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Eigenvalues Assignment for a Special Class of Singular Systems in 
Constrained Robotics 

Ivan Buzurović1) 

Robotic systems in contact with environment are typical examples where external contact forces play an important 
role to the system dynamics. Mathematical modeling of these systems is challenging due to a variety of reasons. 
Mathematical models for the described class of systems contain differential equations with an associate algebraic 
equation, which outlines constrained system dynamics. Such a system is considered to be a singular system of 
differential equations (semi-state or descriptor systems). In this article, the geometric approach to the solution of 
singular systems with contact problem has been introduced. The mutual eigenvalues and corresponding eigenvectors 
assignment for the robotic systems have been investigated. In order to achieve desired dynamical system behavior the 
controllability conditions have been investigated as well. 
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Introduction 
HE geometric approach is a mathematical concept 
developed to improve analysis and synthesis of the 

linear multivariable systems. Many authors consider the 
notion of geometry in the system theory as mutual 
characteristics of the matrix pencils (A, B) or (A, C) for 
linear systems or (A, E) for singular systems. Other authors 
consider the geometric aspect as a study of the 
characteristics of system subspaces. The descriptive 
definition of the geometric approach to linear singular 
systems could be as follows: The geometric approach (or 
aspect) should be understood as an approach to a study of 
singular systems the purpose of which is to determine and 
investigate characteristic subspaces which play a crucial 
role in the analysis of the matrix pencils (A, E). 

The geometric approach was first discussed in the 
articles Basile, Marro (1969) and Wonham, Morse (1970).  
The authors discovered that dynamic behavior of time 
invariant linear control systems could be investigated based 
on the characteristics of the system invariant subspace of 
the matrices. As a result, system behavior could be 
predicted and solutions to many control problems could be 
tested by investigating the characteristics of the subspaces 
described. The basic idea of this approach was the 
application and calculation of subspaces on the computers 
using algorithms developed for that purpose. Having all this 
in mind, it was shown in the literature that the geometric 
approach can be used to solve a variety of problems, 
including finding a control law for systems with feedback, 
observability problems, disturbance localization, design of 
the observers, control and tracking, robust control, etc.  

The geometric approach was a mathematical concept 
developed in order get a better understanding and to give 
better insight into the most important characteristics of the 

linear system dynamics. It is mostly represented in the state 
space domain and used to connect characteristics of single 
and multiple transfer systems.  

In this article, we investigate a mathematical model of 
the robotic system represented as a singular system of 
differential equations. For some specific class of robotic 
systems, a mathematical model has a singular character due 
to a contact force which acts upon the system. In many 
applications it is enough to consider a contact force as a 
disturbance to the system. Sometimes the stochastic 
character and an unexpected range of the contact forces 
could significantly change or damage the contact surface, 
which could be unacceptable for some situations. 
Furthermore, a contact force which has an unknown value 
and characteristics could produce a compromised outcome. 
Due to the reasons given here, there is a need not only to 
measure the force, but also to control it and to obtain 
adequate control algorithms which can keep the force 
within acceptable limits. 

The dynamic behavior of the described systems 
represented as a singular system of differential equations 
was initially investigated in McClamroch (1986), Huang 
(1988), and Mills, Lui (1991). The geometric approach to 
the robotic systems dynamic for linear non-singular systems 
was presented in Dam (1997), and partially in the article 
Mills, Goldenberg (1989) based on the results reported in 
Cobb (1983). Vukobratović, Tuneski (1996) presented the 
current state of the art in the adaptive control of single rigid 
robotic manipulators in constrained motion tasks. In Stokić, 
Vukobratović (1997), a solution for a practical stabilization 
problem of robots being in contact with dynamic 
environment has been presented. A detailed overview of the 
geometric approach theory used in this article can be found 
in Debeljković, Buzurović (2007), and Buzurović, 
Debeljković (2009). The method proposed here was applied 
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to the prediction control of a medical robotic system 
Buzurović et.al (2010).  

In this article, the geometric approach to the solution and 
eigenvector assignment of a singular system with a contact 
problem has been introduced. The necessary and sufficient 
conditions, for the existence and uniqueness of the solutions 
for robotic systems, have been investigated. 

