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Existence of Triggers of Coupled Singularities in Nonlinear Dynamics
of Mechanical Systems with Coupled Rotations

Katica Stevanovié-Hedrih"

A theorem of triggers of coupled singularities is presented as well as numerous examples of nonlinear dynamics of
mechanical systems with coupled singularities in phase portraits. Abstractions of real engineering system nonlinear
dynamics with rotations coupled into the model of a rigid body which performs coupled rotations around
nonintersecting axes in the gravitational field shows numerous varieties of the homoclinic phase of trajectories as well
as different sets of tigers of coupled singularities. A multi-parameter transformation of the phase trajectories and of
the set of coupled singularities is presented. In addition, a series of triggers of coupled singularities in the phase
portraits is given as well as the trigger of coupled half-one side singularities identified in the heavy mass particle
oscillations/motion along a rotating rough curvilinear line and non-ideal constraints of Amontons-Coulomb friction.
An example is used to show the heavy mass particle motion along rough curvilinear lines in the vertical plane,
described by a corresponding differential double equation and the double equation of the phase trajectories, while
more triggers of coupled half-one side singularities are identified in the phase portrait.

Key words: mechanical system, trigger, nonlinear dynamics, coupled singularity, rotating system.

Introduction

N one of classical monographs [1] by Andronov, Witt and

Hajkin, which has a great number of editions, some
classical examples of nonlinear systems with one degree of
freedom of oscillatory motion and their phase portraits
except general theory of nonlinear oscillations are
presented. Such examples can also be found in university
books by Stoker [19] as well as by Raskovi¢ [15, 16, 17].
Especially in a monograph by Guckenheimer and Holmes
[3] and a monograph by Gerard and Daniel [2], the results
of research on nonlinear systems and properties of various
kinds of bifurcations are pointed out.

In the papers [14], differential double equations of the
heavy mass particle motion along rough curvilinear line
with Coulomb’s type friction are expressed in the following
generalized form with double signs:

ixb, 3+ gk F(x,Fx,)]f(x%x,)=
uper sign . x>0 (M
lower sign x<0

where b, is a coefficient depending on the Coulombs type

coefficient of friction, and x,, is a parameter in a coordinate

dimension depending on the Coulombs type coefficient of
friction. Also, a corresponding governing differential
equation for ideal conservative system dynamics with one
degree of freedom in the following form:

X+g[k,F(x)]f(x)=0 2)

was investigated in the phase plane according to the
structure of the singular point and stability of the structure
of phase portrait.

Theorem of the existence of a trigger of
coupled singularities

By using nonlinear dynamic analysis of systems with
described nonlinear phenomenon of the trigger of coupled
singularities and corresponding families of phase portraits
and potential energies (see Refs. [5], [6], [8] and [14]) as
well as the corresponding experimental investigations of
such non-linear dynamics in mechanical engineering
systems with coupled rotation motions (see Refs. [4] and
[7-14]), it was easy to define and to prove the theorem of
the existence of a trigger of coupled singularities in non-
linear dynamical systems with a periodical structure.

Theorem: In the system whose dynamics can be
described with the use of non-linear differential equation
i+g[k,F(x)]f(x)=0, n the form (2) (see Refs. [5], [6] and
[11]) and whose potential energy is in the form:

X

E, - mJ.g[k,F(x)]f(x)dx —G[L.F(x)] ()

0

in which the functions f(x) and g(x) are:
F(x)zJ.f(x)dx and G(k,x)zjg(k,x)dx @)
0 0

and satisfy the following conditions: f(—x)=—f(x),
FlesnT)=£(x), £(0)=0, f(x)=0, x=sT,

s=1,2,3,4,... x,=*x,+rTy, r=0,1,2,3,4,..., \xo\<5
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g(k,x+nTy)=g(k,x), g(k—x)=g(k,x),
g[k,F(x,)]:(), fOI‘ ke(kl,kz)u(kz,k3)...
glk,F(x)]#0, for ke (k,ky)U(ky,k3)... and both

functions f(x) and g(x) have one maximum or minimum

in the interval between two zero roots: a* for parameters
values k & (ki,,ky)U(ky,k3)..., outside of the intervals

(kiwsky )U(ky,k3)..., the trigger of singularities in the

local arca does not exist; b* for parameters values
ke (ki ky)O(ky,ks).., inside the intervals

(kizsky)U(ky,ks)..., the series of triggers of coupled

singularities in the local domains exists.

