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The Stability of Linear Continous Singular and Discrete Descriptor 
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This paper gives sufficient conditions for the practical and finite time stability of linear singular continuous time delay 
systems of the form ( ) ( ) ( )0 1E t A t A t τ= + −x x x . When we consider the finite time stability concept, these new delay 
independent conditions are derived using an approach based on Lyapunov – like functions and their properties on the 
sub-space of consistent initial conditions. These functions do not need to have: a) properties of positivity in the whole state 
space and b) negative derivatives along the system trajectories.  
Considering practical stability, the above mentioned approach is combined and supported by a classical Lyapunov 
technique to guarantee its attractivity 
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Classes of systems to be considered 
T should be noticed that in some systems we must 
consider their character of dynamic and static state at the 

same time. Singular systems (also referred to as degenerate, 
descriptor, generalized, differential - algebraic systems or 
semi – state) are those the dynamics of which is governed 
by a mixture of algebraic and differential equations. 
Recently, many scholars have paid much attention to 
singular systems and have obtained many good results. The 
complex nature of singular systems causes many difficulties 
in the analytical and numerical treatment of such systems, 
particularly when there is a need for their control. 

It is well-known that singular systems  have been one of 
the major research fields of the control theory. During the 
past three decades, singular systems attracted much 
attention due to comprehensive applications in economics 
as the Leontief dynamic model Silva, Lima (2003), in 
electrical Campbell  (1980) and mechanical models Muller 
(1997), etc.  

A discussion on singular systems originated in 1974 
with the fundamental paper of Campbell et al. (1974) and 
later with the antological paper of Luenberger (1977). 

The problem of investigation of time delay systems has 
been exploited over many years. Time delay is very often 
encountered in various technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, 
long transmission lines, etc. The existence of pure time lag, 
regardless if it is present in the control or/and the state, may 
cause an undesirable system transient response, or even 
instability. Consequently, the problem of stability analysis 
for this class of systems has been one of the main interests 

for many researchers. In general, the introduction of time 
delay factors makes the analysis much more complicated. 

We must emphasize that there are a lot of systems that 
have the phenomena of time delay and singular 
simultaneously and we call such systems the singular 
differential systems with time delay. These systems have 
many special characteristics. If we want to describe them 
more exactly, to design them more accurately and to control 
them more effectively, we must make tremendous efforts to 
investigate them, which is obviously very difficult work. In 
recent references, the authors have discussed such systems 
and got some conclusions. However, in the study of such 
systems, there are still many problems to be considered. 
When general time delay systems are considered, in the 
existing stability criteria, mainly two ways of approach 
have been adopted.  

Namely, one direction is to contrive the stability 
condition which does not include the information on the 
delay, and the other is the method which takes it into 
account. The former case is often called the delay - 
independent criterion and generally provides simple 
algebraic conditions. In that sense the question of their 
stability deserves great attention.  

Stability concept 
In practice, there is not only an interest in system 

stability (e.g. in sense of Lyapunov), but also in bounds of 
system trajectories. A system could be stable but 
completely useless because it possesses undesirable 
transient performances.  

I 
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Thus, it may be useful to consider the stability of such 
systems with respect to certain sub-sets of state-space, 
which are a priori defined in a given problem.  

Besides that, it is of particular significance to consider 
the behavior of dynamical systems only over a finite time 
interval. 

These bound properties of system responses, i. e. the 
solution of system models, are very important from the 
engineering point of view. Based on this fact, numerous 
definitions of the so-called technical and practical stability  
were  introduced.   

Roughly speaking, these definitions are essentially based 
on the predefined boundaries for the perturbation of initial 
conditions and the allowable perturbation of a system 
response. In engineering applications of control systems, 
this fact becomes very important and sometimes crucial, for 
the purpose of characterizing in advance, in quantitative 
manner, possible deviations of the system response.  

Thus, the analysis of these particular bound properties of 
solutions is an important step which precedes the design of 
control signals, when finite time or practical stability 
control is concerned.  

Due to limited space, we will only concentrate on the 
countinuous case. 

Motivated by the brief discussion on practical stability in 
the monograph of La Salle and Lefschetz (1961), Weiss and 
Infante (1965, 1967) have introduced various notations of 
stability over finite time interval, for continual-time 
systems and constant set trajectory bounds.  

Further development of these results was due to many 
other authors, Michel (1970), Grujic (1971), Lashirer, Story 
(1972). 

Practical stability of simple and interconnected systems 
with respect to time-varying subsets was considered in 
Michel (1970) and Grujic (1975).  

A more general type of stability: “practical stability with 
settling time”, practical exponential stability, etc., which 
includes many previous definitions of finite time and 
practical stability was introduced and considered in Grujic 
(1971, 1975.a, 1975.b).  