Mathematical modeling of robotic systems in 
contact with environment 

In the article, the following notation has been used:  
q – generalized coordinate 
D – constrained function gradient  
f – contact force 
H – vector function 
M – inertia matrix or matrix 
I  – identity matrix 
G – gravitational matrix 
L – space transformation 
τ – torque vector 
x – state space vector 
J – Jacobian matrix 
u – control vector 
E – singular matrix 
d – disturbance vector 
φ – equation of the contact surface 
K, F – matrices 
λ – scalar multiplier 
A, B – regular system matrices 
Z – subspace 
N(.) – null space of the matrix 
M – subspace 
R(.) – range of the matrix 
V  A – invariant subspace 
V * – maximum A-invariant subspace 
a, b – coefficients 
s – complex number 
x, w – state space vector components 

The following introductory definitions will be used 
during this study.   

Definition 1: The subspace S of the vector space ℜ is 
called invariant space of the linear transformation A over S 
if and only if  AS ⊆ S. 

Definition 2: For the subspace V of X = ℜn is said to be 
A - invariant if AV ⊂ V. 
Buzurović, Debeljković (2009). 

The generalized coordinates vector, denoted by q, has 
the property q∈ℜn, the contact force vector is denoted by f. 
The force f∈ℜn appears when the end-effector touches the 
constraint surface c. The constrained robotic model is 
represented as 

 ( ) ( , ) ( )TM q q G q q J q fτ+ = + . (1) 

M(q)∈ℜnxn denotes the inertia matrix function and 
G(q)∈ℜn is a vector function which describes Coriolis, 
centrifugal and gravitational effects. τ is the torque vector 
of the joints, τ∈ℜn. J(q) ∈ ℜnxn is defined as a Jacobian 
matrix function. The general dynamic equations for the 
robotic system in contact with environment is, as in 
McClamroch (1986),  

 ( ) ( ) ( ) ( )( )
( )( )

,0
0 0

T Tq G q q J q D H qM q
H q

τ λ
λ φ

⎡ ⎤− + +⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (2) 

Equation (2) consisted of the n differential equations and 
one algebraic equation with n+1 unknown value, n 
generalized coordinates and the scalar multiplierλ. Now it 
is possible to represent the equation of the robotic system 
(1) which is in contact with the working environment in its 
state space form (3) with the vector d as a disturbance  

 ( ) ( ) ( ) ( )E t A t B t t= + +x x u d , (3) 

where the corresponding matrices have been defined as in 
Buzurović, Debeljković (2010) 
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| 0 00
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⎢ ⎥=
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⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = Δ
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

u d

 (4) 

Existence of the solutions 
Due to the structure of matrices (4) for system (3), it can 

be expressed by: 

 JD = A N(E) = 
0

0 0
TT TJ D⎡ ⎤

⎣ ⎦ , (5)  

 I3= N (E) = [ ]0 0 TI  (6) 

where JD  represents the influence of the contact force on 
the robotic system. Generally, the subscript “D” denotes a 
gradient, as in (4). In this case, D denotes the gradient of 
the contact force that acts upon the system. N (⋅) is the null 
space of the matrix (⋅) and R (⋅) is the range of the matrix 
(⋅). x0 represents the initial condition space matrix and I is 
the identity matrix. 

The following theorems, lemma and corollaries are the 
original results obtained by using the geometric approach in 
the analysis of the system described by matrices (4). 

Theorem 1: The solution of system (3), which comprises 
the reactive force control, on an arbitrary time interval 
exists for any control vector u(t) if and only if (5) and (6) 
are satisfied: 

 R(B)⊂EV  *+ JD =EM + JD  (7) 

 x0 ∈ V  * + I3=M + I3 (8) 

Proof (necessary condition): Let us analyze arbitrary 
condition (9): 

 ( ) ( ) ( )t t t= +x z ε , (9) 

with 

 ( )t ∈ε  I3,  ( )t ∈z  Z, (10) 
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where Z denotes the subspace mathematically defined in 
the following part. Choosing the proper constraints for the 
subspace Z, it is possible that Z }0{3 =∩ I ; therefore, the 
proposed decomposition of the state space vector (9) is 
unique. Applying (9) to system (3) and neglecting 
disturbances to the system, the following equation can be 
written  

 ( ) ( ) ( ) ( )E t A t A t B t= + +z z uε . (11) 

For given u(t) and x(t), ( )E tz  is uniquely defined. The 
direct consequence for the singular system is the following 
geometric distribution: 

 AZ ∩ EZ + A I3, (12) 

 R (B) ⊂ EZ + A I3. (13) 

A further proof of the necessary condition relies on the 
following lemma.  