A series of the theorems of a trigger of coupled
singularities in the nonlinear dynamics of mechanical
systems with appearance of a homoclinic orbit in the form
of number eight is defined in references [5] and [ 6].

Example 1: Rheonomic systems with equivalent
conservative systems applied to the nonlinear dynamics of
the Watt’s regulator

In this part, an example of rheonomic nonlinear systems
which have an equivalent conservative nonlinear system by
the model of the Watt’s regulator will be presented. We will
consider a nonlinear system with coupled rotations with
two degrees of mobility, but with one degree of freedom of
motion defined by one generalized coordinate, and one of
two degrees of mobility is defined by the rheonomic
coordinate linearly depending on time. A model of the
Watt’s regulator as a model of rheonomic system with
coupled rotations is used to prove a theorem of the
existence of homoclinic orbits (see Refs. [12] by Hedrih
(Stevanovic)) in the form of number eight and the trigger of
coupled singularities in the phase portrait of this nonlinear
dynamics of relative motions.

For an example of a rheonomic system with coupled
rotations, and with an equivalent holonomic scleronomic
conservative system, we will consider a model of a
mechanism of the Watt’s regulator (see Fig.1.a), containing
two heavy material particles moving along the
corresponding symmetrically connected circles that rotate
around the vertical axis with a constant angular velocity Q
in the gravitational field. The kinetic and potential energy
of the simplified mechanisms of the Watt’s regulator, are

. . . 2
E(")= m(? l:¢2+ 0’ (% +sin ¢) } and

‘ ®)
E")=2mg((1-cosg)

where ¢ is the generalized independent coordinate, ¢° = 6=
Qt is the theonomic coordinate depending on time, m are
masses of the balls - the material particles, and ¢ and a are
constructive parameters. For a holonomic scleronomic
conservative system equivalent to the considered
rheonomic system, which is a mechanism of the Watt’s
regulator, the kinetic and potential energy in the sense of
the previous definitions are (see ref. [12]):

]::l((sist) — m£2¢52

and

L 2
E(™ =2mg((1-cos ¢)—ml*Q* (%+sin ¢) )

0 =01

f =0

3

a)

EP%{a)

EPixi g
EFfdsi
EPFg{xi

©)

Figure 1. (a) Watt’s regulator. (b) Potential energy E »(#) graphs of the
equivalent holonomic scleronomic conservative system to the rheonomic
system (c) characteristic homoclinic orbits ¢(¢) of nonlinear dynamics of

the Watt’s regulator for different system kinetic parameters:
A=02;6=0;+0.2;+0.4;+0.5;4+0.8;+1;+ 1.2;+ 2;
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Figure 2. a and b - Characteristic phase portrait of an equivalent
scleronomic conservative system to the Watt’s regulator nonlinear
dynamics. (c, d)-(e, f) The homoclinic orbits transformations with
changing of the system kinetic parameters values and the different forms
of the homoclinic orbits of the equivalent holonomic scleronomic
conservative system to the rheonomic system (the mechanisms of the
Watt’s regulator) by changing the eccentricity ¢ and the velocity of the

support rotation Q(4).

By introducing the following notations =Q, A= £

0?’
&= % , we can write the following differential equations of
the relative motion of the balls:

$+Q?[(A—cosg)sing—escosg] =0 (6)

The integral of the energy of the equivalent holonomic
scleronomic conservative system to the rheonomic system,
which is a mechanism of the Watt’s regulator, is:

Eigist) +]]:£)Sist) = const =
#* = g2 + Q2 {22 (cos ¢y —cosg)—
_|:(g+Sill¢)2 _(5+Sin¢°)2 ]}

(7

where ¢, and ¢0 are the initial conditions of the relative

motion of the balls. Equation (7) presents also the phase
trajectory of the relative motion.

