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Existence of Triggers of Coupled Singularities in Nonlinear Dynamics 
of Mechanical Systems with Coupled Rotations 

Katica Stevanović-Hedrih1) 

A theorem of triggers of coupled singularities is presented as well as numerous examples of nonlinear dynamics of 
mechanical systems with coupled singularities in phase portraits. Abstractions of real engineering system nonlinear 
dynamics with rotations coupled into the model of a rigid body which performs coupled rotations around 
nonintersecting axes in the gravitational field shows numerous varieties of the homoclinic phase of trajectories as well 
as different sets of tigers of coupled singularities. A multi-parameter transformation of the phase trajectories and of 
the set of coupled singularities is presented. In addition, a series of triggers of coupled singularities in the phase 
portraits is given as well as the trigger of coupled half-one side singularities identified in the heavy mass particle 
oscillations/motion along a rotating rough curvilinear line and non-ideal constraints of Amontons-Coulomb friction. 
An example is used to show the heavy mass particle motion along rough curvilinear lines in the vertical plane, 
described by a corresponding differential double equation and the double equation of the phase trajectories, while 
more triggers of coupled half-one side singularities are identified in the phase portrait. 

Key words: mechanical system, trigger, nonlinear dynamics, coupled singularity, rotating system. 

 

                                                           
1)  Institute of Mathematics, The Serbien Academy of Sciences and Arts, Knez Mihajlova 36, 11000 Belgrade, SERBIA 

Introduction 
N one of classical monographs [1] by Andronov, Witt and 
Hajkin, which has a great number of editions, some 

classical examples of nonlinear systems with one degree of 
freedom of oscillatory motion and their phase portraits 
except general theory of nonlinear oscillations are 
presented. Such examples can also be found in university 
books by Stoker [19] as well as by Rašković [15, 16, 17]. 
Especially in a monograph by Guckenheimer and Holmes 
[3] and a monograph by Gerard and Daniel [2], the results 
of research on nonlinear systems and properties of various 
kinds of bifurcations are pointed out. 

In the papers [14], differential double equations of the 
heavy mass particle motion along rough curvilinear line 
with Coulomb’s type friction are expressed in the following 
generalized form with double signs: 
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where bμ  is a coefficient depending on the Coulombs type 
coefficient of friction, and xμ  is a parameter in a coordinate 
dimension depending on the Coulombs type coefficient of 
friction. Also, a corresponding governing differential 
equation for ideal conservative system dynamics with one 
degree of freedom in the following form: 

 ( )[ ] ( ), 0x g k F x f x+ =��  (2) 

was investigated in the phase plane according to the 
structure of the singular point and stability of the structure 
of phase portrait. 

Theorem of the existence of a trigger of  
coupled singularities 

By using nonlinear dynamic analysis of systems with 
described nonlinear phenomenon of the trigger of coupled 
singularities and corresponding families of phase portraits 
and potential energies (see Refs. [5], [6], [8] and [14]) as 
well as the corresponding experimental investigations of 
such non-linear dynamics in mechanical engineering 
systems with coupled rotation motions (see Refs. [4] and 
[7-14]), it was easy to define and to prove the theorem of 
the existence of a trigger of coupled singularities in non-
linear dynamical systems with a periodical structure.  

Theorem: In the system whose dynamics can be 
described with the use of non-linear differential equation 

( )[ ] ( ), 0x g k F x f x+ =�� , n the form (2) (see Refs. [5], [6] and 
[11]) and whose potential energy is in the form: 

 ( )[ ] ( ) ( )[ ]
0

, ,
x

p m g k F x f x dx k F x= =∫E G  (3) 

in which the functions ( )f x  and ( )g x  are: 

 ( ) ( )
0

x

F x f x dx= ∫  and ( ) ( )
0

, ,
x

G k x g k x dx= ∫  (4) 

and satisfy the following conditions: ( ) ( )f x f x− = − , 

( ) ( )0f x nT f x+ = , ( )0 0f = , ( ) 0sf x = , 0sx sT= , 

1, 2,3, 4,...s =  0 0rx x rT= ± ± , 0,1,2,3, 4,...r = , 0
0 2

Tx < , 
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( ) ( )0, ,g k x nT g k x+ = , ( ) ( ),g k x g k x− = , 

( )[ ], 0,rg k F x =  for ( ) ( )1 2 2 3, ,k k k k k∈ ∪ ... 

