
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For the case of 0 1, 0tα< < > , and ( )f t  being a a 
causal function of t , the fractional integral is presented as 
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Moreover, the left Riemann-Liouville fractional integral 
and the right Riemann-Liouville fractional integral are 
defined respectively as 
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where 0, 1n nα α> − < < . Furthermore, the left Riemann-
Liouville  fractional derivative is defined as  
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and the right Riemann-Liouville fractional derivative is 
defined as  
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where 1n nα− ≤ < , a, b are the terminal points of the 
interval [ ],a b , which can also be ,−∞ ∞ . Also, for the RL 
derivative, we have 
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The RL fractional derivative of a constant C  takes the 
form  
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However, the definitions of the fractional differentiation of 
Riemann-Liouville type create a conflict between the well-
established and polished mathematical theory and proper 
needs, such as the initial problem of the fractional 
differential equation, and the nonzero problem related to the 
Riemann-Liouville derivative of a constant.  

A certain solution to this conflict was proposed by 
Caputo first in his paper [19]. The Caputo fractional 
derivatives are defined as follows. The left Caputo 
fractional derivative is  

 ( ) ( ) ( ) ( ) ( )1
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and the right Caputo fractional derivative is  
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where ( ) ( ) ( ) /n n nf d f dτ τ τ=  and 1n nα +− ≤ < ∈] . By 
definition, the Caputo fractional derivative of a constant is 
zero. The previous expressions show that the fractional-
order operators are global operators having a memory of all 
past events, making them adequate for modeling hereditary 
and memory effects in most materials and systems. 
Moreover, for the Caputo derivative, we have   
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where obviously, RL aDα , ( ),n∈ −∞ +∞  varies continuously 
with n , but the Caputo derivative cannot do this. 
Obviously, the Caputo derivative is stricter than the 
Riemann-Liouville derivative; one reason is that the n-th 
order derivative is required to exist. On the other hand, the 
initial conditions of fractional differential equations with 
the Caputo derivative have a clear physical meaning and the 
Caputo derivative is extensively used in real applications. 
The Riemann-Liouville fractional derivatives and the 
Caputo fractional derivatives are connected with each other 
by the following relations: 
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The Caputo and Riemann-Liouville formulation coincide 
when the initial conditions are zero[4-6], [20]. Besides, the RL 
derivative is meaningful under weaker smoothness require-
ments. In addition, the RL derivative can be presented as: 
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and the Caputo derivative  
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where , nn Z D+∈  is the classical n -order derivative. For 
convenience, the Laplace domain is usually used to 
describe the fractional integro-differential operation for 
solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 
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where for 0α <  (i.e., for the case of a fractional integral) 
the sum in the right-hand side must be omitted). Also, the 
Laplace transform of the Caputo fractional derivative is:  
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which implies that all the initial values of the considered 
equation are presented by a set of only classical integer-
order derivatives. Besides that, a geometric and physical 
interpretation of fractional integration and fractional 
differentiation can be found in Podlubny’s work [21].   

Mathematical model of a robotic system with DC 
motors 

A robotic system is considered as an open linkage 
consisting of 1n +  rigid bodies [ ]iV  interconnected by n  
one-degree-of–freedom joints forming kinematical pairs of 
the fifth class, Fig.1, where the robotic system possesses n  
degrees of freedom. Here, the Rodriguez` method [22], is 
proposed for modeling the kinematics and dynamics of the 
robotic system. The configuration of the robot mechanical 
model can be defined by the vector of the joint (internal) 
generalized coordinates q  of the dimension ,n  

( )q =(q1,q2,…,qn)T, with the relative angles of rotation (in 
case of revolute joints) and relative displacements (in case 
of prismatic joints). The geometry of the system has been 
defined by the unit vectors , 1,2,..., ,..,ie i j n=

G  where the 
unit vectors ieG  describe the axis of rotation (translation) of 
the i -th segment with respect to the previous segment as 
well as the position vectors iρ

G
 and iiρ

G
  usually expressed 

in local coordinate systems connected with the bodies 
( ) ( )( ) ( ),i i

i iiρ ρ
G G

. The parameters , 1i iiξ ξ ξ= −  denote the 

parameters for recognizing the joints , 1i iiξ ξ ξ= − ,  
1iξ = -prismatic, 0-revolute. For the entire determination of 

this mechanical system, it is necessary to specify the 
masses im  and the tensors of inertia CiJ  expressed in local 
coordinate systems. In order that the kinematics of the 
robotic system may be described, the points ,i iO O′  are 
noticed somewhere at the axis of the corresponding joint 
( )i  such that they coincide in the reference configuration. 
The point iO  is immobile with respect to the ( 1i − )-th 
segment and iO′  does so with respect to the i − th one; 
obviously, for a revolute joint ( )i , the points iO  and iO′  
will coincide all the time during robotic motion. For 
example, the position vector of the end-effector Hr