In Fig.1 and 2, the results of the numerical experiment
over the considered example of the rheonomic system are
presented. Fig.1b, gives the potential energy graphs of the
equivalent holonomic scleronomic conservative system to
the rheonomic system (Fig.1a the mechanisms of the Watt’s
regulator) for different system kinetic parameters. From
Fig.2, we can conclude that it is very suitable for the
identification of homoclinic orbits in the form of number
eight of nonlinear dynamics of the special class of
rheonomic systems with coupled rotations and with
rheonomic coordinate linearly depending on the time in the
form ¢°=Q¢ to wuse the corresponding equivalent
holonomic scleronomic conservative system and the
corresponding phase portraits of this system. By using an
example of the mechanisms of the Watt’s regulator, we
show different forms of homoclinic orbits, as well as the
bifurcations of the relative equilibrium positions in the
considered class of the rheonomic systems and the
parametric transformation of the homoclinic orbits. We
investigate existence and nonexistence of homoclinic orbits
in the shape of number eight and a trigger of coupled
singularities for different values of the system kinetic
parameters: the eccentricity ¢ and the velocity of the

support rotation (2(A). The examples of engineering
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systems such as the Watt's regulators pointed out the
validity of the defined theorems of the existence of
homoclinic orbits in the form of number eight and the
trigger of coupled singularities in the phase portrait of its
nonlinear dynamics.

Example 2: Differential double equation of the motion
of a heavy mass particle along rough rotating circles

We will consider a discrete system of a heavy mass
particle with the mass m along a rough rotating circle about
a vertically positioned axis oriented by the unit vector 7z,
and in the case with Coulomb’s type friction (see Fig.3)
.The relative position of the mass particle along the rough
circle with the radius ¢ is determined by the angle ¢ as a
generalized coordinate. The rtheonomic coordinate £=Qf is
the angle of the rotation of the circle around the vertical
axis oriented by the unit vector 7 .

Fu=Faw+Fop | G

a)

Figure 3. a - Rough surfaces around the “rough circle line” in a real
construction with a corresponding coefficient of the Coulomb’s type
friction; b - Mass particle motion along the rough rotating circle about the
vertical axis

We take into consideration the “rough circle line” with a
rectangular cross section with one rough surface (or two
surfaces) and one coefficient x =tga, of the Coulomb’s
type friction for the rough surfaces with a normal in the
radial directions; when the surfaces with a normal in the
binormal directions are ideal and without friction, then
governing differential double equation is in the form:

. g i\

¢_¢ tgao+€COSa0 SIH(¢_aO) (8)

o " . >
4Ccosa0 os(p*ay)sing=0 ¢<0

Our research is focused on the first governing differential
double equation (8) and for the beginning, we consider the
simplest differential double equation in the form:

. g L
¢+€cosa0 sin(¢+a) >
o L $20 ©)
cosa, cos(ptay)sing=0
corresponds to the differential double equation (8) in which
the term +4’1ge, is omitted.
The first integral of the previous simplest differential

double equation (9) of the corresponding fictive
conservative system is obtained in the following form:
. 2g
2o 5 +o)—
¢ £ cos i cos(fray )

20° [1 1 10
_m[gcos@ﬁiao)cos¢i§¢sinaOJ+C(¢0,¢0)

where C(¢0,¢30) is the integral constant depending on the

initial values of the angular coordinate and the angular
velocity for each trajectory branch. For the first phase
trajectory branch, we take the previous equation with the

upper sign, where C(¢0,¢50) is the integral constant

depending on the initial conditions. For the first trajectory
branch, this integral constant is in the form:

Ci (oo )= & -2

fcos

ﬁ[l 1, }
+cosao 2cos(¢o +ag)cosdy + 2¢0 sin o

cos(dy +ap )+

(11)

The beginning of the next one, second branch, is at the
kinetic state corresponding angular velocity equal to zero in
the position when the friction force takes alternation of its
direction. The next one, third branch, starts at the kinetic state
determined by the angular velocity equal to zero at the
corresponding angular coordinate. Then it is easy to write the
necessary generalization using the conclusions based on the
induction:

The initial (starting) kinetic state of the even (2k)-th

branch is at the kinetic state corresponding to the angular
velocity equal to zero and the alternation of the Coulomb’s
type friction force. Then, the initial conditions of the even

(2k) -th trajectory branch are: @, 5 and v 251 (Bute24-1) 5

and the equation of the phase trajectory branch is in the
following form:

&%k(cb)wciif%cos(cfﬁ—ao)—
- 22| Leos(g-a)cosg—Sgsinay [+ (12)