( )[ ], 0,g k F x ≠  for ( ) ( )1 2 2 3, ,k k k k k∉ ∪ ... and both 

functions ( )f x  and ( )g x  have one maximum or minimum 
in the interval between two zero roots: a* for parameters 
values ( ) ( )1 2 2 3, , ...k k k k k≠∉ ∪ , outside of the intervals 

( ) ( )1 2 2 3, , ...k k k k≠ ∪ , the trigger of singularities in the 
local area does not exist; b* for parameters values 

( ) ( )1 2 2 3, , ...k k k k k≠∈ ∪ , inside the intervals 

( ) ( )1 2 2 3, , ...k k k k≠ ∪ , the series of triggers of coupled 
singularities in the local domains exists. 

A series of the theorems of a trigger of coupled 
singularities in the nonlinear dynamics of mechanical 
systems with appearance of a homoclinic orbit in the form 
of number eight is defined in references [5] and [ 6]. 

Example 1: Rheonomic systems with equivalent 
conservative systems applied to the nonlinear dynamics of 
the Watt’s regulator 

In this part, an example of rheonomic nonlinear systems 
which have an equivalent conservative nonlinear system by 
the model of the Watt’s regulator will be presented. We will 
consider a nonlinear system with coupled rotations with 
two degrees of mobility, but with one degree of freedom of 
motion defined by one generalized coordinate, and one of 
two degrees of mobility is defined by the rheonomic 
coordinate linearly depending on time. A model of the 
Watt’s regulator as a model of rheonomic system with 
coupled rotations is used to prove a theorem of the 
existence of homoclinic orbits (see Refs. [12] by Hedrih 
(Stevanovic)) in the form of number eight and the trigger of 
coupled singularities in the phase portrait of this nonlinear 
dynamics of relative motions. 

For an example of a rheonomic system with coupled 
rotations, and with an equivalent holonomic scleronomic 
conservative system, we will consider a model of a 
mechanism of the Watt’s regulator (see Fig.1.a), containing 
two heavy material particles moving along the 
corresponding symmetrically connected circles that rotate 
around the vertical axis with a constant angular velocity Ω  
in the gravitational field. The kinetic and potential energy 
of the simplified mechanisms of the Watt’s regulator, are 
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where φ is the generalized independent coordinate, qo = θ = 
Ωt is the rheonomic coordinate depending on time, m are 
masses of the balls - the material particles, and ℓ and a are 
constructive parameters. For a holonomic scleronomic 
conservative system equivalent to the considered 
rheonomic system, which is a mechanism of the Watt’s 
regulator, the kinetic and potential energy in the sense of 
the previous definitions are (see ref. [12]):  

( ) 2 2sist m φ=kE �� A   

and  

( ) ( )2
( ) 2 22 1 cos sinsist amg mφ φ= − − Ω +pE� A A A . 

 
a) 

 
b) 

 
c) 

Figure 1. (a) Watt’s regulator. (b) Potential energy ( )p φE�  graphs of the 
equivalent holonomic scleronomic conservative system to the rheonomic 
system (c) characteristic homoclinic orbits ( )φ φ�  of nonlinear dynamics of 
the Watt’s regulator for different system kinetic parameters: 

0.2; 0; 0.2; 0.4; 0.5; 0.8; 1; 1.2; 2;λ ε= = + + + + + + +  
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Figure 2. a and b - Characteristic phase portrait of an equivalent 
scleronomic conservative system to the Watt’s regulator nonlinear 
dynamics. (c, d)-(e, f) The homoclinic orbits transformations with 
changing of the system kinetic parameters values and the different forms 
of the homoclinic orbits of the equivalent holonomic scleronomic 
conservative system to the rheonomic system (the mechanisms of the 
Watt’s regulator) by changing the eccentricity ε  and the velocity of the 
support rotation ( )λΩ . 

