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An Introduction to the Theory of Three Dimensional Curved 
Dislocations 

Milan Cajić1) 

Plastic deformation of crystals is the result of dislocation motion. Owing to the long-range nature of dislocation 
interactions, the development of a continuum theory of plasticity, based on the averaged dynamics of dislocation 
systems, represents a difficult mathematical problem. Here, we summarize current advances in the field of size-
dependent continuum plasticity of crystals, based on the dislocation density measure which is able to account for the 
evolution of systems of three-dimensional curved dislocations. In the first part of the current work we introduce a 
self-consistent theory and its dislocation density measure with a definition and an evolution equation which is a direct 
generalization of the definition and the kinematic evolution equation of the Kröner-Nye dislocation density tensor. In 
the second part of this paper we show a Finite Element Method application of a 3D continuum theory of curved 
dislocations, which is based on the definition of dislocation density in higher dimensional state space containing 
dislocation orientation information 
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Introduction 
HE first suggestion of dislocations was provided by 
observations [1], [2] in the nineteenth century that the 

plastic deformation of metals proceeded by the formation of 
slip bands, wherein one portion of a specimen sheared with 
respect to another. Initially, the interpretation of this 
phenomenon was obscure, but with the discovery that 
metals were crystalline, it was appreciated that such a slip 
must represent the shearing of one portion of a crystal with 
respect to another on a crystallographic plane [3]. 

Continuum theories of dislocations have already been 
introduced in the 1950s independently by Kroner [4], Nye 
[5], Bilby and co-workers [6] and Kondo [7]. Their theories 
were founded on the so-called Kröner-Nye dislocation 
density tensor, which served as a measure for the defect 
state of a crystal. However, already then it was obvious that 
the dislocation density tensor as an averaged object does 
not carry enough information about the dislocation state to 
deduce the rate of plastic deformation from it (for details 
see the third chapter). In general, it is not possible to build a 
closed theory of plasticity solely on the Kröner-Nye 
dislocation density tensor. However, such a formulation can 
be used in the case of a single dislocation as singular 
densities and in special cases where dislocations form 
smooth bundles of parallel lines of the same orientation 
(e.g. as done by Acharya [8], [9], [10] and by Sedláček at 
al. [11]). Only in these cases the density function ρ  
coincide with the total dislocation density and the averaged 
line direction gives the true direction of dislocation lines. 
Using this dislocation density measure in more general 
situations leads to non-closed formulations which need to 
be ’patched up’ by phenomenological assumptions. 

Another approach in terms of higher-dimensional density 
measure was proposed by Kosevich [12] and similarly by 

El-Azab [13]. The first one defines dislocation densities in 
a space which includes parameters characterizing the line 
orientation as an independent variable and the second one 
extended the statistical mechanics to systems of curved 
dislocation lines by using densities that evolve in a higher 
dimensional state space. According to the observations in 
[21], the measures of these two systems are not capable of 
distinguishing a distribution of circular loops from the 
distribution of randomly oriented dislocation straight lines 
in a plane with the same Burgers vector.  

The recent study by Hochrainer [14] introduced the 
Extended Continuum Theory (ECT) which is applicable  to 
very general dislocation configurations. In this theory, 
mathematical foundations required for transferring the 
methods of statistical mechanics consistently with three 
dimensional systems of curved dislocations have been 
formulated. In the following text, we will briefly introduce 
the ECT. For a complete introduction and derivation of this 
theory, the reader is referred to [14] and [15]. 

According to the observation in [16], advances in 
addressing a problem of the formulation of a size-dependent 
continuum theory based on the mechanics of discrete 
dislocations have been accomplished and given in a rigorous 
mathematical form. However, the problem of describing grain 
boundaries and interfaces as well as their interactions with 
dislocations still has many unsolved issues. Mesarović has 
analyzed the second problem within the continuum framework 
and with a particular emphasis on the slip relaxation at 
interfaces (for details see e.g. [16, 17, 18]). 

All these approaches, outlined above, provide a general 
framework to study dislocation kinematics and dynamics, 
dislocation density evolution, description of grain 
boundaries and interfaces and their reactions with 
dislocations. Nevertheless, the subject of this 

T 
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communication is much narrower and shows a short review 
of the ECT theory and the FEM application of an improved 
model of the Kröner-Nye dislocation density measure 
(ECT) in a single glide situation.  