+Cy <¢alt,2k—19¢alt,2k—l = 0)

where C2k(¢alt,2k—ls¢alt,2k—l :O) is the integral constant

depending on the initial conditions for the second trajectory
branch and is determined by the following expression:

; 2
Co (¢alt,2k—l s it 201 = 0) £ COS(¢alt,2k—l —Q ) +

~ /cos Q
2
4+ 20

cos

(13)
[% COs (¢alt,2k—1 - )COS # — % Bair 251 SIN A }
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Then, the initial conditions of the odd (2k+1)-th
trajectory branch are: ¢(u2x ) = Gurox and g2, 5, (B0 )=0>
and Cyyy (¢a,,,2k,¢5,,,,72,( =0) is the integral constant

depending on the initial conditions for the odd (2k +1)-th
trajectory branch and is determined by the following
expression:

; 2
Copn (¢alt,2k:¢a/t,2k = 0) =77 £ €08 (B2t + 0 )+
CoS
20% [1 1 . (14)
+ cos g [E cos (¢alt,2k +ay )005 B + §¢alt,2k s & }

Form the previous analytical expressions of the phase
trajectory branches, we can conclude that, in the fictive
conservative system, an alternation of equilibrium
positions, with a difference close, but not equal to +¢,, for

2

1>>w—°
Q

>, a very small angular velocity of circle line

rotation appears. In a better approximation, this difference
is approximately

v Q. (15)

In addition, we can conclude that this phenomenon is a type
of two coupled equilibrium positions (with one side stable)
in fictive alternations. We can conclude that a trigger of
coupled singularities caused by Amontons-Coulomb’s type
friction forces contain two coupled one side stable singular
points and one non stable singular point which in a
corresponding system without friction is a unique singular
point .

The stationary solutions of the governing nonlinear
differential double equation (8) are the same as the
stationary solutions of the corresponding fictive system
described by differential double equation (9). The

conditions of the relative equilibrium positions are: ¢ =0

and v =0, and we obtain the following transcendent double
equation:

tg(¢iao)—%2£sin¢=0 (16)

For oy, =0 a mechanical system is ideal, and the previous
2
condition (16) obtained form tg¢— % sing =0, and the

singular points are: ¢, =s7, s=1,2,3,4,.. and

g +2s7w, s=1,2,3,4,...= for the case that

)y = arccos——=— =*
/ 0?

g

0?
-

QZ

<1. From the abovementioned, we can conclude that

for

<1 in the phase portrait there are two forms of the

separatrix phase trajectory, one of which is in the form of
number “eight”. With the existence of this homoclinic orbit
in the form of number “eight”, a trigger of coupled
singularities, caused by Amontons-Coulomb’s type friction
forces, contain two coupled one side stable singular points
and one non stable singular point which in a corresponding
system without friction is unique center type singular

points.

In addition, taking into our qualitative analysis that the
coefficient of Coulomb’s type friction is a small number,
we can conclude that the roots of transcedent double
equation (14) are close to the roots from the obtained set
corresponding to an ideal system. Also, it is necessary to
take into acount that transcedent double equation (14)
contains a sign alternation, and that the obtained roots are
one-side singular points corresponding to the one-side
stable, or non- stable equilibrium positions.

For obtaining the roots of the transcendent double
equation (14), it is necessary to use some method of
approximation or a numerical method. Singular points —
roots of the transcendent double equation (14) are in the
intersections between two double functions:

f(9)= g—‘itg(gé +ay) and f(g)=sing. The singular point

in the sections between the previous two listed double
functions takes into account that first function has the sign
alternation t¢, of the argument. For small values of the ¢

and for the first two roots around null, it is possible to use
an approximation in the form of linearization of these
functions:

F@)=griera) = 5(@xa) (D)

and f(@)=sing~¢. Then the first rough approximate

values of two roots are:

2
R ¢ Sy (18)

This pair of the two roots presents the first pair of the one-
side stable singular points (half-center type) which
corresponds to the one-side stable equilibrium positions.