By introducing the following notations θ=Ω� , 2
gλ =
ΩA

, 

aε = A , we can write the following differential equations of 

the relative motion of the balls: 

 ( )[ ]2 cos sin cos 0φ λ φ φ ε φ+Ω − − =��  (6) 

The integral of the energy of the equivalent holonomic 
scleronomic conservative system to the rheonomic system, 
which is a mechanism of the Watt’s regulator, is: 
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where 0φ  and 0φ�  are the initial conditions of the relative 
motion of the balls. Equation (7) presents also the phase 
trajectory of the relative motion.  

In Fig.1 and 2, the results of the numerical experiment 
over the considered example of the rheonomic system are 
presented. Fig.1b, gives the potential energy graphs of the 
equivalent holonomic scleronomic conservative system to 
the rheonomic system (Fig.1a the mechanisms of the Watt’s 
regulator) for different system kinetic parameters. From 
Fig.2, we can conclude that it is very suitable for the 
identification of homoclinic orbits in the form of number 
eight of nonlinear dynamics of the special class of 
rheonomic systems with coupled rotations and with 
rheonomic coordinate linearly depending on the time in the 
form qo=Ωt  to use the corresponding equivalent 
holonomic scleronomic conservative system and the 
corresponding phase portraits of this system. By using an 
example of the mechanisms of the Watt’s regulator, we 
show different forms of homoclinic orbits, as well as the 
bifurcations of the relative equilibrium positions in the 
considered class of the rheonomic systems and the 
parametric transformation of the homoclinic orbits. We 
investigate existence and nonexistence of homoclinic orbits 
in the shape of number eight and a trigger of coupled 
singularities for different values of the system kinetic 
parameters: the eccentricity ε  and the velocity of the 
support rotation Ω(λ). The examples of engineering 
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systems such as the Watt's regulators pointed out the 
validity of the defined theorems of the existence of 
homoclinic orbits in the form of number eight and the 
trigger of coupled singularities in the phase portrait of its 
nonlinear dynamics.  

Example 2: Differential double equation of the motion 
of a heavy mass particle along rough rotating circles  

We will consider a discrete system of a heavy mass 
particle with the mass m along a rough rotating circle about 
a vertically positioned axis oriented by the unit vector nG , 
and in the case with Coulomb’s type friction (see Fig.3) 
.The relative position of the mass particle along the rough 
circle with the radius ℓ is determined by the angle ϕ as a 
generalized coordinate. The rheonomic coordinate θ=Ωt is 
the angle of the rotation of the circle around the vertical 
axis oriented by the unit vector nG . 
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Figure 3. a - Rough surfaces around the “rough circle line” in a real 
construction with a corresponding coefficient of the Coulomb’s type 
friction; b - Mass particle motion along the rough rotating circle about the 
vertical axis  

We take into consideration the “rough circle line” with a 
rectangular cross section with one rough surface (or two 
surfaces) and one coefficient 0tgμ α=  of the Coulomb’s 
type friction for the rough surfaces with a normal in the 
radial directions; when the surfaces with a normal in the 
binormal directions are ideal and without friction, then 
governing differential double equation is in the form: 
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Our research is focused on the first governing differential 
double equation (8) and for the beginning, we consider the 
simplest differential double equation in the form: 
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corresponds to the differential double equation (8) in which 
the term 2

0tgφ α± �  is omitted.  
The first integral of the previous simplest differential 

double equation (9) of the corresponding fictive 
conservative system is obtained in the following form: 
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where ( )0 0,C φ φ�  is the integral constant depending on the 
initial values of the angular coordinate and the angular 
velocity for each trajectory branch. For the first phase 
trajectory branch, we take the previous equation with the 
upper sign, where ( )0 0,C φ φ�  is the integral constant 
depending on the initial conditions. For the first trajectory 
branch, this integral constant is in the form: 
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The beginning of the next one, second branch, is at the 
kinetic state corresponding angular velocity equal to zero in 
the position when the friction force takes alternation of its 
direction. The next one, third branch, starts at the kinetic state 
determined by the angular velocity equal to zero at the 
corresponding angular coordinate. Then it is easy to write the 
necessary generalization using the conclusions based on the 
induction: 