Further results were presented by Weiss (1972) and 
Weiss, Lam (1973), and many others. 

A concept of finite-time stability, called “final stability”, 
was introduced in Lashirer, Story (1972) and further 
development of these results was due to Lam, Weiss (1974). 

Chronological preview of the previous results 
In the short overview that follows, we will familiarize 

only with the results achieved for continuous linear systems 
in the area of Non - Lyapunov stability.  

Practical and Finite Time Stability – Singular Systems 
In the context of practical stability for linear continuous 

singular systems, various results were first obtained in 
Debeljkovic, Owens (1985) and Debeljkovic 
(1986.a,1986.b) 

Debeljkovic, Owens (1985) derived some new results in 
the area of practical and finite time stability for time-
invariant, continuous linear singular systems.  

These results represent the sufficient condition for 
stability of such systems and are based on Lyapunov-like 
functions and their properties on sub-space of consistent 
initial conditions. In particular, these functions do not need 
to have properties of positivity in the whole state space and 
negative derivatives along the system trajectories.  

The results are expressed directly in terms of the 
matrices E  and A  naturally occurring in the model thus 
avoiding the need to introduce algebraic transformations 
into the statement of the theorems. It was shown that the 
geometric approach gives more insight in the structural 
properties of singular systems and the problems of 
consistency of initial conditions and it also makes possible 
a basis-free description of dynamic properties. 

Further extension of these results were presented in 
Debeljkovic et al. (1992, 1993, 1994) for both regular and 
irregular singular systems. Namely, these papers examine 
some practically important boundedness and associated 
unboundedness properties of response of linear singular 
systems. The existence of specifically bounded solutions, as 
well as practical instability of systems that have been 
considered were investigated. A development and easy 
application of Lyapunov‘s direct method for this analysis 
were presented. A potential  ( weak) domain of practical 
stability, consisting of the points of the phase space, which 
generate at least one solution with specific “practical 
stability” constraints, was underestimated. 

In the papers Debeljkovic et al. (1994.a, 1994.b, 1995) 
and Dihovicni et al. (1996), some of previous results have 
been extended to the stability robustness problem in the 
context of finite time and practical stability. 

In the paper of Debeljkovic,  Jovanovic (1997) for the 
first time singular systems, operating in the forced regime, 
have been considered. 
The finite time stability of singular systems operating under 
 perturbing forces, has been considered in the papers of De-
beljkovic et al. (1997), and Kablar,  Debeljkovic (1998.a, 
1998.b), using, for the first time, Coppel,s inequality and 
the matrix measure approach, respectively. 

The concept of finite time and practical stabilty of the 
class of time varying singular systems, were presented for 
the first time in Kablar,  Debeljkovic (1998.c). 

The necessary and sufficient conditions for the linear 
singular systems stability operating over the finite time 
interval were derived in the paper of  Debeljkovic, Kablar 
(1998). Moreover, the reciprocial problem of instabilty of 
the same class of systems has been solved in Kablar, 
Debeljkovic (1999). 

The Bellman-Gronwall approach was, for the first time, 
applied in a study of linear singular systems in the paper of 
 Debeljkovic, Kablar (1999). 

Further, a new extension of the idea of practical stability 
to general singular systems, was due to Yang et al. (2005.a). 
Several new concepts of practical stability  were derived, 
based on the Lyapunov functions and the comparison 
principle. 

A comparison system is a scalar quantity differential 
system which enables transfering the problem of practical 
stabilty of a singular system to the standard state space 
system. 

A quite new approach in time domain, based on the 
fundamental matrix of singular systems, has been applied in 
paper Nie, Debeljkovic (2004). 

In the paper of the same authors, Yang et al  (2005.b), 
practical stabilization and controllability of singular 
systems have been examinated using the before mentioned 
approach.. Furthemore, the comparison  principle presented 
can be used to analyze other properties of solutions of 
singular systems, for example, boundedness.This 
consideration is applicable to both linear and nonlinear 
singular systems. 

The aforementioned ideas have been extended to the 
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closed loop singular systems, in order to achieve practical 
stability with non impulsive motion, Yang et al. (2006). 

The finite-time control of linear singular systems with 
parametric uncertainness and disturbances was considered 
in the paper of Shen, Shen (2006). The modified concept of 
finite time stability has been extended, in a particular way, 
to linear time invariant singular systems. Providing 
sufficient conditions guaranteeing finite time stability via 
state feedback, this problem leads to an optimization 
problem involving LMIs. 

Practical and Finite Time Stability – Time Delay Systems 
In the context of finite or practical stability for a particular 

class of nonlinear singularly perturbed multiple time delay 
systems various results were, for the first time, obtained in 
Feng, Hunsarg (1996). It seems that their definitions  are very 
similar to those in Weiss, Infante (1965, 1967), clearly 
addopted to time delay systems. 