The second series of the approximation of roots is possible
to be obtained with the expansion of the listed functions into
Taylor’s series around null in the following form:

f(¢)=sin¢~¢—% (19)
and
2 2
f(¢)=%fg(¢iao)=%(¢iao). (20)

Then we obtain the following third order nonlinear double
equations:

2 2
¢3—2¢(1—3g°2jiéggao ~0. 1)

For solving the previous nonlinear cubic double equation
(21) and to obtain their three roots, we applied the
following formulas of roots approximations

22 =P eos X g, m 2 |-P os L2

X ~2 3cos3,x2 2 3cos 3
X3 =2 —Ecos}(ju”Z (22)
IS 3

and
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of the cubic equation in the form x*+px+¢g=0 (for

details see Raskovi¢, P. [18]), where the condition

3 3
A:(%p) +(%q) <0 1is satisfied, and the following
denotation

_3q (23)

is introduced. The corresponding coefficients of this cubic
equation (22) are in the following forms:

J = arccos

2 2 1V (1Y
p=—2[1—3$02)<0, 1>3%, A=(§p) +(§q) <0 (24

and when
2
p<0, q:ir6%ao,
2\ 2 3
A:{—§(1—3g‘)2j {ﬁg‘;%} <0, (25)
= arccos 26)
x (
(see Fig.4).
LY L e
flgl=1lng T« s
— =4 y— ___%—-I‘Ih _—1'.'."'-" N ; __.-;_ >

Figure 4. For wu=¢;=003 and non-ideal circle line, and

2
é = % =k =0.5, the first series of the roots ¢, =¢@,, sz with (a) left
half side non stability and (b) right half side non stability, and the second
series of the roots, and @.,, = —¢y,,o = 257, with (a) left half side stability

and (b) right half side stability.

a)

b)
¢'+92u —cos¢)sin¢—stcos¢ =0
Figure 5. Homoclinic phase trajectory layering (a) and (b) for ¢, =0 and the

g

different values of the k = % = 07 <1 and the axis eccentricity ¢ =0 .

Fig.5 presents a) and b) the sets of the homoclinic phase
trajectory layering, for o, =0 and different values of the

<1 and the axis eccentricity. The homoclinic

A ey?
orbits in the form of number eight appear and disappear

with the changing of the parameter & =%= é
the axis eccentricity € =0. Two sets of singular points:
g 4

o

<
>l and

s=1,2,3,4,.. and ¢, =arccos 281,

¢s:S7Z':

s=12,34,. for k Ty

1 exist together with

homoclinic orbits — separatrix in the form of number eight.
For concluding this part and for obtaining analytical
expressions or the roots of the trigonometric equation

sin(¢tag)—k*cos(¢pFa,)sing=0  in
approximation, we can use Taylor’s expansion with
different terms of approximations around the singular point
of a corresponding ideal mechanical system to the
considered non ideal with Coulomb’s type friction:

generalized

1. The first rough approximation of the singular point is:

Ty 20,
~ =—; 27
¢O(l,d) (l—kz) (1_’(_2) ( )
2. The second approximation
TP tgay + (1 —k? )¢ t1ga, =0 gives the equation
2 (1 —k ) 1 . .
o F ¢——~0 and the corresponding roots in

k Ztg Qy
better approximations are:

¢0(1,2),(1,d) T

K -1 ?
P2y 1a) | F ( ) +x* . (29)
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3. Then we can find approximate expressions of the roots
of the previous transcendent equation

sin(¢+ay)—k* cos(¢F et )sing=0 around the roots for

the case when the circle is an ideal line. For that reason,
into the previous trigonometric equation, we put a

= $+9¢

r=1,2,3,4,... and we obtain:

¢,.= arccos g +2rr,

change: where -2+
g Q2

sin(¢, + @+ at)—k* cos(d, +@Fa,)sing=0 (30)

and the an approximated expressions for the roots are in
the following forms:

x> sin (g, o) —cos (g, ap )sing, ' 31)

k% cos(g. tay)—cos(2¢, )

P 3(1a)~ —

We can make a concluding reviews of the obtained
expressions of singular points for the case of non-ideal
system dynamics.

A. The singular points for the case that x* < 1are:
a* For ¢. # 0, around

¢, =+arccosk’ +2rr,

are in the forms

bt cos( + ao)sin 4, —K* sin(g},. + ao) , (32)

k2 cos(g, oy )— cos(2¢,. +q,)

and one side stable center type, in alternations right and
left.

b* For ¢, =0 and ¢, =+s7 , and around ¢, =+s7,
are in the forms

d _ Flgay ~i/(ztgozo

COT-8) T (1-47)

and one side stable center type, in alternations right and
left.