Lemma 1: The maximum subspace which satisfies (12) 
and (13) is V *+ I3. 

Proof: It can be shown that V *+ I3 satisfies (12) and 
(13). Let us assume that the subspace Z satisfies the same 
conditions. In that case, it can be written 

 Z = V + I3, (14) 

as well as  

 A(V +  I3) ⊂ E V + JD. (15) 

Given relations (14) and (15), it can be stated that 
if ∈∀a V, ∈∃a~ V and ∈b N(E), the equation 

AbaEAa += ~  is satisfied.  The values  a~  and  b  could be 
chosen so that they are linearly related to a. Let the matrix 
K generate N(E). Then a matrix exists with appropriate 
dimensions, so for every ∈a V, equation (34) is fulfilled: 

 Fa Ea FKPa= + , (16) 

and also 

 ( ) ( )F I KP a Ea E I KP a− = = − . (17) 

Defining: 

 ( )I KP= −V V , (18) 

it can be stated: 

 ( ) ( )E E+ = + =V N V N Z  (19) 

as well as 

 A E⊂V V . (20) 

The final conclusion that proves the necessary condition 
of Lemma 1 is given by equation (21): 

 ⊂V V *,  Z⊂ V *+ I3. (21) 

Note: In order to obtain the unique solution z(t), Z must 
be chosen to satisfy Z = M, where the subspace M is a 
complement of I3  in V *, q.e.d �. 

Proof (sufficient condition): Let K  be a matrix whose 
columns fully spans the null space of the matrix EN(E) and 
let M  be a matrix chosen as EMAAM = . Then,  

 ( ) ( ) ( )t M t K t= +x y w . (22) 

The conditions (7) and (8) imply the existence of the 
matrices B  and P  and  

 B EMB AKP= + . (23) 

Now it is possible to represent system (22) in its 
equivalent form, 

 ( ) ( ) ( ) ( ) ( )EM t EMA t AK t EMNB t AKP t= + + +y y w u u , (24) 

and the solution of system (3), together with (22), as: 

 ( ) ( ) ( )t A t B t= +y y u  (25) 

 ( ) ( )- ( )t M t KP t=x y u . (26) 

Here, note that since the constraints for the matrix B are 
changed, it is not necessary to introduce the special 
relations between the matrices B and B  as well as B and P . 
Thus, equations (25) and (26) define the solution of system 
(3), which satisfies conditions (7) and (8), q.e.d �. 

In the following part, another approach for the solution 
existence has been used. In this section, the general 
conditions for the existence of the solutions for system (3) 
have been analyzed using a strict geometric approach for the 
appropriate matrix pencils. Equation (3) represents the 
robotic system which is in contact with the working 
environment. Consequently, the controlled subspace S which 
consists of the position and the velocity initial elements is 
extended to the control of the initial contact force. 

Let R (E) and R (B) be a range of the matrices E and B, 
given as a subspace Y=ℜr. The following relation is 
fulfilled for the linear subspace V belonging to Y for the 
robotic system mathematically described by equation (3): 

 AV ⊂ EV (27) 

Definition 3: A characteristic subspace of the matrix 
pencil (E, B) is a maximum subspace V* which fulfills 
equation (27). 

Assume that the subspace S is a subspace of the initial 
conditions. 

Theorem 2: System (1), represented in the transformed 
form (3), has solution x(t)∈ℜ for any u(t)∈S, on the 
arbitrary interval if and only if: 

 R(B)⊂ EV (28) 

 x(0)∈V* (29) 

Proof (necessary condition): Let V be a subspace of the 
system trajectories x(t). If the velocity of the robotic joints 
fulfils the condition ( )tx ∈V, then V has to fulfill equation 
(27), consequently, V ∈V*. Having the condition in mind  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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0ˆ

C
A x(t) + 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

00
0B̂ u(t) ⊂ R(E),  (30) 

with decomposition 
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BB D d

⎡ ⎤⎡ ⎤= = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (31) 
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Moreover, if (30) is fulfilled for any u(t) ∈ℜm it is also  

 R(B) ⊂ R(E),    x(t)∈V0 = A-1(V(E)). (32)  

In order for equation (30) to be fulfilled for any u(t), in 
the previous instant of the recursive algorithm for the 
subspace calculation, which can be formally denoted by t-1, 
it is necessary that the following is fulfilled  

 R(B) ⊂ EV0,   x(t-1) ∈V 1= A-1(EV). (33) 

Continuing the recursive calculation process, the sequence 
Vk has been formed according to the rule, as in (34). 