It should be noticed that these definitions are 
significantly different from the definitions presented  by the 
authors of this paper. 

In the context of finite time and practical stability for 
linear continuous time delay systems, various results were 
first obtained in Debeljkovic et al. (1997.a, 1997.b, 1997.c, 
1997.d), Nenadic et al. (1975, 1997). 

In the paper of  Debeljkovic et al. (1997.a) and Nenadic et 
al. (1975, 1997) some basic results from the area of finite time 
and practical stability were extended to the particular class of 
linear continuous time delay systems. Stability sufficient 
conditions dependent on delay, expressed in terms of a time 
delay fundamental system matrix, have been derived. In 
addition, in the circumstances when it is possible to establish a 
suitable connection between the fundamental matrices of linear 
time delay and non-delay systems, the presented results enable 
an efficient procedure for testing practical as well the finite 
time stability of time delay systems.  

The matrix measure approach has been, for the first time, 
applied in Debeljkovic et al. (1997.b, 1997.c, 1997.d, 
1997.e, 1998.a, 1998.b, 1998.d, 1998.d) for the analysis of 
practical and finite time stability of linear time delayed 
systems. With the Coppel,s  inequality and introducing the 
matrix measure approach, one provides very simple delay – 
dependent sufficient conditions of practical and finite time 
stability with no need for time delay fundamental matrix 
calculations. 

In Debeljkovic et al. (1997.c) this problem has been 
solved for forced time delay systems. 

Another approach, based on a very well known Bellman 
– Gronwall Lemma, was applied in Debeljkovic et al. 
(1998.c), to provide new, more efficient sufficient delay- 
dependent conditions for checking finite and practical 
stability of continuous systems with state delay. 

An overview of all previous results and contributions 
was presented in paper  Debeljkovic et al. (1999) with 
overall comments and a slightly modified Bellman – 
Gronwall approach. 

Finally, a modified Bellman – Gronwall principle has 
been extended to the particular class of continuous non- 
autonomous time delayed systems operating over the finite 
time interval, Debeljkovic et al. (2000.a, 2000.b, 2000.c). 

Practical and Finite Time Stability – Singular Time delay 
Systems 

The paper, Yang, et al. (2006) introduces the idea of 
practical stability with time delays in terms of two 
measurements, and represents the first attempt to apply the 

non-Lyapunov concept to this class of control systems. 
Based on the Lyapunov functions and the comparison  
principle, a criterion, by which the problem of singular 
systems with time delay is reduced to that of standard 
(classical) state space systems without delay, is derived. By 
appropriate choice of the two measurements, the basic 
definition in this paper reduces to the practical stability 
defined earlier in Debeljković, Owens (1985). The paper 
also shows the difficulty to calculate the time derivatives 
along the systems trajectory using the classical aggregate 
(Lyapunov) function for this singular time delayed system.  

Motivation 
In our paper we present quite another approach to this 

problem and continue our investigation in a usual way. 
Namely, our result is expressed directly in terms of 

matrices E , 0A  and 1A  naturally occurring in the system 
model thus avoiding the need to introduce any canonical 
form into the statement of the Theorem. 

The geometric theory of consistency leads to the natural 
class of positive definite quadratic forms on the subspace 
containing all solutions. This fact enables the construction 
of the Lyapunov and Non- Lyapunov stability theory even 
for the LCSTDS in that sense that the attractivity property 
is equivalent to the existence of symmetric, positive definite 
solutions to a weak form of Lyapunov matrix equation 
incorporating condition which refer to boundedness of 
solutions.  

Another approach is based on a classical approach 
mostly used in deriving sufficient delay independent 
conditions of finite time stability. 

In the former case a new definition is introduced, based 
on the attractivity properties of system solution, which can 
be treated as something analogous to quasy – contractive 
stability, Weiss, Infante (1965,1967).  

Notation and preliminaries 
 – Real vector space  
 – Complex vector space 

I  – Unit matrix 
F  – ( ) n n

ijf ×= ∈  real matrix 
TF  – Transpose of matrix F  

0F > – Positive definite matrix 
0F ≥ – Positive semi definite matrix 

( )Fℜ – Range of matrix F  

( )Fℵ – Null space (kernel) of matrix F  

( )Fλ – Eigenvalue of matrix F  

F  – Euclidean matrix norm of  
F ( )max

TA Aλ=  

⇒  – Follows 
 – Such that 

Generally, the singular differential control systems with 
time delay can be written as: 

 ( ) ( ) ( ) ( ) ( )( )
( ) ( )

, , , , 0
, 0

E t t t t t t t
t t t

τ
τ

= − ≥
= − ≤ ≤

x f x x u
x φ

, (1) 

where ( ) nt ∈x  is a state vector, ( ) mt ∈u  is a control 
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vector, ( ) n nE t ×∈  is a singular matrix, 

[ ]( )C C ,0 , nτ∈ = −φ  is an admissible initial state 

functional, [ ]( )C C ,0 , nτ= −  is the Banach space of 

continuous functions mapping the interval [ ],0τ−  into n  
with topology of uniform convergence.  