B. The singular points for the case that x?>1 and
around ¢, =0 ¢, ==s7,are

(33)

¢( |~ Figay Nikztgao
o(1,d) ¥ ~
I 0-0) " (1)

(36)

one side stable center type and next one side non stable
saddle type, alternatively.

By introducing the following ¢2 =u , a transformation of

the nonlinear differential equation (8) gives a first order
differential equation with the corresponding integral in the
form:

2g  tigapsin(ptay) N

) .
¢ (¢) Lcosay 1+4tg2a0
2g cosg cos2(¢iao)$ 37)
lcos® ap 1+41g%a, 2cos’ ay  1+1tg’a

T Qz + CeHigand
2

where C is the integral constant depending of initial
conditions for the corresponding interval of the material

particle motion and in which the upper sign is for ¢ >0 and

the lower sign for ¢ <0, in accordance with alternations of

the friction force directions.

Example 3. Forced nonlinear dynamics differential
equation of the heavy coupled rotor dynamics in the field of
turbulent damping

On the basis of the previous results and remarks, our
attention is focused on the motion of the representative
point on the phase trajectory in the phase plane of the
forced nonlinear dynamics of multi-step coupled heavy
rigid rotor dynamics in the field with and without turbulent
damping (see Fig.6a*).

V.42 0,44 0.46 0.47 0.49 0.51 0.53 0.54 0.56

0427 A

0.533
b)

Figure 6. a) Three-step coupled heavy rotors b) forced non-linear
dynamics visualizations. (reductor and multipliers) by the phase trajectory
portrait of the forced nonlinear dynamics.

The corresponding main differential equation of the
forced vibrations of a multi-step coupled multi-rotor system
is in the following form:

b +26ud ||+
J=i
, | & Wi (=
+Qiy ssingy + Z/’:i Vi; sin /I}lzj,(jﬂ)¢l =(38)
=2 LA
=l coswt

For the case when the system of coupled rotors is in the
field with turbulent damping, and excited by external one
frequency force or one frequency couple, we can introduce
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damping forces proportional to the first step or square of
the angular velocities of the rotor shaft. By using two phase
coordinates ¢ and v, the main differential equation of

nonlinear dynamics of coupled heavy rotors dynamics in
the field with turbulent damping, for a homogeneous
system, can be transformed into a system of two first order
differential equations in the following form:

s
dt

% = 2268, Qv -1y {sinﬂ +{ ik sin(i"¢1 )}}_ (38)

= QIMV

h
— M _cosmt
M

From the series of numerical results, we make choice of
the characteristic forced processes for four step coupled
heavy rotors. In the following series of the graphical
presentations in Fig.7, we can see the time-history graphs
and the corresponding phase trajectories of the forced rotor
system dynamics.

l'.-"r:' ol )

.I-[- | I . -'_."‘—- P o]
. RSl ose:
a) b)

& Ar) ‘|'-:' .
T - I”.

I QRO
) d)
460 ¢ 1 ,
| ] ( @& =
- i
e) )]

Figure 7. Three-step coupled heavy rotors forced nonlinear dynamics
visualizations (reductor and multipliers). a), ¢) and e) Time-history curves

(¢.t). b), d) and f) Phase trajectories portraits of the forced nonlinear

dynamics (¢,¢)

The first side series of graphs in Fig.7 a), c¢) and e)
represent the families of time-history curves (¢,t) for

different steps of multi-step coupled heavy rotors dynamics,
as a reductor or a multiplier, of the rotate motions of the
gear transmission system non-linear model. In the second
series of the graphs in the same Fig.7 b), d) and f), the
forced non-linear dynamics phase trajectories of the
multistep coupled heavy rotors - reductor or multiplier
dynamics in the phase plane are presented. Fig.7 b), d) and

f) show the characteristic phase trajectories ¢,¢) for forced

regimes, followed homoclinic orbits for multi step coupled
heavy rotors - multiplier free vibrations, for different
kinetic parameters of the system.