The initial (starting) kinetic state of the even ( )2k -th 
branch is at the kinetic state corresponding to the angular 
velocity equal to zero and the alternation of the Coulomb’s 
type friction force. Then, the initial conditions of the even 
( )2k -th trajectory branch are: ,2 1alt kφ −  and ( )2

,2 1 ,2 1alt k alt kφ φ− −
� , 

and the equation of the phase trajectory branch is in the 
following form: 
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where ( )2 ,2 1 ,2 1, 0k alt k alt kC φ φ− − =�  is the integral constant 
depending on the initial conditions for the second trajectory 
branch and is determined by the following expression:  
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Then, the initial conditions of the odd ( 2 1k + )-th 
trajectory branch are: ( ),2 ,2alt k alt ktφ φ=  and ( ) 02,

2
2, =kaltkalt φφ� , 

and ( )2 1 ,2 ,2, 0k alt k alt kC φ φ+ =�  is the integral constant 

depending on the initial conditions for the odd ( 2 1k + )-th 
trajectory branch and is determined by the following 
expression:  
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Form the previous analytical expressions of the phase 
trajectory branches, we can conclude that, in the fictive 
conservative system, an alternation of equilibrium 
positions, with a difference close, but not equal to 0α± , for 

2
0
21 ω>>

Ω
, a very small angular velocity of circle line 

rotation appears. In a better approximation, this difference 
is approximately 
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In addition, we can conclude that this phenomenon is a type 
of two coupled equilibrium positions (with one side stable) 
in fictive alternations. We can conclude that a trigger of 
coupled singularities caused by Amontons-Coulomb’s type 
friction forces contain two coupled one side stable singular 
points and one non stable singular point which in a 
corresponding system without friction is a unique singular 
point .  

The stationary solutions of the governing nonlinear 
differential double equation (8) are the same as the 
stationary solutions of the corresponding fictive system 
described by differential double equation (9). The 
conditions of the relative equilibrium positions are: 0φ =�  
and 0v =� , and we obtain the following transcendent double 
equation: 

 ( )
2

0 sin 0tg gφ α φΩ± − =A  (16) 

For 0 0α =  a mechanical system is ideal, and  the previous 

condition (16) obtained form 
2

sin 0tg gφ φΩ− =A , and the 

singular points are: s sφ π= , 1, 2, 3, 4,...s =  and 

2arccos 2s
g sφ π= ±
ΩA

, 1, 2,3, 4,...s = ⇒  for the case that 

2 1g ≤
ΩA

. From the abovementioned, we can conclude that 

for 2 1g ≤
ΩA

 in the phase portrait there are two forms of the 

separatrix phase trajectory, one of which is in the form of 
number “eight”. With the existence of this homoclinic orbit 
in the form of number “eight”, a trigger of coupled 
singularities, caused by Amontons-Coulomb’s type friction 
forces, contain two coupled one side stable singular points 
and one non stable singular point which in a corresponding 
system without friction is unique center type singular 

points. 
In addition, taking into our qualitative analysis that the 

coefficient of Coulomb’s type friction is a small number, 
we can conclude that the roots of transcedent double 
equation (14) are close to the roots from the obtained set 
corresponding to an ideal system. Also, it is necessary to 
take into acount that transcedent double equation (14) 
contains a sign alternation, and that the obtained roots are 
one-side singular points corresponding to the one-side 
stable, or non- stable equilibrium positions. 

For obtaining the roots of the transcendent double 
equation (14), it is necessary to use some method of 
approximation or a numerical method. Singular points – 
roots of the transcendent double equation (14) are in the 
intersections between two double functions: 

( ) ( )
2
0

02f tgωφ φ α= ±
Ω

 and ( ) φφ sin=f . The singular point 

in the sections between the previous two listed double 
functions takes into account that first function has the sign 
alternation 0α±  of the argument. For small values of the φ  
and for the first two roots around null, it is possible to use 
an approximation in the form of linearization of these 
functions: 
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and ( ) sinf φ φ φ= ≈ . Then the first rough approximate 
values of two roots are:  
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This pair of the two roots presents the first pair of the one-
side stable singular points (half-center type) which 
corresponds to the one-side stable equilibrium positions. 