The vector function satisfies:  

 ( ) : n n m nℑ× × × →f . (2) 

and is assumed to be smooth enough to assure the existence 
and uniqueness of solutions over a time interval 

 ( )0 0,t t T⎡ ⎡ℑ = + ∈⎣ ⎣ , (3) 

as well as the continuos dependence of the solutions denoted 
by ( )0 0, ,t tx x  with respect to t  and the initial data. 

The quantity T  may be either a positive real number or 
the symbol +∞ , so that finite time stability and practical 
stabilty can be treated simultaneously, respectively. 

In general, it is not required that  

 ( ), 0, 0 0t ≡f , (4) 

for an autonomous system, which means that the origin of 
the state space is not necessarily required to be an 
equilibrium state. 

Let n  denotes the state space of the system given by (1) 
and ( )⋅  Euclidean norm.  

Let : nV ℑ× → , be a tentative aggregate function, 
so that ( )( ),V t tx  is bounded for and for which ( )tx  is 
also bounded. 

Define the Eulerian derivative of ( )( ),V t tx along the 
trajectory of system (1), with 

 ( )( ) ( )( ) ( )( ) ( )
,

, , TV t t
V t t grad V t tt

∂
= + ⎡ ⎤⎣ ⎦∂

x
x x f . (5) 

For time invariant sets it is assumed: ( )S  is a bounded, 
open set.  

The closure and boundary of ( )S  are denoted by ( )S  

and ( )∂S , respectively, so: ( ) ( ) ( )\∂ =S S S . 

( )
cS denotes the complement of ( )S . 

Let βS  be a given set of all allowable states  
of the system for t∀ ∈ℑ . 

Set αS , α β⊂S S  denotes the set of all allowable initial 
states and εS  the corresponding set of allowable 
disturbances.  

The sets αS , βS  are connected and a priori known. 

( )λ  denotes the eigenvalues of the matrix ( ) .  

maxλ  and minλ  are the maximum and minimum 
eigenvalues, respectively. 

Some previous results 
Consider a linear continuous singular system with state 

delay, described by 

 ( ) ( ) ( )0 1E t A t A t τ= + −x x x , (6.a) 

with a known compatible vector valued function of initial 
conditions 

 ( ) ( ) , 0t t tτ= − ≤ ≤x φ , (6.b) 

where 0A  and 1A  are constant matrices with appropriate 
dimensions. 

Moreover, we will asume that rank E r n= < . 
Definition 1. The matrix pair ( )0,E A  is said to be 

regular if ( )0det sE A−  is not identically zero, Xu et al. 
(2002). 

Definition 2. The matrix pair ( )0,E A  is said to be 
impulsive free if 0deg det ( )ree sE A rank E− = , Xu et al. 
(2002). 

The linear continuous singular time delay system (2) 
may have an impulsive solution; however, the regularity 
and the absence of impulses of the matrix pair (E, A0) 
ensure the existence and uniqueness of an impulse free 
solution to the system under consideration, which is defined 
in the following Lemma. 

Lemma 1. Suppose that the matrix pair (E, A0) is regular 
and impulsive free, then the solution to (6.a) exists and is 
impulse free and unique on [ [0, ∞ , Xu et al (2002). 

A necessity for system stability investigation creates a 
need for establishing a proper stability definition.  

So we have 
Definition 3.  
a) A linear continuous singular time delay system (6) is 

said to be regular and impulsive free if the matrix pair 
( )0,E A  is regular and imulsive free. 

b) A linear continuous  singular time delay system (6) is 
said to be stable if for any 0ε >  there exists a scalar 
( ) 0δ ε >  such that, for any compatible nitial conditions 

( )tφ , satisfying the condition: ( ) ( )
0

sup
t

t
τ

δ ε
− ≤ ≤

≤φ , the 

solution ( )tx  of system (2) satisfies ( ) , 0t tε≤ ∀ ≥x .  

Moreover, if ( )lim 0
t

t
→∞

→x , the system is said to be 

asymptotically stable, Xu et al (2002). 

Main results 
Let us consider the case when the subspace of consistent 

initial conditions for singular time delay and the singular 
nondelay system coincide. 