 Vk+1 =A-1(E Vk). (34) 

Taking into account that all instants during the solutions 
were analyzed, it can be obtained  

 (B) ⊂ EVk, x(t-k) ∈Vk. (35) 

For the proof of the necessary condition, the following 
Lemma has being used.  

Lemma 1: Sequence Vk decrease and converge to V* in 
no more than n steps, Bernhard (1982). 

Proof: It is clear that A-1(EV0)∈A-1(R(E)), as well as V1 
⊂V0, and so on. However, subspaces can decrease only if 
their dimension (rang) decrease, which cannot happen for 

nℜ  more than n times. Denote by k the first index such as 
Vk+1 ⊂Vk. The sequence Vk becomes a stationary sequence 
starting from the index k and further, and consequently, 
equation (34) proves that Vk fulfils (27). It can be 
concluded that Vk⊂V* is fulfilled. This fact proves both 
equations (28) and (29).  

Proof (sufficient condition): Denote by V a rectangular 
matrix with a full column rang, such as R(V) = V*. Let 
dimV*=n*, and V: m × n*. Equations (28) and (29) imply 
the existence of the transformations defined as 

 A~ : AV =E V A~ , (36) 

 B~ : B =E V B~ , (37) 

where the matrices A~  and B~  are of the order n* × n* and 
n* × m, consequently. The equivalency can be established 
among the statement x(t)∈V* and the following value 

 *( ) nt ∈ℜξ : x(t)= V ( )tξ  (38) 

Transformed system (2) represented by matrices (4) and 
equation (3), is equivalent to the system  

 ( ) ( )EV t EV(A t B= +ξ ξ u(t)). (39) 

The value ( )tξ together with the initial condition (30) 
obviously represents the solution of system (3), which was 
transformed to its equivalent form (40) 

 ( ) ( )t A t B= +ξ ξ u(t), x(0)=V (0)ξ . (40) 

The last statement proves the sufficient condition of 
Theorem 2, q.e.d �. 

Definition 4: A characteristic null-subspace of the 
matrix pencil (E, A) is the subspace N defined by 

 N = N (E) ∩V*. (41) 

Let dim N = n. 

Definition 5: The matrix pencil (E, A) is column-regular 
if n=0, i.e. 

 N = }0{ . (42) 

Theorem 3: Under conditions (36) and (37), the solution 
of equation (3) is unique for any u(t) if and only if the 
matrix pencil (E, A) is column-regular.  

If initial equation (2) is analyzed, condition (42) is 
fulfilled if any column of the matrix A is regular. The non-
uniqueness of the solutions is described by an arbitrary 
choice of the sequence ( )⋅y  from equation 

( ) ( ) ( )E t EA t EB t= +y y u . In that case, solution (38) 
represents all solutions of the system. 

Uniqueness of the solutions 
Theorem 4: The solution of system (3), which comprises 

 the reactive force control, under conditions (7) and (8) is 
unique for any u(t), if and only if the matrix pencil (E, A) is 
a pencil of full column rank. 

Proof: The question concerns under which conditions 
equation (24) has a unique solution. Denoting the 
derivatives of the values x and w as ( ), ( )t tδ δx w , the 
problem can be reformulated. Now it is necessary to find 
non-zero solutions of the following equation 

 ( ) ( ).EM t AK tδ δ=x w  (43) 

One of the possible solutions is zero if and only if the 
following is satisfied 

 N(A) ∩ N (E) ={0} (44) 

and 

 EM ∩ JD = {0} (45) 

Combining equations (43) and (44) and using equation 
(5), it becomes clear that equation (44) is always fulfilled, 
because of the structure of matrices (5). This conclusion 
could be made based on the injectivity of the matrix EM. 
Consequently, for non-zero solutions, neither equations 
(44) nor (45) should be fulfilled. Equation (45) in fact does 
not have to be fulfilled. It can be concluded that a non-zero 
element exists in the equation for EM ∩ JD. 