The second series of the approximation of roots is possible 
to be obtained with the expansion of the listed functions into 
Taylor’s series around null in the following form:  

 ( )
3

sin 6f φφ φ φ= ≈ −  (19) 

and  

 ( ) ( ) ( )
2 2
0 0

0 02 2f tgω ωφ φ α φ α= ± ≈ ±
Ω Ω

. (20) 

Then we obtain the following third order nonlinear double 
equations: 

 
2 2

3 0 0
02 22 1 3 6 0ω ωφ φ α⎛ ⎞

− − ± ≈⎜ ⎟Ω Ω⎝ ⎠
. (21) 

For solving the previous nonlinear cubic double equation 
(21) and to obtain their three roots, we applied the 
following formulas of roots approximations 

  1 2 cos3 3
px χ≈ − , 2

22 cos3 3
px χ π+≈ −    

and  

 3
42 cos3 3

px χ π+≈ −  (22) 
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of the cubic equation in the form 3 0x px q+ + =  (for 
details see Rašković, P. [18]), where the condition 

( ) ( )3 31 1 03 3p qΔ = + <  is satisfied, and the following 

denotation  

 3arccos
2 3

q
pp

χ

⎛ ⎞
⎜ ⎟
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⎝ ⎠

 (23) 

is introduced.  The corresponding coefficients of this cubic 
equation (22) are in the following forms: 
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(see Fig.4). 

  
Figure 4. For 0 0.03u α= =  and non-ideal circle line, and 

2
0

2 2 0.5g kω= = =
Ω ΩA

, the first series of the roots 0s s sφ φ π= ±  with (a) left 

half side non stability and (b) right half side non stability, and the second 
series of the roots, and 2 2 0 2r r sφ φ π± ±= − ± , with (a) left half side stability 
and (b) right half side stability. 

 
a) 

 
b) 

( ) 0cossincos 22 =Ω−−Ω+ φεφφλφ��  
Figure 5. Homoclinic phase trajectory layering (a) and (b) for 0 0α =  and the 

different values of the 2
1 1gk λ= = ≤

ΩA
 and the axis eccentricity 0ε = .  

Fig.5 presents a) and b) the sets of the homoclinic phase 
trajectory layering, for 0 0α =  and different values of the 

2
1 1gk
λ

= = ≤
ΩA

 and the axis eccentricity. The homoclinic 

orbits in the form of number eight appear and disappear 

with the changing of the parameter 2
1 1gk λ

≤= = ≥ΩA
 and 

the axis eccentricity 0ε = . Two sets of singular points: 

s sφ π= , 1, 2, 3, 4,...s =  and 2arccos 2s
g sφ π= ±
ΩA

, 

,...4,3,2,1=s  for 2
1 1gk
λ

= = ≤
ΩA

 exist together with 

homoclinic orbits – separatrix in the form of number eight. 
For concluding this part and for obtaining analytical 

expressions or the roots of the trigonometric equation 
( ) ( )2

0 0sin cos sin 0kφ α φ α φ± − =∓  in generalized 
approximation, we can use Taylor’s expansion with 
different terms of approximations around the singular point 
of a corresponding ideal mechanical system to the 
considered non ideal with Coulomb’s type friction: 

1. The first rough approximation of the singular point is: 
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3. Then we can find approximate expressions of the roots 
of the previous transcendent equation 

( ) ( )2
0 0sin cos sin 0kφ α φ α φ± − =∓  around the roots for 

the case when the circle is an ideal line. For that reason, 
into the previous trigonometric equation, we put a 

change: rφ φ φ⇒ +  where 2arccos 2r
g rφ π= ±
ΩA

, 

1, 2,3,4,...r =  and we obtain:  

( ) ( )2
0 0sin cos sin 0r rkφ φ α φ φ α φ+ ± − + =∓   (30) 

and the an approximated expressions for the roots are in 
the following forms: 

 ( )
( ) ( )
( ) ( )

2
0 0

2,3 . 2
0 0

sin cos sin
cos cos 2

r r r
l d

r r

κ φ α φ α φ
φ

κ φ α φ α≈
± − ±

−
± − ±

. (31) 

We can make a concluding reviews of the obtained 
expressions of singular points for the case of non-ideal 
system dynamics.  