Finite time stability 

Stability definition 

Definition 4. A regular and impulsive free singular time 
delayed system (6) is finite time stable with respect to 
{ }0 , , ,t α βℑ S S , if and only if 0 cont

∗∀ ∈x W  satisfying 

 ( ) 2 2
0 0 TT E EE Et α= <x x ,  

implies 

 ( ) 2 ,TE Et tβ< ∀ ∈ℑx ,  
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k
∗W  being the subspace of consistent initial conditions. 

Remark 1. The singularity of the matrix E  will ensure 
that solutions to (6) exist only for a special choice of 0x . 

In Owens, Debeljković (1985) the subspace of k
∗W  of 

consistent initial conditions is shown to be the limit of the 
nested subspace algorithm 

 
( ) ( )( )

1

,0

1
0, 1 , 0

, 0

n
k

k j k j A
A E j

∗

∗ − ∗
+ =

=

= ≥

W

W W
 (7) 

Moreover, if 0 k
∗∈x W  then ( ) , 0kt t∗∈ ∀ ≥x W  and 

( )
10 0AE Aλ =−  is invertible for some λ ∈  (a condition 

for uniqueness), then 

 ( ) { }0k E∗ ∩ℵ =W . (8) 

Stability theorem 

Theorem 1. Suppose that ( ) 0TE E I− > . 

A singular time delayed system (6) is finite time stable 
with respect to ( ){ }2

0 , , , ,t α βℑ ⋅ , α β< , if the following 

condition is satisfied: 

 ( )( )max 0 ,t te tλ β
α

Ψ − < ∀ ∈ℑ , (9) 

where: 

 

( )
( ) ( )( ) ( )

( )
( ) ( )

max
1

0 0 1 1

max

,

,
1

T T T T T T

k
T T

t A E E A E A E E I A E I t

t
t E E t

λ

β

λ

−

∗

Ξ =
⎛ ⎞+ + − +⎜ ⎟
⎜ ⎟= ∈⎜ ⎟

=⎜ ⎟⎜ ⎟
⎝ ⎠

x x

x
x x

W
(10) 

Proof. The define tentative aggregation function as 

 ( )( ) ( ) ( ) ( ) ( )
t

T T T

t

V t t E E t d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x . (11) 

Let 0x  be an arbitrary consistent initial condition and 
( )tx  the  resulting system trajectory. 

The total derivative ( )( ),V t tx  along the trajectories of 
the system, yields 

  

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

1

,

2

T T

t
T T T T

t
T T T T

dV t t t E E tdt

d d t A E E A tdt

t E A t t t t t
τ

ϑ ϑ ϑ

τ τ τ
−

=

+ = +

+ − + + − −

∫

x x x

x x x x

x x x x x x

 (12) 

From (12) it is obvious 

 
( ) ( )( ) ( )( ) ( )

( ) ( )
0 0

12

T T T T T

T T

d t E E t t A E E A tdt
t E A t τ

= +

+ −

x x x x

x x
, (13) 

and based on a well-known inequality4 and with the 
particular choice 

 ( ) ( )
( )( ) ( ) ( ) { }0, \ 0

T

T T
k

t t
t E E I t t ∗

Γ =
= − > ∀ ∈
x x

x x x W
 (14) 

so 

 

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0 0

1
1 1

T T T T T

T T T T

T T

d t E E t t A E E A tdt
t E A E E I A E t
t E E I tτ τ

−

≤ +

+ −

+ − − −

x x x x

x x
x x

 (15) 

and the fact that it is more than obvious, that one can adopt 

 ( ) ( ) ( ) { }2 2 , \ 0T T kE E E E
t t tτ β ∗− < ∀ ∈x x x W , (16) 

since one is looking for a real condition to avoid 
( ) 2

TE E
t β=x , for any t∀ ∈ℑ . 

Moreover, since ( ) 2 0It τ− >x ,(15) is reduced to: 

  

( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( )

1
0 0 1 1

max

T T

T T T T T T

T T

d t E E tdt
t A E E A E A E E I A E I t

t E E t

β

λ

−

<

< + + − +

< Ξ

x x

x x

x x

 (17) 

Remark 2. Note that Lemma A15 and Theorem A1 
indicate that 

 ( )( ) ( ) ( )T TV t t E E t=x x x , (18) 

is a positive quadratic form on k
∗W , and it is obvious that 

all smooth solutions ( )tx  evolve in k
∗W , so ( )( )V tx  can 

be used as a Lyapunov function for the system under 
consideration, Owens, Debeljkovic (1985). 

It will be shown that the same argument can be used to 
declare the same property of another quadratic form present 
in the sequel. 