When it is V* =A-1( EM ), then 

 N 1−= A (EM ) ∩ N(E) (46) 

It is now possible to verify the existence of an arbitrary 
linear operator A for two subspaces A and B and if the 
following statement is fulfilled 

 AA ∩  AB [A= ( A + N(A)) ∩  B ] . (47) 

Applying statement (47) to equation (46) and applying 
1−A (EM ) ⊂ N(E), it can be shown: 

 AN = EM ∩ JD . (48) 

It can also be noted that N(A) ⊂ V*, and consequently 
that: 

 N ⊃ N (E) ∩ N (A) (49) 

It can be concluded from equations (48) and (49) that 
conditions (44) and (45) are not satisfied when the subspace 
N is nontrivial. Consequently, the system is not column 
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regular. On the other hand, if the subspace N is nontrivial 
and if equation (44) is fulfilled, which is always true 
according to the previous discussion, then it can be stated 
that N ⊂ N (E) holds and  

 N ∩ N (A) = {0}. (50)  

Given (50), AN has the same dimension as N, and so 
(48) shows that (45) is not fulfilled, q.e.d �. 

As in the previous part, in which solution uniqueness 
was discussed, a clear distinction between two types of the 
solution non-uniqueness can be made. In the case that (45) 
holds, but (44) does not, the non-uniqueness of x includes 
only w and the statement is not fulfilled at any instant of 
time. The solutions x(t) are unique. In this case, non-
uniqueness could be named static. Dynamic non-uniqueness 
is the product of the non-zero element in the statement EM 
∩ JD.  

Corollary 1: The regular matrix pencil )( AsE −  does not 
have any indefinite zeroes if and only if N(E) ∩ A-1 (R(E)) 
exists. Let us assume that the regular matrix pencil 

)( AsE − has indefinite zeroes. In this case, the static 
variables do not exist if and only if AN(E) ⊂ R(E). 

Proof: The first part of Corollary 1 can be proven using 
Theorem 4, because in that case, the matrix pencil )( AsE −  
does not have any indefinite zeroes if and only if Va*= 0, to 
i.e., N (E) ∩ A-1(R (E)) =0. The second part is true 
because the matrix pencil )( AsE −  does not have indefinite 
zeroes and in that case N (E) ∩ A-1(R (E)) ≠ 0 is fulfilled. 
Moreover, N (E) ∩ A-1(R (E)) = N (E)  is true, or 
equivalently N (E) ⊂ A-1(R (E)) ⇔ JD ⊂ R (E), q.e.d �. 

Controllability conditions 
Here we introduce state-space feedback described by  

 ( ) ( )t K t=u x  (51) 

where K is the matrix. Applying feedback (51) to system 
(25-26), the controlled system is obtained as follows 

 
( ) ( ) ( )

( ) ( ) ( )
E t A BK t

t C DK t
= +

= +
x x

y x
 (52) 

Definition 6: System (52) is controllable if the matrix 
pencil 

 [ ]BAsEsC −=)(  (53) 

does not have definite or indefinite zeros. 
Theorem 5: Systems characterized by equations (52) are 

controllable if and only if none of the matrix eigenvalues 
C(s) is equal to zero. This condition is represented as 

 0 0 0

0

0 0
( ) ( ) | ( ) |

0| 0 0

T T T T

sI I
C s G J D sM q J D Iq

DJ

λ

⎡ ⎤−
⎢ ⎥∂= − −⎢ ⎥∂⎢ ⎥

−⎣ ⎦

 (54) 

Proof: Equation (55) of transformed system (3) 

 
( ) ( ) ( )

( ) ( ) ( )i

E t A t B t
t C t D t

= +
= +

x x u
x x u

 (55) 

represents the structure of the robotic system. Combining 
equations (55), (53) and (54) it can be concluded that 

condition (54) is fulfilled, q.e.d.◊. 
Definition 7: Systems (55) is reachable if (53) is 

fulfilled and if  

 [ ] nBErang = . (56) 

Theorem 6: Systems (55) are reachable if and only if 
condition (57) is fulfilled:  

0

0 0 0
0 ( ) 0
0 0 0 0

I
rang M q I n

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

0

0 0 0
0 ( ) 0
0 0 0 0

I
rang M q I n

⎡ ⎤
⎢ ⎥ =
⎢ ⎥⎣ ⎦

 (57) 

Proof: The procedure is similar to the proof of Theorem 5, 
using the condition in Definition 6, q.e.d.◊. 

Corollary 2: Analyzing condition (57), it can be 
concluded that the controllability of the linearized robotic 
system (3), and consequently (55), in contact with 
environment, depends on the inertia matrix in the 
surroundings of the contact point.  