In the current paper, we use the following definitions and 
conventions: ∇  denotes the gradient operator, 1x  and 2x  
are the spatial plane coordinates, and with φ  we denote the 
third dimension in a configuration space which physically 
represents the dislocation line orientation (for a more 
detailed description see the third chapter). Accordingly, 
with the capitalized DIV we denote the divergence operator 
which is operating in a higher-dimensional space which 
includes the orientation φ  and it is written as 

1 2
: , ,DIV x x φ

⎛ ⎞∂ ∂ ∂= ⎜ ⎟∂ ∂ ∂⎝ ⎠
. The small-lettered div is the 

divergence operator in a spatial plane 
1 2

: ,div x x
⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠

. The 

Laplace operator Δ  is given by the gradient of divergence 
and introduces the second derivative 

1 2
: , ,

T

grad x x φ
⎛ ⎞∂ ∂ ∂Δ = ⎜ ⎟∂ ∂ ∂⎝ ⎠

  

The tensors are denoted in bold-face letters and scalar 
quantities are written in non-bold ones, while curl denotes 
the rot-operator. The vector product is denoted by × , and 
the tensor product by ⊗ . The symmetric part of a matrix 
M of the second rank tensor ijm  (for example) can be 

obtained by the ( )1
2= + TS M M , where TM  is the 

transpose of a matrix. 

Elasto-plasticity for small strains  
Consider a material distortion β  as  

 : u= ∇β  (1) 

where ( )u ,u t  is a continuous and differentiable material 

displacement field, which usually characterizes the 
deformation of a body in continuum mechanics, and u  is 
the displacement vector with a form x y zu u i u j u k= + +  
(see ref. [19] by Rašković or [20] by Hedrih (Stevanović)). 
The gradient of such a smooth vector field ∇u , denoted by 
β , in some literature (in ref. [4] by Kröener, for example) 
is called the distortion tensor or, in references mentioned 
above, it is called the functional matrix. However, in a 
matrix form and the Cartesian coordinates for β  we obtain  

 
:

x x x

y y y

z z z

u u u
x y z

u u u
x y z
u u u
x y z

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟=
∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

β
  

The symmetric part of the distortion tensor is called the 
strain tensor and has the following form 

 ( )1: 2
Tsym= = +ε β β β  (2) 

In the small-strain approximation, the material distortion 
(see ref. [4] by Kröner) can be additionally decomposed 
into a plastic and an elastic part 

 pl el= +β β β  (3) 

and the same applies to the strain tensor 

 pl el= +ε ε ε  (4) 
The relation between the elastic tensor and the local 

stress, obtained by the double contraction of two tensors, is 
given in the Cartesian coordinates  

 el
ij ijkl klCσ = ε  (5) 

where ijklC  is the forth order tensor of the material 

elasticity constant and el
klε  is the elastic part of the strain 

tensor. We write Navier-s balance equations (also in the 
Cartesian coordinates) as 

' 0yxx zx
V xy yxXx y z

τσ τ τ τ∂ ∂+ + + = =
∂ ∂ ∂  

' 0xy y zy
V xz zxYx y z

τ σ τ
τ τ

∂ ∂ ∂
+ + + = =

∂ ∂ ∂  

 ' 0xy y zy
V xz zxYx y z

τ σ τ
τ τ

∂ ∂ ∂
+ + + = =

∂ ∂ ∂  (6) 

where iσ  and ijτ  ( , , ,i j x y z= ) are the normal and the 
tangential components of the local stress tensor ijσ  (see ref. 
[19] by Rašković or [20] by Hedrih (Stevanović)). In the 
absence of the volume body and the inertial forces ( 'VX , 

'VY , 'VZ ), we obtain  

0yxx zx
xy yxx y z

τσ τ τ τ∂ ∂+ + = =
∂ ∂ ∂  

0xy y zy
xz zxx y z

τ σ τ
τ τ

∂ ∂ ∂
+ + = =

∂ ∂ ∂  

 0xy y zy
xz zxx y z

τ σ τ
τ τ

∂ ∂ ∂
+ + = =

∂ ∂ ∂  (7) 

or in a tensorial form 

0div =σ  and = Tσ σ  

As noted in [22], the purpose of constitutive modeling is 
to derive evolution equations for the plastic distortion plβ  
based on the current stress state and possibly various internal 
variables of the material. The ECT is an example of a theory 
where the evolution of the plastic distortion is expressed in 
terms of internal variables (dislocation density and 
dislocation curvature) which represent statistical averages 
over the discrete dislocation pattern within the crystal. 