Using (10) one can get: 

 
( ) ( )( )
( ) ( )

( )max

T T

T T

d t E E t
d t

t E E t
λ< Ξ

x x

x x
, (19) 

or 

 
( ) ( )( )
( ) ( )

( )
0 0

max

t tT T

T T
t t

d t E E t
d t

t E E t
λ< Ξ∫ ∫

x x

x x
, (20) 

and 

 ( ) ( ) ( ) ( ) ( )( )max 0
0 0

t tT T T Tt E E t t E E t eλ Ξ −<x x x x . (21) 

Finally, if one uses the first condition of Definition 4, 
then 

 ( ) ( ) ( )( )max 0t tT Tt E E t eλα Ξ −< ⋅x x , (22) 

and finally by (9) yields to 
                                                           
4 ( ) ( ) ( ) ( ) ( ) ( )12 , 0T T Tt t t t t tτ τ τ−− ≤ Γ + − Γ − Γ >u v u u v v  
5 See Appendix A . 
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 ( ) ( ) ,T Tt E E t tβα β
α

< ⋅ < ∀ ∈ℑx x , (23) 

Q.E.D. 
Remark 3. In the case of non-delay systems, e.g. 

1 0A ≡ , (9) and (10) reduce to the basic result given in 
Debeljkovic, Owens (1985). 

Practical stability 
Stability definitions 

Definition 5. A regular and impulsive free singular time 
delayed system (6) is attractive practically stable with 
respect to { }0 , , ,t α βℑ S S , if and only if 0 k

∗∀ ∈x W  
satisfying 

 ( ) 2 2
0 0T TG E P E G E P E

t α
= =

= <x x ,  

implies: 

 ( ) 2 ,TG E P E
t tβ

=
< ∀ ∈ℑx , 

with a property that: 

 ( ) 2lim 0TG E P Ek
t

=→∞
→x , 

k
∗W  being the subspace of consistent initial conditions. 

Stability theorems 

Theorem 2. Suppose that ( ) 0TE E I− > . 
A singular time delayed system (6), with the system 

matrix 0A  being nonsingular, is attractive practically 

stable with respect to ( ){ }2
0 , , , , TG E P E

t α β
=

ℑ ⋅ , α β< , if 

there exists a matrix 0TP P= > , being the solution of: 

 0 0 ,T TA PE E PA Q+ = −  (24) 

with  the matrice 0TQ Q= > , such that 

 ( ) ( ) ( ) { }0, \ 0T
kt Q t t ∗> ∀ ∈x x x W , (25) 

is a positive definite quadratic form on { }\ 0k
∗W , k

∗W  
being the subspace of consistent initial conditions, and if 
the following condition is satisfied 

 ( )( )max 0 ,t te tλ β
α

Ψ − < ∀ ∈ℑ , (26) 

where: 

 

( )
( ) ( )( )( ) ( )

( )
( ) ( )

max
1

1 1 ,

max ,
1

T T T T

k
T T

t E PA E P E Q A P E I I t

t
t E P E t

λ

β β
−

∗

Ψ =
⎛ ⎞− + +⎜ ⎟
⎜ ⎟= ∈⎜ ⎟

=⎜ ⎟⎜ ⎟
⎝ ⎠

x x

x
x x

W
 (27) 

Proof. Define the tentative aggregation function as  

 ( )( ) ( ) ( ) ( ) ( )
t

T T T

t

V t t E P E t Q d
τ

ϑ ϑ ϑ
−

= + ∫x x x x x . (28) 

The total derivative ( )( ),V t tx  along the trajectories of 
the system, yields 

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )
( ) ( )

0 0

1

,

2

T T

t
T T T T

t
T T T

T

dV t t t E PE tdt

d Q d t A PE E PA tdt

t E PA t t Q t
t Q t

τ

ϑ ϑ ϑ

τ
τ τ

−

=

+ = +

+ − +
+ − −

∫

x x x

x x x x

x x x x
x x

 (29) 

From (29), it is obvious 

 

( ) ( )( )
( )( ) ( )
( ) ( )

0 0

12

T T

T T T

T T

d t E P E tdt
t A PE E PA t
t E PA t τ

=

= +

+ −

x x

x x
x x

 (30) 

or 

 

( ) ( )( )
( )( ) ( )
( ) ( ) ( ) ( )

0 0

12

T T

T T T

T T T

d t E P E tdt
t A PE E PA Q t
t E PA t t Q tτ

=

= + +

+ − −

x x

x x
x x x x

. (31) 

From (24) it follows 

 
( ) ( )( ) ( ) ( )
( ) ( )12

T T T

T T

d t E P E t t Q tdt
t E PA t τ

= −

+ −

x x x x

x x
, (32) 

as well, using the before mentioned inequality, with a 
particular choice  

 
( ) ( ) ( )( ) ( )

( ) { }
0,

\ 0

T T T T T

k

t t t E P E Q t
t ∗

Γ = − >

∀ ∈

x x x x
x W

 (32) 