A. The singular points for the case that 2 1κ < are:  
a* For 0rφ ≠ , around  

 2arccos 2r rφ κ π= ± ± ,   

are in the forms 

 ( )
( ) ( )

( ) ( )00
2

0
2

0
.3,2 2coscos

sinsincos
αφαφκ
αφκφαφφ

±−±
±−±

≈
rr

rrr
dl

, (32) 

and one side stable center type, in alternations right and 
left.  

b* For 0=sφ  and πφ ss ±= , and around πφ ss ±= ,  
are in the forms 

 ( ) ( ) ( )
2

0 0
0 , 2 21 1l d

tg tg
k
α κ αφ

κ
±≈ ≈

− −
∓  (33) 

and one side stable center type, in alternations right and 
left.  

B. The singular points for the case that 12 >κ  and 
around 0=sφ  πφ ss ±= , are  

 ( ) ( ) ( )
2

0 0
0 , 2 21 1l d

tg tg
k
α κ αφ

κ
±≈ ≈

− −
∓  (36) 

one side stable center type and next one side non stable 
saddle type, alternatively. 

By introducing the following u=2φ� , a transformation of 
the nonlinear differential equation (8) gives a first order 
differential equation with the corresponding integral in the 
form: 

 

( ) ( )

( )
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0 02
2

0 0
2 0

2 2 2 2
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2 2

sin2
cos 1 4

cos 22 cos
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Ce α φ

α φ α
φ φ

α α
φ αφ

α α α α

± ±
= − +

+
±Ω+ −

+ +
Ω + ∓

�
A

∓
A

∓

 (37) 

where C  is the integral constant depending of initial 
conditions for the corresponding interval of the material 
particle motion and in which the upper sign is for 0φ >�  and 

the lower sign for 0φ <� , in accordance with alternations of 
the friction force directions.  

Example 3. Forced nonlinear dynamics differential 
equation of the heavy coupled rotor dynamics in the field of 
turbulent damping 

On the basis of the previous results and remarks, our 
attention is focused on the motion of the representative 
point on the phase trajectory in the phase plane of the 
forced nonlinear dynamics of multi-step coupled heavy 
rigid rotor dynamics in the field with and without turbulent 
damping (see Fig.6a*).  
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b) 

Figure 6. a) Three-step coupled heavy rotors b) forced non-linear 
dynamics visualizations. (reductor and multipliers) by the phase trajectory 
portrait of the forced nonlinear dynamics.  

The corresponding main differential equation of the 
forced vibrations of a multi-step coupled multi-rotor system 
is in the following form: 

 

1 1 1 1
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1 1 1 ,( 1) 11
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= =+=

+= =
= +=
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⎝ ⎠⎪ ⎪⎢ ⎥Π⎪ ⎪⎣ ⎦⎩ ⎭

=

∑

�� � �

(38) 

For the case when the system of coupled rotors is in the 
field with turbulent damping, and excited by external one 
frequency force or one frequency couple, we can introduce 
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damping forces proportional to the first step or square of 
the angular velocities of the rotor shaft. By using two phase 
coordinates ϕ  and v , the main differential equation of 
nonlinear dynamics of coupled heavy rotors dynamics in 
the field with turbulent damping, for a homogeneous 
system, can be transformed into a system of two first order 
differential equations in the following form: 

( )

1
1

1 1 1 1 1
1

1

1

2 sin sin

cos

M

k M
k k

M M M
k

M

M

d vdt
dv v i idt
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φ

δ φ φ

ω

=

=

= Ω

⎧ ⎫⎡ ⎤⎪ ⎪= − Ω −Ω + −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

−
Ω

∑  (38) 

From the series of numerical results, we make choice of 
the characteristic forced processes for four step coupled 
heavy rotors. In the following series of the graphical 
presentations in Fig.7, we can see the time-history graphs 
and the corresponding phase trajectories of the forced rotor 
system dynamics. 

 
a)                                                    b) 

 
c)                                                  d) 

 
e)                                                 f) 