This conclusion is significant because the design of the 
system with contact tasks can influence the controllability 
and furthermore the stability of the system. Condition (57) 
could be used for potential stability checking during the 
system design. The following definition is a direct 
consequence of the previous analysis. 

Definition 8: Systems (55) is infinite controllable if (53) 
does not have indefinite zeros. 

Eigenvalues assignment 
The final section of this article describes the eigenvalue 

assignment procedure. By assigning eigenvalues and 
eigenvectors, the system structures can be assigned. The 
procedure is usually named as the eignestructure 
assignment.  

Control system design based on the eigenvalue or pole 
assignment has received a great deal of attention in the 
literature. It is well known that for a controllable system, if 
state variable feedback is employed, all eigenvalues can be 
assigned, Wonham, Morse (1970). Also it is known that for 
multi-input systems, the feedback law assigning a given set 
of eigenvalues is not unique and that different control laws 
can yield identical eigenvalues while yielding radically 
different eigenvectors. Since the eigenvectors determine the 
influence of each eigenvalue on each state variable 
response, failure to use the multi-input design freedom fully 
may result in undesirable mode coupling and other poor 
transient behavior. 

In the following part, the eigenvalue and its corresponding 
eigenvector assignment, using state-space feedback, has been 
investigated. The proposed Theorem represents the extension 
of the method presented in Buzurović, Debeljković (2004), and 
it is related to the special class of the control systems, 
described by (3) and (4). 

Theorem 7: Assume that the state-space system 
represented by (4) is controllable by the eigenvector vi 
assignment. Denote by {λi}, i∈1, 2,.., h, h=rang E 
symmetric set of n different finite complex numbers. 
Assume that the subspace V exists, such as V = span {vi}, 
i∈1, 2,..., h and: 
(i) vi ∈ H if λi is a real number, and vi = vi* is a complex 

conjugate if λi =λi * . 
(ii) Vectors {vi}, i∈ 1, 2,..., n are linearly independent and 

vi ∈ HΛ= ( λ i E - A)-1B =   [ ]Tn
TT IDJ 0|)/1(00 − , 
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(iii) V ∩ I3 = 0. 
Then, a real matrix F exists, such as (A+BF)vi = λi Evi, 

i= 1, 2,..., h, and the matrix pencil (sE-A-BF) is regular. 
Proof: To each complex number λ, an appropriate matrix 

Pλ = [λE − A B]  can be assigned. Denote by 

 NQ R
λ

λ
λ

⎡ ⎤= ⎢ ⎥⎣ ⎦
 (58) 

a compatible matrix partition with the property that its 
columns span N (Pλ). Analyzing the structure of system (4) 
it can be noticed that the rang B = m, which implies that the 
columns of Nλ are linearly independent. 

Because of vi ∈ H Λi = N (Nλ) it implies that vi = Nλi Ki , 
for some unique Ki   

 (λiE-A) NλiKi + BRλi Ki = 0 (59) 

Define F0:V → U  as 

 F0vi = - Rλi Ki ,  i ∈ 1, 2, ..., n (60) 

Now, it is necessary to define the extension F to F0 with 
a property that matrix pencil (sE-A-BF) is regular. Because 
dim V = h, dim N (E) = n-h and V ∩ N (E) = 0, it implies 

 V ⊕ N (E) = H (61) 

Similarly, it can be derived 

 E V = E (V ⊕ N (E)) = EH  = R (E) (62) 

Let x∈H and assume that (61) is fulfilled. Analyzing the 
extension F~ : H → U to F0, and let Ex and (A+B F~ )x are 
represented by the decomposition 

 E V ⊕ H * = H,  (63) 

where H* is any subspace with the dimension n-h which 
supplement R(E) to H. In any subspace with the 
dimension n-h which supplement R(E) to H. In 
decompositions (61) and (63) the matrices E and A+B F~  
allow the following representation: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

00
0I

E ,   ⎥
⎦

⎤
⎢
⎣

⎡
=+

22

1211

0
~

A
AA

FBA   (64) 

Equation (64) follows from derivation using (3), where 
dim I= h and the eigenvalues of A11 are identical with {λi}, 
i∈1, 2, ..., h. The matrix pencil (sE-A-B F~ ) is regular if and 
only if A22 is a nonsingular matrix. 