And the fact that 

 ( ) ( ) ( ) { }0, \ 0T
kt Q t t ∗> ∀ ∈x x x W , (33) 

is a positive definite quadratic form on { }\ 0k
∗W , one can 

get  

 
( ) ( )( ) ( ) ( )

( ) ( ) ( )
( )( ) ( )

1

1
1 1

2T T T T

T T T T

T T

d t E P E t t E PA tdt
t E PA E P E Q A P E t
t E P E Q t

τ

τ τ

−

= −

≤ −

+ − − −

x x x x

x x
x x

 (34) 

And the fact that it is more than obvious, that one can adopt 

 ( ) ( ) ( ) { }2 2 , \ 0T T kE P E E P E
t t tτ β ∗− < ⋅ ∀ ∈x x x W  (35) 

since we look, in real conditions, to avoid ( ) 2
TE P E

t β=x  

for any t∀ ∈ℑ , so (34) is reduced to 

 
( ) ( )( )

( ) ( )( ) ( )
1

1 1

T T

T T T T

d t E P E tdt
t E PA E P E Q A P E I tβ

−

<

< − +

x x

x x
, (36) 

or using (27), one can get 

  

( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( )

1
1 1

max

T T

T T T T

T T

d t E PE tdt
t E PA E P E Q A P E I t

t E P E t

β

λ

−

<

< − + <

< Ψ

x x

x x

x x

 (37) 
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or 

 
( ) ( )( )
( ) ( )

( )max

T T

T T

d t E P E t
d t

t E P E t
λ< Ψ

x x

x x
, (38) 

or 

 
( ) ( )( )
( ) ( )

( )
0 0

max

t tT T

T T
t t

d t E PE t
d t

t E PE t
λ< Ψ∫ ∫

x x

x x
, (39) 

and 

 ( ) ( ) ( ) ( ) ( )( )max 0
0 0

t tT T T Tt E PE t t E PE t eλ Ψ −<x x x x . (40) 

Finally, if we use the first condition, given by Definition 
5, then 

 ( ) ( ) ( )( )max 0t tT Tt E P E t eλα Ψ −< ⋅x x , (41) 

and basic condition (9) of Theorem 2, we can get 

 ( ) ( ) ,T Tt E P E t tβα β
α

< ⋅ < ∀ ∈ℑx x , (42) 

Q.E.D. 
Remark 3. This Remark coincides with Remark 2, with 

a particular choice 

 ( )( ) ( ) ( )T TV t t E P E t=x x x , (43) 

Remark 4. (24) is, in its original form, taken from 
Owens, Debeljkovic (1985). 

Remark 3. Let us discuss first the case when the time 
delay is absent. 

Then the singular (weak) Lyapunov matrix equation (24) 
is a natural generalization of the classical Lyapunov theory.  

In particular  
a) If E is a nonsingular matrix, then the system is asymp-

totically stable if and only if 1
0A E A−=  Hurwitz matrix.  

Equation (24) can be written in the form 

 T T TA E PE E PEA Q+ = − , (44) 

with the matrix Q being symmetric and positive definite, in 
the whole state space, since then ( )k n

k E
∗∗= ℜ =W .  

In these circumstances, TE PE  is a Lyapunov function 
for the system. 
b) The matrix 0A  by necessity is nonsingular and hence the 

system has the form 

 ( ) ( ) ( )0 0, 0 .E t t= =x x x x  (45) 

Then for this system to be stable, a familiar Lyapunov 
structure must also hold 

 0 0
TE P PE Q+ = − , (46) 

where Q is a symmetric matrix but only required to be 
positive deffinite on k

∗W . 

Conclusion 
Generally, this paper extends some of the basic results in 

the area of Non-Lyapunov to linear, continuous singular 

time invariant time-delay systems (LCSTDS).  
In that sense, the part of this result is hence a geometric 

counterpart of the algebraic theory of Campbell  (1980) 
charged with appropriate criteria to cover a need for system 
stability under the presence of actual time delay term. 

A quite new sufficient delay–independent criterion for 
the finite and attractive practical stability of LCSTDS is 
presented. 

APPENDIX – A 
The fundamental geometric tool in the characterization 

of the subspace of  consistent initial conditions, for linear 
singular systems without delay, is the subspace sequence  

 0
n∗ =W , (A1) 

  

 ( )1
1 0 , 0j jA E j∗ − ∗
+ = ≥W W , (A2) 

where ( )1
0A− ⋅  denotes the inverse image of ( ) under the 

operator 0A . 