The graphical visualization of the free and forced
nonlinear dynamics of gear transmission by the model leads

to the concluding remarks. The phase trajectory for forced
nonlinear dynamics possesses a very sensitive dependence
on the initial conditions as well as on the relations between
the kinetic parameters of the nonlinear model and the
external excitation frequency. The behavior of the forced
non-linear dynamics phase trajectory corresponds to the
homoclinic orbits form for corresponding system free
vibrations. The influence of the initial conditions and some
system parameters with bifurcation properties which leads
to the corresponding layering of the homoclinic orbits for
free conservative non-linear dynamics give their sensitive
dependence of nonlinear dynamics on the system initial
conditions around the trigger of coupled singularities and
homooclinic orbit in the form of number eight. Then, under
the action of one frequency external excitation of the
system, the dynamics response is not single frequency
regimes but, depending on the initial conditions as well as
on the relation between the kinetic parameters of the
considered system and the external excitation frequency.

In some of these cases, the responses of the dynamic
systems can be with different properties as they are double
frequency regimes, as well as stochastic like or chaotic like
regimes.

Concluding remarks

The paper presents some characteristic examples of the
nonlinear dynamics with the trigger of coupled singularities
in the phase portrait and with the homoclinic orbit in the
form of number eight. Also, a layering of the homoclinic
orbits is identified in some considered system dynamics
with one or multiparameter transformation of the phase
trajectories in the phase plane. The series of the theorems of
the existence of the trigger of coupled singularities as well
as the homoclinic orbit in the form of number eight are
proven in applications to their listed examples of
mechanical system dynamics with coupled rotations in the
gravitation field.

In the system nonlinear dynamics with no ideal
constraints introduced by Coulomb’s type fiction, the
appearance of the bifurcation of the equilibrium positions is
identified. The series of the alternation of the directions of
the Coulomb’s type friction force caused the series of
alternations of the one side (half) singular point which
correspond to equilibrium position alternations. In the
phase trajectory portraits, there appears a bifurcation of the
singular points which are a special type of the trigger of
coupled singularities having two half one side stable
singular positions around a stable position which
correspond to corresponding singular points of ideal
nonlinear system dynamics. If the basic system dynamics
posses, in the phase plane, a trigger of coupled three
singular points caused by classical nonlinearities, then for
no ideal system with Coulomb’s type friction,
corresponding numbers of complex triggers with three sub-
triggers appear. These are the results of each singular point
bifurcation into two half — one side singular points.
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Postojanje trigera spregnutih singulariteta u nelinearnoj dinamici
mehanickih sistema spregnutim rotacijama

Prikazana je teorema o postojanju trigera spregnutih singulariteta, kao i mnogobrojni primeri nelinearne dinamike
sa spregnutim singularitetima u faznoj ravni. Apstrakcija nelinearne dinamike realnih inZinjerskih sistema
spregnutim rotacijama do modela krutog tela koje izvodi spregnute rotacije oko mimoilaznih osa, u gravitacionom
polju, pokazuje razli¢ite homoklini¢ke fazne trajektorije kao i razliite skupove trigera spregnutih singulariteta.
Prikazana je viSeparametarska transformacija faznih trajektorija kao i skupa spregnutih singulariteta. Takode, je
prikazana i serija trigera spregnutih singulariteta u faznoj ravni, kao i triger spregnutih jednostranih singulariteta
koji su identifikovani u kretanju teSke materijalne tacke po rotirajucoj hrapavoj krivoj liniji i neidealnim vezama
Amontons-Coulomb-ovog tipa trenja. Koriste¢i primer prikazano je kretanja teSke materijalne tac¢ke po rotirajucoj
hrapavoj kruZnoj liniji u vertikalnoj ravni opisano dvojnom diferencijalnom jednacinom i dvojnom jednadinom
faznih trajektorija i u faznoj ravni je identifikovano viSe trigera spregnutih jednostranih (polu) singulariteta.