Denote by Qi the projection of H* along N (E). In that 
case, the non-singularity of A22 is equivalent to the non-
singularity of 

 Qi (A+B F~ ) | N (E)  (65) 

It can be stated 

 Qi(A+B F~ )|N (E) = Qi Ai |N (E)+Qi BFi (66) 

where the matrix F1=F | N (E) exists, such as F1: N 
(E)→U  implying that equation (65) is nonsingular if and 
only if the null eigenvalues of  Qi Ai | N (E) controllable 
using Qi B, i.e. 

 Qi (A | N (E)+ B) = H*  (67) 

 

Since system (4) is controllable, it follows that equation 
(67) is fulfilled. Hence, it is possible to choose F1 such as 
(65) is nonsingular. Defining F: H → U s  

 F | V   F0  and  F | N (E)=F1 (68) 

Definition of a real transformation represented by the 
matrix F allows the eigenvector assignment, q.e.d �. 

Comment: Theorem 7 allows the derivation of the 
opposite statement. Let {λi}, i∈1, 2,..., h represents a set of 
the finite eigenvalues of the matrix pencil (sE-A-BF), which 
does not have to be regular, for this case. Then 

 (A+BF) vi = λi E vi  (69) 

for some vector vi , i∈ 1, 2,..., l. It can be proved that the 
vectors vi, i∈ 1, 2,..., l fulfill conditions (i) ÷ (iii) of Theorem 
7, for the system given by linearized equations (3).  

Moreover, it can be shown that the subspace V at the 
statement of Theorem 7 exists or any symmetric set of 
different complex numbers {λi}, i∈01, 2,..., h, assuring that 
system (4) is controllable for its finite and infinite 
eigenvalues. For this case, it can be concluded that the 
matrix F exists, with a property that the matrix pencil (sE-
A-BF) is regular and it has {λi}, i∈ 1, 2,..., h as a set of 
eigenvalues. That implies the existence of vi ∈ H (λi), i∈1, 
2,..., h such as  

 span {vi} ∩ N (E)= 0  (70) 

A possible solution for the determination of the subspace 
V is a set of linearly independent vectors vi ∈ H (λi), but 
with a property vi ∉ N (E). Then, V = span {vi}, and V 
∩ N (E) = 0. This practically means that it is possible to 
assign both eigenvalues and eigenvectors for system (4) 
using state-space feedback defined by the matrix F.  

The proposed method can be used for the dynamic 
analysis of a class of robotic systems where the contact 
forces are included into the mathematical models of 
systems, or even in the cases where it is necessary to 
control the reactive force to systems. 

System simulation 
In this section, the simulation results for five degree-of-

freedom (DOF) robotic systems are presented. The state-
space values are generalized coordinates and generalized 
velocities of each joint. Fig.1 shows the dynamic behavior 
of the uncontrolled system.  

 
Figure 1. Pole placement and the stability analysis of an uncontrolled 
system 

Fig.2 represents the pole positions for system (52) when 
the poles are adjusted by the described geometric method 
and control law (51). 
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Figure 2. Pole placement and stability analysis of the controlled system 
with state-space feedback inside the invariant controlled subspace V 

The computational programs developed for this analysis 
can be found in Buzurović, Debeljković (2010). The article 
gives the basis for determining the maximum controlled 
subspace, which is responsible for the negative pole 
position. For the purpose of this numerical example, one 
component of the transmission matrix that describes the 
dynamic contact reactive force has been shown.  

Fig.3 and 4 represent the sinusoidal response of uncon-
trolled system (3), and then for controlled systems (52) in 
the invariant subspace V, when feedback (51) has been ap-
plied. 

 

Figure 3. Sinusoidal response of the uncontrolled system 

 

Figure 4. Sinusoidal response of the controlled system 

It was shown that the controllability of system (52) 
depends on the structure of matrix (54). It can be noticed 
that the scalar multiplier λ can influence condition (54) and 
consequently the system stability. Using condition (54) and 
the adjusted pole positions calculated from Theorem 7, the 
scalar multiplier λ can be adopted in a way to guarantee the 
avoidance of the impulse modes in the singular system. 
When a robotic system is in the contact with environment, 

λ is not constant during the working regime. The scalar 
multiplier depends on the generalized coordinates q, as in 
Fig.5. The local maximum of λ exists when the contact 
force has its maximum value. 

 
Figure 5. Scalar multiplier during the contact of a robotic system with the 
environment. In this case, λ depends on three active generalized 
coordinates. 