G  can be 
written as a multiplication of the matrices of transformation 
[ ]1,j jA − , the vectors iiρ

G
 and i

i iq eξ
G ,and it is expressed by  
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where the appropriate Rodriguez’ matrices of 
transformation are  
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It is also shown [23], regardless of the chosen theoretical 
approach, that we could start from different theoretical 
aspects (e.g. general theorems of dynamic, d`Alembert`s 
principle, Langrange`s equation of second kind, Appell`s 
equations, etc.) and get the equations of motion of the 
robotic system, which can be expressed in the identical 
covariant form as follows 
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where the coefficients aαβ  are the covariant coordinates of 

the basic metric tensor [ ] n na Rαβ
×∈  and ,αβ γΓ  

, , 1, 2,...,nα β γ =  presents Christoffel symbols of the first 
kind. The generalized forces iQ  can be presented in the 

following expression (35) where , , , ,gc w a
i i ii iQ Q Q Q Qβ  

denote the generalized spring forces, gravitational forces, 
viscous forces, semi-dry friction and generalized control 
forces, respectively. 

 , ,...,gc w a
i i i ii iQ Q Q Q Q Q i 1,2 nβ= + + + + =  (35) 

 
Figure 1. Open-chain structure of a robotic multi-body system  

Fig.2 shows the equivalent circuit of a DC motor 
represented. 

 
Figure 2. The equivalent circuit of a DC motor 

The next equation describes the given circuit 
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where iR , iL , ii  and viu  are resistance, inductivity, 
electrical current and voltage, respectively. The 
electromotive force is ( ) /i e mems t k dq dt=  where 

ek const=  and ( )mq t  is the generalized coordinate of a DC 
motor. If there is a reductor with a degree of reduction iN  
then ( ) ( ), 1, 2,3mi i iq t N q t i= =  . It can be assumed that  
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where mk const=  is the torque constant. If the equation of 
a robotic system is combined with (37), the next equation 
can be written 
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this in a combination with (10) becomes (39)  
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In the state space, equation (39) is given with 

  
1

1

0
0 ( )

) ( )) ( ( ))

1 2

2 3 v
•-1

3 1

x (t) x (t)
x (t) x (t) u t
x ( t A (x (t))n(x t A x t•−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ = +
⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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�
�

 (40) 

where  
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R NK A(q)q+C(q,q + K Nq
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−
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+
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 (41) 

and 

 3( ) [ )] [ ( )]T n
1 2 3x t x (t),x (t),x (t q(t),q(t),q t R= = ∈� ��  (42) 

Main results 

Optimal conventional and non-integer order PID control 
algorithm 

Here, a 3 DOF robotic system driven by 3 DC motors is 
used, Fig.3. 

 

Figure 3. A 3 DOF robotic system 
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New algorithms of PID control are proposed, based on 
fractional calculus (FC) in the control of a robotic system 
driven by DC motors. Here, we introduce the next 
optimality criterion 

 ( )J e t dt= ∫  (43) 

where is ( ) ( ) ( )ze t q t q t= − . The conventional PID control 
algorithm is  

 ( ) ( ) ( ) ( )p d i
du t k e t k e t k e t dtdt= + + ∫  (44) 

while the fractional PID control algorithm is given by 

 ( ) ( ) [ ( )] [ ( )]; , [0,1]D I
p d i D Iu t k e t k D e t k D e tα α α α−= + + ∈  (45) 

The integrator term is sα , i.e. on a semi-logarithmic 
plane, there is a line having a slope −20αdΒ. /dec. Clearly, 
by selecting 1α β= = , a classical PID controller can be 
recovered. The selections of 1, 0, 0, 1,α β α β= = = =  
respectively, correspond to conventional PI & PD 
controllers. All these classical types of PID controllers are 
special cases of the fractional PI Dα β controller. It can be 
expected that the controller PI Dα β  may enhance the 
systems control performance. 