Kljucne reci: mehanicki sistem, triger, nelinearna dinamika, spregnuti singularitet, rotirajuci sistem.
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CyumecTBoBaHNEe TPUITEPOB COYETACMbIX CHHTYJISIPHOCTEH B
HeJIUHEeHHOH TMHAMUKE MEXaHUYECKNX CUCTEM COYeTaeMbIMU
BpalleHUAMU

B Hacrosimieii padoTe mokazaHa TeopeMa O CyIIeCTBOBAHMM TPHITEPOB COYeTaeMbIX CHHIYJISIDHOCTEH, a Takke M
MHOrO4YHc/IeHHbIe MPUMepPbl HeJMHeiHOi AMHAMUKH €O COYeTaeMbIMH CHHIYJISPHOCTSIMH Ha ()a30BOil IIOCKOCTH.
AOcTpaknusl HeJHWHeWHHOW JMHAMUKH peajbHbIX HHKEHEPHBIX CHCTEM CBSI3aHBIX BpPallleHHEM C MOJeJbI0 TBEPIOro
TeJla, KOTOPOe OCYIIECTBJISIET COYeTAHHH BPAIllCHUS] BOKPYI HelepeceKaluuxcs oceii, B rPABHTAIIHOHHOM Io0JIe,
MOKAa3bIBaeT pasjHyHble TOMOK/IMHHYecKHe ()a30Bble TPAEKTOPHHM H ApYroii Ha0op TPHITEPOB COYeTAeMbIX
cuHryjaspuocreii. Ilokazana mHorodgakTopHasi TpaekTopusi (a3oBBIX NpeBpalleHHHi M cHCTeMa COYeTaeMbIX
cuHryaspHocreii. Takike mokaszana cepusi TPUITEpPOB coYeTaeMbIX CHHIYJIsAPHOCTeH Ha (a30Boii MJIOCKOCTH, 2 B TOM
Yyhcjle M TPUITEP COYeTaeMbIX OJHOCTOPOHHHX CHHIY/ISIDHOCTeH, ONpeleJEéHHBIX B JBH/KEHHMH TSKEI0M
MAaTepHaIbHOI TOYKH, 0 BpaLlaloLleiicsi HeMPaBUJIbHOI rpy0oii JIMHHHM M JaJIEKHMH OT HICAJTbHOI0 COeJUHCHUAMH
¢puxnnonHoro tuna AmoHToHa-Kynona. Ha mpumepe noka3aHo ABH:KeHHe TSIKEI0H MaTepHAILHOH TOYKH IO
BpaLawuleiicsi rpy6oii KoJIbLeBOil JIMHHM B BEPTHKAJIBLHOMN IJIOCKOCTH, OIMCAHO ABOHHBIM AU(depeHunaTIbHbIM
YpPaBHeHHeM M ABOiCTBeHHbIM ypaBHeHHeM (a30BbIX TpaekTopHii u Ha (a30Boil IJIOCKOCTH OMNpeae/IeHO BHIle
TPUITEPOB CBA3AHHBIX 0JHOCTOPOHHUMH (I10J1y-) CHHIYJISPHOCTSIMH.

Knrouesvie cnosa: MexaHmdeckast cucremMa, Tpurrep, HeJIMHeiTHas1 AHHAMHKa, co4veTaeMasi CHHIYJISAPHOCTD,
Bpalmjamuascsa cucreMa.

Existence des déclencheurs des singularités couplées dans la
dynamique non linéaire chez les systemes mécaniques avec les
rotations couplées

La théoréme sur D’existence des déclencheurs des singularités couplées ainsi que de nombreux exemples de la
dynamique non linéaire avec les singularités couplées sur le plan de phase ont été présentés dans cet article.
L’abstraction de la dynamique non linéaire des systémes réels d’ingénierie par les rotations couplées jusqu’au modéle
du corps rigide qui effectue les rotations couplées autour des axes non croisés dans le champ de gravitation montre les
différentes phases homo cliniques de la trajectoire ainsi que les différents groupes de déclencheurs de singularités
couplées. On a présenté la transformation multi paramétrique des trajectoires de phase ainsi que la transformation
du groupe des singularités couplées. On a présenté aussi une série de déclencheurs des singularités couplées sur le
plan de phase ainsi que le déclencheur des singularités unilatérales identifiées lors du mouvement d’une lourde
particule matérielle sur une ligne courbe et réche et les relations non idéales de la friction du type Amonions-
Coulomb. A I’aide de cet exemple on a présenté le mouvement de la particule lourde matérielle sur la ligne circulaire
rotative sur le plan vertical, décrit par la double équation différentielle et par la double équation des trajectoires de
phase. Sur le plan de phase on a identifié plusieurs déclencheurs des (demi) singularités couplées unilatérales.

Mots clés: systéme mécanique, déclencheur, dynamique non linéaire, singularité couplée, systéme de rotation.