The Kröner-Nye dislocation density tensor 
The Kröner-Nye definition of the dislocation density 

tensor as the curl of the plastic distortion, given by Kröner 
(and similarly by Nye), is defined as 
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 plcurl=α β  (8) 

From the definition of the Kröner-Nye tensor in eq.(8) 
and identity (A.2) it follows that 

 0div =α  (9) 

which expresses the physical fact that dislocation cannot 
end inside a crystal.   If we analyze this theory at the smallest scale on which 
the continuum theory can be used, i.e., spatial resolution 
such that all dislocation lines are captured separately by the 
curl operation, then the Kröner-Nye tensor completely 
characterized the dislocation system (see e.g. [21]). If we 
assume ( )c s  as an oriented curve which represents a 
dislocation line parameterized by the arc length s , i.e. 

/dc ds is the unit tangent vector to the dislocation line. In 
this manner we assume that all dislocations share the same 
Burgers vector b . The last assumption reduces calculus to 
the usual calculus of differential forms (see ref. [21]) and 
the treatment of dislocations is reduced to a theory of 
distributed curves. If we define cδ  as a density measure 
along the dislocation line  

 ( ) ( )( )
0

c r
cL

c r s dsδ δ= −∫  (10) 

where cL  is the total length of the curve ( )c s  and ( )rδ  is the 
standard Dirac measure (’delta function’) in the three-
dimensional space. Then we may write the discrete Kröner-
Nye tensor (indicated by superscript “d”) in the following 
manner 

 d
c

c

dc bdsδ= ⊗∑α  (11) 

where the sum runs over all dislocation lines.  
The standard definition of the Burgers vector for a single 

dislocation [28] is given as  

 el

c
b dl= ∫ β  (12) 

where the line integral is to be taken in the right-handed 
sense with respect to the tangent vector to the dislocation 
line. dl  is an oriented element of the closed boundary c of 
the area A through which the dislocation is piercing, and 

elβ  is the elastic distortion caused by the dislocation. In the 
case of continuously distributed dislocations and by 
applying eq. (8) and (A.7), eq. (12) transforms to 

A

b da= ∫α  

Here b  is the resulting Burgers vector of all the 
(continuously distributed) dislocations piercing through A 
(see ref. [29]). The differential representation of eq. (12) is 

 db da= α  (13) 

where db  is the resulting Burgers vector of all the 
continuously distributed dislocations piercing through the 
infinitesimal area da .  

As noted in [15], the Kröner-Nye dislocation density 
tensor as an average object which does not carry enough 
information about the dislocation state to deduce the rate of 
plastic deformation /pl t∂ ∂β  from it. As 

/ /plt curl t∂ ∂ = ∂ ∂α β , the absence of a relation between 

α  and the deformation rate plβ  implies that the evolution 
of α  itself cannot be formulated in a closed form. In other 
words, it is in general not possible to build a closed theory 
of plasticity solely on the Kröner-Nye dislocation density 
tensor. The Kröner-Nye formulation is suitable only for the 
treatment of single dislocations as singular densities and 
situations where dislocations form smooth bundles 
(dislocations in the same volume element are parallel and 
have the same orientation), and this formulation is exploited 
by Sedlaček et al. in [11]. 

The local rate of plastic distortion can be deduced from 
Orowan’s relation, and given in the tensorial form  

 
,pl d

d
c

c

n bt δ υ υ∂
= − ⊗ = − ×

∂ ∑β α  (14) 

where n  is a glide plane normal and it is equal to 
/n v dc ds= × . Farther, vυ υ=  is the local dislocation 

velocity, with υ  denoting the scalar velocity. The unit 
vector in the dislocation glide direction is v . With 
evolution equation (14), we define a plastic deformation 
rate in materials. 

If we define the discrete dislocation current by d dυ= ×J α  
and using the Kröner-Nye tensor (as it was done in [22]), then 
we obtain the evolution equation for dα . 

 ( )
d d dcurl rott υ∂ = − = − ×

∂
α J α  (15) 

The definition of the dislocation current dJ  is a 
mathematical concept taken from differential geometry and 
currents. In the literature (for details see ref. [15]) currents 
are defined as functionals on (admissible) spaces of 
differential forms and this concept includes sub-manifolds 
and differential forms. However, the subject of this paper is 
much narrower than getting into the details of this concept; 
therefore, the reader is referred to references [14] and 
especially [15]. As a physical interpretation of evolution 
equation (15), we take that it represents the “low” of the 
dislocation density distribution over time. 