In order to determine the optimal parameters, a 
simulation of a given robotic system with three degrees of 
freedom driven by DC motors was made in Simulink-
Matlab environment [24]. For the system control, voltage is 
used where parameters are set for each DC motor. The idea 
was to determine the optimal parameters for the 
conventional PID control algorithm (its gains) first and then 
to use these optimal parameters (gains) as known 
parameters for the fractional PID control algorithm in order 
to determine the optimal exponents of differentiation and 
integration. For the calculation of fractional derivatives and 
integrals the Crone approximation of the second order was 
used 
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Simulation results for the position control 
A desired value of the vector of generalized coordinate 

was ( )1 1 1dq = . The optimal parameters for the 
conventional PID and optimality criterion in this case had 
the following values (the results are given for each DC 
motor): 

 1 1 1 150, 8, 4, 0.4672,p d ik k k J= = = =  (47) 

 2 2 2 250, 12, 4, 0.8591p d ik k k J= = = =   

 3 3 3 350, 4, 8, 0.3602p d ik k k J= = = =   

The optimal parameters for the fractional PID and 
optimality criterion had the following values: 

  1 1 1 1 1 150, 8, 4, 1, 0.2, 0.3836p d i d ik k k Jα α= = = = = =   

  2 2 2 2 2 250, 12, 4, 1, 0.2, 0.7401p d i d ik k k Jα α= = = = = =  (48) 

  3 3 3 3 3 350, 4, 8, 1, 0.8, 0.3555p d i d ik k k Jα α= = = = = =   

Figs.4-6 give the coordinate-time diagrams for the 
previous optimal parameters –position control. 

 

Figure 4. Optimal trajectory 1q  

 

Figure 5. Optimal trajectory 2q  

 

Figure 6. Optimal trajectory 3q  
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As it is expected, the controller PI Dα β  may enhance 
the systems control performance. It has been shown that 
using the fractional PID gives a better transient response  as 
well as a steady state error, and better tracking 
performances in the position control of a 3 DOF robotic 
system driven by DC motors. 

A chattering-free sliding mode controller design based on 
the fractional order PDα sliding surface 

Moreover, we suggested and obtained here a chattering-
free fractional PDα  sliding-mode controller in the control 
of a robotic system driven by DC motors. It is well-known 
that the sliding-mode control is used to obtain high-
performance robust control nonsensitive to disturbances 
and parameter variations. For a nonlinear MIMO system 
represented in a so-called normal form  

 ( ) ( )x f x G x u= +�  (49) 

one general sliding mode control law is, [25]  

 ( )[ ] ( )[ ] ( )[ ] ( )sgn-1 -1
du = - ΛG x Λ f x - x - ΛG x Q s�  (50) 

consisting of a continuous and discontinuous control part 
where switching surfaces [ ]1 2 ... T

ns s s s=  are defined as 

( )ds x x= Λ − , dx  being the vector of the desired states 
and the Q positive definite diagonal matrix. The elements 
of the matrix Λ are chosen so that the i-th component of the 
sliding hypersurface has the structure 

 ( )( )
( )

1
, 1,2,...,

ir

i i i di
ds λ x x i ndt

−
= + − =  (51)  

where ir  is the order of the i-th subsystem and 0iλ > . 
More generally, considering (14) as a nominal (known) 
plant dynamics, we can write 

 ( ) ( ) ( ) ( )x f x f x G x G x u⎡ ⎤= + + +⎣ ⎦
� ��  (52) 

where ( )f x�  and ( )G x�  represent uncertainties or unknown 
plant dynamics. Choosing, as it is common, the Lyapunov 
function candidate to be  

 1
2

TV s s=  (53) 

we have  

 ( ) ( ) ( )[ ] ( )sgn ds PQ s P I x f x f x= − + − Λ − + Λ�� �  (54) 

where ( )( ) 1:P G G G −= Λ + Λ� . Regardless whether 0G ≠�  

and/or 0f ≠� , with an appropriate choice of Q , we can 

obtain 0Ts s <�  for 0s > , and this result indicates that 

the error vector defined by the difference dx x−  is 

attracted by the subspace characterized by 0s =  and 
moves toward the origin according to what is prescribed by 

0s = , [25]. In most cases, this leads to good results but 
there are some disadvantages such as a chattering 
phenomenon. This problem could be overcome by 
approximating the sgn (.) function in the control law (50) 
with saturation(.) or tanh(.) function, but here we suggest 
one other solution. Instead of replacing the sgn(.) function, 

we suggested the application of the fractional sliding 
surface in order to decrease output signal oscillations. In 
this paper, it can be shown that, without a special tuning of 
Q  for the perturbed plant case, model uncertainties can be 
successfully compensated using just the fractional order 
sliding surface and the values of Q  suitable for the 
nominal plant. For a 3-DOF robotic system, a conventional 
sliding manifold is of the first order PD structure 