Lemma A1. The subsequence { }0 1 2, , .....W W W  is 
nested in the sense that 

 0 1 2 3 ...⊃ ⊃ ⊃ ⊃W W W W  (A3) 

Moreover, 

 ( ) , 0jA jℵ ⊂ ∀ ≥W , (A4) 

and there exists an integer  k ≥ 0, such that 

 1 , 1k k j+ = ∀ ≥W W  . (A5) 

Then, it is obvious that 

 , 1k j k j+ = ∀ ≥W W . (A6) 

If k* is the smallest such integer with this property, then 

 ( ) { }0 ,
k

E k k∗
∗∩ℵ = ≥W , (A7) 

provide that ( )0E Aλ −  is invertible for some λ ∈ . 
Proof.  See Owens, Debeljkovic (1985).  
Theorem A.1. Under the conditions of Lemma A1, x0 is 

a consistent initial condition for the system under 
consideration if and only if x0 ∈ Wk*.  

Moreover, x0 generates a unique solution ( ) k
t ∗∈x W , t 

≥ 0, that is real analytic on { }: 0t t ≥ . 
Proof. See Owens, Debeljkovic (1985).  
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Stabilnost linearnih vremenski kontinualnih singularnih i vremenski 
diskretnih deskriptivnih sistema sa čistim vremenskim  

kašnjenjem na konačnom vremenskom intervalu:  
Pregled rezultata - I deo kontinualni slučaj 

U radu se daje pregled dovoljnih uslova praktične stabilnosti i stabilnosti na konačnom vremenskom intervalu linearnih 
vremenski kontinualnih singularnih sistema sa čistim vremenskim kašnjenjem. Kadase razmatra concept stabilnosti na 
konačnom vremenskom intervalu, ovi novi uslovi nezavisni od kašnjenja, su izvedeni korišćenjem prilaza koji se osnova 
na tzv. Kvazi-Ljapunovljevim funkcijama I njihovim osobinama na potprostoru konzistentnih početnih uslova. U opštem 
slučaju ove funkcije ne moraju: a) da budu pozitivno određene u celom prostoru stanja, b) niti njihovi izvodi duž 
trajektorije sistema negativno određeni. 
Kada se razmatra praktična stabilnost, ranije pomenuti prilaz, kombinuje se i podržan je klasičnom teorijom Ljapunova 
a sa ciljem da bi se obezbedila atraktivna praktična stabilnost. 

Ključne reči: linearni sistem, kontinualni sistem, deskriptivni sistem, singularni sistem, sistem sa kašnjenjem, diskretni 
sistem, stabilnost sistema. 

Устойчивость линейных сингулярных непрерывных и 
дискретных дескриптивных систем с чистым временем 

задержки на конечном интервале времени:  
резюме результатов непрепывного случая - I - часть 

В настоящей работе представлен подробный обзор достаточных условий практической устойчивости и 
стабильности в конечное время линейных непрерывных сингулярных систем с чистим временем задержки. 
Когда рассматривается концепция стабильности в конечное время, эти новые условия независимые от 
временной задержки, получены с помощью подходов, которые лежат в основе так называемых квази-
Ляпуновских функций и их свойств в подпространстве соответствующих начальным условиям. 
В целом, эти функции не должны быть: а) положительно определены во всём пространстве состояния, б) а в том 
числе ни отрицательно определены их выводы вдоль траектории системы. При рассмотрении вопроса о 
практической стабильности, ранее указанный подход находится  в сочетании и поддерживается классической 
теорией Ляпунова, с целью обеспечения привлекательной практической стабильности. 

Ключевые слова: линейная система, непрерывная система, дескриптивная система, сингулярная система, система 
с временной задержкой, дискретная система, устойчивость системы. 

Stabilité des systèmes linéaires continus singuliers et des systmes 
discrets temporels descriptifs à délai temporel fini: Tableau des 

résultats – Première partie, continus 
Dans ce papier on a donné les conditions suffisantes pour la stabilité pratique et pour la stabilité sur l’intervalle 
temporelle finie chez les systèmes linéaires singuliers continus à délai temporel pur. Lorsque le concept de la stabilité sur 
l’intervalle temporelle finie est considéré, ces nouvelles conditions, indépendantes du délai, ont été dérivées à l’aide de 
l’approche basée sur les fonctions quasi de Lyapunov et leurs caractéristiques dans le sous espace des conditions initiales 
consistantes. Dans le cas général ces fonctions: a) ne doivent pas être positives dans l’espace entier de l’état b)leurs 
dérivées ne doivent pas être négatives le long de la trajectoire. Considérant la stabilité pratique , l’approche citée ci-
dessus est combinée et appuyée par la théorie classique de Lyapunov dans le but d’assurer la stabilité pratique 
attrayante.  

Mots clés: système linéaire, système continu, système descriptif, système singulier, système à délai, système discret, 
stabilité de système  