Conclusion 
The necessary and sufficient condition for the existence of 

the solutions for a mathematical model of one robotic system 
has been presented. For the investigation of the solutions, the 
geometric approach was used. The proposed approach could 
be applied to any robotic system which is in contact with the 
rigid frictionless surface in the working regime.  

The results of system controllability have been extended 
to systems with contact task represented as singular (semi-
state, descriptor) systems. The state controllability condition 
implied that it is possible to steer the states from any initial 
value to any final value within some time window. The 
derived results represented the sufficient conditions for 
controllability of such systems, based on the generalized 
Lyapunov equation derived using the geometric approach. 
Simple sufficient algebraic conditions were derived for 
controllability testing. The results could be used as a basis for 
further development of a similar analysis for different robotic 
systems with contact task as well as for nonlinear and time-
variable, and time-discrete descriptor systems. 

Both the eigenvalue and eigenvector assignment 
procedure have been analyzed in order to avoid undesirable 
mode coupling and other poor transient behavior due to the 
singular character of the mathematical model.  

The presented methodology can be applied to the 
investigation of numerous robotic systems in contact with 
the environment. For such systems, the desired dynamical 
behavior and tasks cannot be defined solely in terms of 
motion of the end-effector. The robotic systems designed 
for scribing, deburring, grinding, writing, insertions etc., are 
good candidates to be analyzed using the proposed method. 
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Podešavanje sopstvenih vrednosti posebne klase singularnih sistema 
za ograničene robotske sisteme 

Robotski sistemi u kontaktu sa spoljasnjom sredinom su karakteristican primer gde kontaktne sile igraju vaznu ulogu 
u dinamici takvih sistema. Shodno tome, njihovo matematicko modeliranje predstavlja poseban izazov. Matematicki 
model opisanih sistema sadrzi kako diferencijalne, tako i algebarske jednacine koje reprezentuju ogranicenja na 
sistem. Poznato je da se takav sistem naziva singularni sistemi diferencijalnih jednacina. U ovom clanku prezentovan 
je geometrijski pristup iznalazenju resenja dinamickog sistema sa ogranicenjima. Ispitano je podesavanje sopstvenih 
vrednosti, kao i sopstvenih vektora sistema. Da bi sistem ostvario zeljeno dinamicko ponasanje odredjeni su i 
matematicki uslovi upravljivosti sistema. 

Ključne reči: singularni sistem, upravljivost, geometrijski prilaz, podešavanje polova, dinamika sistema, matematički 
model, robotika. 

Установка собственных значений специального класса 
сингулярных систем для ограниченых робототехнических систем 

Роботизированные системы в контакте с внешней средой представляют  типичный пример, когда 
контактные силы играют важную роль в динамике таких систем. Следовательно, их математическое 
моделирование является особым вызовом. Математическая модель описанных систем включает в себя как 
дифференциальные, так и алгебраические уравнения, которые представляют собой ограничения на системы. 
Известно, что такая система называется особой сингулярной системой дифференциальных уравнений. В 
данной статье представлен геометрический подход к решению динамических систем со ограничениями. Мы 
рассмотрели корректировки своих значений и собственных векторов системы. Для достижения желаемого 
динамического поведения системы, определены и математические условия управляемости системы.  

Ключевые слова: сингулярные системы, управляемость, геометрический подход, установка полюсов, динамика 
системы, математическая модель, робототехника.  
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Le réglage des valeurs propres de classe particulière des systèmes 

singuliers pour les systèmes robotiques contraints 
Les systèmes robotiques en contact avec l’environnement sont les exemples typiques où les forces de contact jouent un 
rôle important dans la dynamique de ces systèmes. C’est pourquoi leur modélisation est un défi particulier. Le modèle 
mathématique des systèmes décrits comprend les équations différentielles et celles algébriques qui représentent les 
contraintes pour le système. Il est bien connu que ce système est considéré comme le système singulier des équations 
différentielles. Dans cet article on a présenté l’approche géométrique servant à trouver la solution pour le système 
dynamique avec contraintes. On a étudié le réglage des valeurs propres du système. Pour que le système réalise le 
comportement dynamique voulu on a déterminé les conditions mathématiques du contrôle de système. 

Mots clés: système singulier, contrôle, approche géométrique, réglage des pôles, dynamique de système, modèle 
mathématique, robotique. 

 

 