Figure 7. Three-step coupled heavy rotors forced nonlinear dynamics 
visualizations (reductor and multipliers). a), c) and e) Time-history curves 
( ), tϕ . b), d) and f) Phase trajectories portraits of the forced nonlinear 

dynamics ( ),ϕ ϕ�  

The first side series of graphs in Fig.7 a), c) and e) 
represent the families of time-history curves ( )t,φ  for 
different steps of multi-step coupled heavy rotors dynamics, 
as a reductor or a multiplier, of the rotate motions of the 
gear transmission system non-linear model. In the second  
series of the graphs in the same Fig.7 b), d) and f), the 
forced non-linear dynamics phase trajectories of the 
multistep coupled heavy rotors - reductor or multiplier 
dynamics in the phase plane are presented. Fig.7 b), d) and 
f) show the characteristic phase trajectories ( )φφ,�  for forced 
regimes, followed homoclinic orbits for multi step coupled 
heavy rotors - multiplier free vibrations, for different 
kinetic parameters of the system. 

The graphical visualization of the free and forced 
nonlinear dynamics of gear transmission by the model leads 

to the concluding remarks. The phase trajectory for forced 
nonlinear dynamics possesses a very sensitive dependence 
on the initial conditions as well as on the relations between 
the kinetic parameters of the nonlinear model and the 
external excitation frequency. The behavior of the forced 
non-linear dynamics phase trajectory corresponds to the 
homoclinic orbits form for corresponding system free 
vibrations. The influence of the initial conditions and some 
system parameters with bifurcation properties which leads 
to the corresponding layering of the homoclinic orbits for 
free conservative non-linear dynamics give their sensitive 
dependence of nonlinear dynamics on the system initial 
conditions around the trigger of coupled singularities and 
homooclinic orbit in the form of number eight. Then, under 
the action of one frequency external excitation of the 
system, the dynamics response is not single frequency 
regimes but, depending on the initial conditions as well as 
on the relation between the kinetic parameters of the 
considered system and the external excitation frequency. 

In some of these cases, the responses of the dynamic 
systems can be with different properties as they are double 
frequency regimes, as well as  stochastic like or chaotic like 
regimes.  
 

Concluding remarks 
The paper presents some characteristic examples of the 

nonlinear dynamics with the trigger of coupled singularities 
in the phase portrait and with the homoclinic orbit in the 
form of number eight. Also, a layering of the homoclinic 
orbits is identified in some considered system dynamics 
with one or multiparameter transformation of the phase 
trajectories in the phase plane. The series of the theorems of 
the existence of the trigger of coupled singularities as well 
as the homoclinic orbit in the form of number eight are 
proven in applications to their listed examples of 
mechanical system dynamics with coupled rotations in the 
gravitation field. 

In the system nonlinear dynamics with no ideal 
constraints introduced by Coulomb’s type fiction, the 
appearance of the bifurcation of the equilibrium positions is 
identified. The series of the alternation of the directions of 
the Coulomb’s type friction force caused the series of  
alternations of the one side (half) singular point which 
correspond to equilibrium position alternations. In the 
phase trajectory portraits, there appears a bifurcation of the 
singular points which are a special type of the trigger of 
coupled singularities having two half one side stable 
singular positions around a stable position which 
correspond to corresponding singular points of ideal 
nonlinear system dynamics. If the basic system dynamics 
posses, in the phase plane, a trigger of coupled three 
singular points caused by classical nonlinearities, then for 
no ideal system with Coulomb’s type friction, 
corresponding numbers of complex triggers with three sub-
triggers appear. These are the results of each singular point 
bifurcation into two half – one side singular points. 
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Postojanje trigera spregnutih singulariteta u nelinearnoj dinamici 
mehaničkih sistema spregnutim rotacijama  