,  1, 2,3i i i is dx dt x iλ= + =� �
 where i i idx x x= −� . There were 

some examples of using the fractional PI and PID 
structures, [26] and now we propose a fractional PDα  
structure as follows:  

 ,  1, 2,3i i i is d x dt x iα α λ= + =� �  (55) 

Simulation results for the position control based on 
fractional PD α  sliding-mode control 

Simulation studies have been carried out to verify the 
effectiveness of the proposed fractional PDα  sliding-mode 
control. Some experimental simulations were undertaken 
for 0.7,0.8,0.9,0.95,0.99α = , and we have found that the 
best results are obtained with 0.95α = , (Fig.7). The 
transfer function sν  was realized by Crone’s 
approximation, [27] and the matrix [ ]5,5,5nomQ diag= as 

well as ( )5,2.5, 2.5 Tλ = . The parameters of a robot system 
and DC motors are set as: 

 1 2 36.2712 kg ,  5.5575  kg,  1.8970  kgm m m= = =  (56) 
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To verify the robustness of the proposed fractional 
sliding/mode control we have applied the corresponding  
parameters variation as follows:

  31 2

1 2 3
9.92%,  9.47%,  9.75%mm m

m m m
ΔΔ Δ= = =  (57) 

 5%,  10%,  10%,  20%ei mi ei ei

ei mi ei ei

K K K K
K K K K
Δ Δ Δ Δ= = = =   
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1 1 1

22 2

2 2 2
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yx z
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x y z

yx z

x y z
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J J J

JJ J
J J J

JJ J
J J J

ΔΔ Δ= =
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The simulation results are depicted in Figs.7 to 11, 
where the black lines ( ( )h t ) are the desired trajectories. 
Here, the simulation data are presented for the case 2i = , 

2 2,q s , (Fig-s.7-11). In particular, we present the 
comparison results for the second coordinate 2q  responses 

with the PD  and fractional PDα cases with all other 
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conditions being the same, for the nominal object, Fig.7 and 
the perturbed object, Fig.10. 
Nominal case: 
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Figure 7. Sliding surface s2- nominal case 
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Figure 8.  Step response ( )2q t  with PDα  surface 
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Figure 9. Stabilizing using the sliding mode control PD and the fractional 
PDα  - nominal case 

Perturbated case: 

 

Figure 10. Stabilizing using the sliding mode control PD and the 
fractional PDα -perturbed case  
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Figure 11  Sliding surface s2-perturbated case 

As it can be seen from the previous figures, the sliding 
mode control with the fractional sliding surface is more 
robust to parameter perturbations and, what is most 
important to emphasize, the output oscillations are almost 
completely attenuated and the overall quality of the 
transient response is much better. In that way, we obtain the 
chattering-free tracking of the given robot system.  

Conclusion 
In this paper, new algorithms of PID control based on 

fractional calculus (FC) are studied and presented. We 
introduced an optimal procedure in the position control of a 
3 DOF robotic system driven by DC motors as well as a 
robust fractional-order sliding mode control. As expected, 
the controller βαDPI  may enhance the systems control 
performance. It has been shown that using fractional PID 
gives a better transient response and a steady state error as 
well as better tracking performances in the position control 
of a 3 DOF robotic system driven by DC motors. The 
optimal parameters for the conventional PID control 
algorithm (its gains) are determined first and they are used 
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as initial, known parameters for the fractional PID control 
algorithm in order to determine the optimal fractional 
exponents of differentiation and integration. After that, the 
effectiveness of the suggested optimal fractional PID 
control is demonstrated with a suitable robot with three 
degrees of freedom as an illustrative example. In addition, 
we proposed a robust fractional-order sliding mode control 
of a given robot system driven by DC motors where a 
fractional order sliding surface PDα  is introduced. It is 
shown that a sliding mode control with the fractional 
sliding surface is more robust to parameter perturbations 
and, what is most important to emphasize, the output 
oscillations are almost completely attenuated and the 
overall quality of the transient response is much 
better.Finally, numerical simulations have been carried out 
to  illustrate the validity of the proposed procedure. 
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Upravljanje necelobrojnog reda jednim robotskim sistemom 
pogonjenog jednosmernim motorima  