Prikazana je teorema o postojanju trigera spregnutih singulariteta, kao i mnogobrojni primeri nelinearne dinamike 
sa spregnutim singularitetima u faznoj ravni. Apstrakcija nelinearne dinamike realnih inžinjerskih sistema 
spregnutim rotacijama do modela krutog tela koje izvodi spregnute rotacije oko mimoilaznih osa, u gravitacionom 
polju, pokazuje različite homokliničke fazne trajektorije kao i različite skupove trigera spregnutih singulariteta. 
Prikazana je višeparametarska transformacija faznih trajektorija kao i skupa spregnutih singulariteta. Takođe, je 
prikazana i serija trigera spregnutih singulariteta u faznoj ravni, kao i triger spregnutih jednostranih singulariteta 
koji su identifikovani u kretanju teške materijalne tačke po rotirajućoj hrapavoj krivoj liniji i neidealnim vezama 
Amontons-Coulomb-ovog tipa trenja. Koristeći primer prikazano je kretanja teške materijalne tačke po rotirajućoj 
hrapavoj kružnoj liniji u vertikalnoj ravni opisano dvojnom diferencijalnom jednačinom i dvojnom jednačinom 
faznih trajektorija i u faznoj ravni je identifikovano više trigera spregnutih jednostranih (polu) singulariteta.  

Ključne reči: mehanički sistem, triger, nelinearna dinamika, spregnuti singularitet, rotirajući sistem. 
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Существование триггеров сочетаемых сингулярностей в 
нелинейной динамике механических систем сочетаемыми 

вращениями 

В настоящей работе показана теорема о существовании триггеров сочетаемых сингулярностей, а также и 
многочисленные примеры нелинейной динамики со сочетаемыми сингулярностями на фазовой плоскости. 
Абстракция нелинейной динамики реальных инженерных систем связаных вращением с моделью твёрдого 
тела, которое осуществляет сочетании вращения вокруг непересекающихся осей, в гравитационном поле, 
показывает различные гомоклинические фазовые траектории и другой набор триггеров сочетаемых 
сингулярностей. Показана многофакторная траектория фазовых превращений и система сочетаемых 
сингулярностей. Также показана серия триггеров сочетаемых сингулярностей на фазовой плоскости, а в том 
числе и триггер сочетаемых односторонних сингулярностей, определённых в движении тяжёлой 
материальной точки, по вращающейся неправильной грубой линии и далёкими от идеального соединениями 
фрикционного типа Амонтона-Кулона. На примере показано движение тяжёлой материальной точки по 
вращающейся грубой кольцевой линии в вертикальной плоскости, описано двойным дифференциальным 
уравнением и двойственным уравнением фазовых траекторий и на фазовой плоскости определено више 
триггеров связанных односторонними (полу-) сингулярностями. 

Ключевые слова: механическая система, триггер, нелинейная динамика, сочетаемая сингулярность, 
вращающаяся система. 

Existence des déclencheurs des singularités couplées dans la 
dynamique non linéaire chez les systèmes mécaniques avec les 

rotations couplées 
La théorème sur l’existence des déclencheurs des singularités couplées ainsi que de nombreux exemples de la 
dynamique non linéaire avec les singularités couplées sur le plan de phase ont été présentés dans cet article. 
L’abstraction de la dynamique non linéaire des systèmes réels d’ingénierie par les rotations couplées jusqu’au modèle 
du corps rigide qui effectue les rotations couplées autour des axes non croisés dans le champ de gravitation montre les 
différentes phases homo cliniques de la trajectoire ainsi que les différents groupes de déclencheurs de singularités 
couplées. On a présenté la transformation multi paramétrique des trajectoires de phase ainsi que la transformation 
du groupe des singularités couplées. On a présenté aussi une série de déclencheurs des singularités couplées sur le 
plan de phase ainsi que le déclencheur des singularités unilatérales identifiées lors du mouvement d’une lourde 
particule matérielle  sur une ligne courbe et rêche et les relations non idéales de la friction du type Amonions-
Coulomb. A l’aide de cet exemple on a présenté le mouvement de la particule lourde matérielle sur la ligne circulaire 
rotative sur le plan vertical, décrit par la double équation différentielle et par la double équation des trajectoires de 
phase. Sur le plan de phase on a identifié plusieurs déclencheurs des (demi) singularités couplées unilatérales.  

Mots clés: système mécanique, déclencheur, dynamique non linéaire, singularité couplée, système de rotation. 

 

 