U ovom radu, predstavljeni su novi PID algoritmi upravljanja zasnovani na računu necelobrojnog reda i optimalnoj 
proceduri u zadatku pozicioniranja robotskog sistema sa tri stepena slobode pogonjen jednosmernim motorima. Cilj je 
bio odrediti optimalno podešavanje PI Dα β  kontrolera necelobrojnog reda da bi  se ispunili željeni zahtevi zatvorenog 
sistema upravljanja, uzimajući u obzir prednosti korišćenja necelobrojnog reda α  i β . Efikasnost predloženog 
optimalnog PID upravljanja necelobrojnog reda je demonstriran na pogodno usvojenom robotskom sistemu sa tri 
stepena slobode kao jednom ilustrativnom primeru. Takođe, ovaj rad predlaže jedno robustno upravljanje u režimu 
klizanja necelobrojnog reda datim robotom pogonjen jednosmernim motorima. Prvo je projektovan klasični kontroler u 
kliznom režimu zasnovan na PDα  kliznoj površini. Numeričke simulacije su sprovedene da predstave robusne osobine 
predloženog upravljačkog sistema kao i da istakne značaj datog upravljanja koji se ogleda i u smanjenju oscilacija datog 
robota u radnom prostoru (chattering-free). Simulacije uključuju i poređenje kontrolera PDα  u režimu klizanja 
necelobrojnog reda sa standardnim  PD  kontrolerom  u režimu kilizanja.  

Ključne reči: roboti, jednosmerni motor, robustno upravljanje, algoritam upravljanja, PID algoritam, račun 
necelobrojnog reda, podešavanje vibracije. 
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Управление дробного порядка робот оснащённых системой 
двигателей постоянного тока 

В данной работе представлены новые алгоритмы ПИД-регулирования, основанные на учёте дробного порядка и 
оптимальной процедуры в деле размещения роботизированной системы с тремя степенями свободы, 
оснащённой двигателями постоянного тока. Цель состоялась в том, чтобы определить оптимальные настройки 
PI Dα β  для дробных контроллеров для достижения желаемых требований замкнутой системы управления, 
принимая во внимание преимущества использования дробного порядка α  и β . Эффективность предлагаемого 
оптимального управления PID дробного порядка демонстрируется в принятой подходящeй роботизированной 
системe с тремя степенями свободы, как наглядном примере. Кроме того, этот документ предлагает надёжное 
управление в режиме скольжения дробного порядка данным роботом, оснащённым двигателями постоянного 
тока. Первым был разработан классический контроллер в режиме скольжения, основан на скользящей 
поверхности PDα . Численное моделирование проводится чтобы представить надёжные характеристики 
предлагаемой системы управления и подчеркнуть значение данного управления, которое находит своё 
отражение в уменьшении колебаний данного робота в рабочем пространстве (chattering-free). Моделирование 
включает и сравнение контроллера PDα  в скользящем режиме дробного порядка со стандартным PD 
контроллером в скользящем режиме. 

Ключевые слова: роботы, двигатель постоянного тока, надёжное управление, алгоритм управления, ПИД 
алгоритм, управления дробного порядка, настройки, вибрации. 

Le contrôle de l’ordre fractionnel à l’aide d’un système robotique 
conduit par les moteurs à courant continu  

Les nouveaux algorithmes PID de contrôle basés sur les calculs de l’ordre fractionnel et sur la procédure optimale pour 
positionner le système robotique à trois degrés de liberté et conduits par les moteurs à courant continu sont présentés 
dans cet article. Le but en était de déterminer le réglage optimale PI Dα β  des contrôleurs de l’ordre fractionnel pour 
réaliser les exigences désirées du système fermé de contrôle considérant les avantages de l’emploi de l’ordre fractionnel 
α  et β . L’efficacité du contrôle optimale de PID proposé a été démontrée sur le système robotique adopté à trois degrés 
de liberté qui a servi comme un cas de figure. Ce papier propose aussi un contrôle robuste dans le mode de glissement de 
l’ordre fractionnel par un robot conduit à l’aide des moteurs à courant continu. On a conçu d’abord le contrôleur 
classique dans le mode glissant basé sur la surface glissante PDα . Les simulations numériques ont été effectuées afin de 
présenter les caractéristiques robustes du système de contrôle proposé et pour souligner l’importance du contrôle donné 
qui se reflète aussi dans le diminution des oscillations du robot donné dans l’espace de travail. Les simulations 
comprennent aussi les contrôleurs PDα  dans le mode glissant de l’ordre fractionnel avec le contrôleur PD standard dans 
le mode glissant.  

Mots clés: robots, moteur à courant continu, contrôle robuste, algorithme de contrôle, algorithme PID, calcul de l’ordre 
fractionnel, réglage des vibrations.  

 
 