If we attempt to use statistical averaging over the 
Kröner-Nye dislocation density tensor for constructing a 
coarse-grained theory, then, according to observations in 
[21], we lose some essential information of our density 
measure. We denote spatial average over some small 
volume rV  of size V  centered at r  by  

 ( ) ( ) ( ) 3... , : 1 / ...
rV

V r V d r= ∫ . (16) 

A scalar measure of the average dislocation density, 
which characterizes the total dislocation density, is given 
by the dislocation line length within a small volume rV , 
divided by the averaging volume 
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( )( ) 3

0

1 11 '
cL

c cc V V

c
c

ds c s r d r dsV Vρ δ

δ

∩

′= = − =

=

∑ ∑∫ ∫ ∫

∑
 

 
(17) 

with a similar notation we define the average dislocation 
density tensor (11) by 

 d
c

c

dc bdsδ= = ⊗∑α α  (18) 

The average line direction, given by the unit vector, has 
the following form 

 
c

c

c
c

dc
ds

l
dc
ds

δ

δ

=
∑

∑
 (19) 

The definition of the geometrically necessary dislocation 
Gρ  is given as  

 G c
c

dc
dsρ δ= ∑  (20) 

The average dislocation density tensor written in terms 
of geometrically necessary dislocations Gρ  and the 

average line direction l  is 

 Gl bρ= ⊗α  (21) 

If we interpret υ  as the pointwise vectorial average of 
the velocities along the dislocation lines, then the average 
dislocation density tensor does not fulfill the equation  

 
pl

t υ∂ = − ×
∂
β α  (22) 

In that case, the relation between plastic distortion and 
dislocation density is lost except for a special case as 
follows. After using eq. (14) and averaged eq. (15), we 
obtain an evolution equation for the averaged tensor 

 c
c

dccurl bt dsδ υ∂ = − × ⊗
∂ ∑α  (23) 

As concluded in [21], the threefold product within the 
average can be written as a product of averages only if all 
dislocations within the averaging volume share the same 
tangent vector /l dc ds=  and the velocity υ . As we 
mentioned above, this is possible only if one dislocation is 
present (the discrete case) or if the dislocation forms 
smooth line bundles (special case). In these cases, Gρ ρ= , 

l bρ= ×α , and then equation (15) is correct for both local 
and the averaged scale.  

In a more general case, the averaging volume contains 
dislocations of different orientations. Additional terms 
appear in the evolution equation due to the fact that 
averaging leads to a reduced dislocation density Gρ ρ<  , 
and the dislocation density tensor does not obey (15) when 

υ  is considered as an average velocity. In the literature, 
such terms have been recognized but all publishing 
attempts, until the appearance of ECT theory, provided 
phenomenological patches which do not really resolve the 
underlying theoretical problem. 

a) 

b) 

Figure 1. Dislocation loop expansion in a spatial plane with the same 
Burgers vector 
a) Loop expansion of two dislocations at time 0t =  
b) Loop expansion of two dislocations at time 1t t t= + Δ  

Before the introduction of ECT, in Fig.1 we show the 
visualization of the loop expansion of two dislocations in a 
spatial plane 1 2x x  (which shares the same Burgers vector) 
at the time t  and t t+ Δ . From Fig.1 we can see how the 
line orientation vector l at the point r  changes its angle φ  
with respect to the Burgers vector during the loop 
expansion. 

ECT and a line-like character of dislocation lines 
The key idea of the ECT is to distinguish dislocation 

lines in a given spatial point r  according to their line 
direction l  (see e.g. [22]). Such a description makes sense 
as long as we stay at a level of a discrete description. 
However, if we average over a mesoscopic volume, then a 
distinction becomes evident. According to [21], it is much 
more realistic to assume  that dislocations which do have 
the same direction move in the same manner than the 
assumption that all dislocation lines in a mesoscopic 
volume have the same direction and move with the same 
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velocity in response to an acting stress.  
The example presented here can be considered as a 

generalization of the two-dimensional case treated by 
Sedláček et. al. in [11]. Here we assume that a dislocation 
system is completely specified by its motion in the 1 2x x -
plane by considering a system as homogenous in the 3x  
direction. The difference between an ECT model and the 
one founded by Sedláček is that the first one allows for 
dislocations with different directions at each point.  

In the case where dislocations move by gliding only, 
their line direction can be parameterized by the scalar 
variable φ  which is the angle between the line direction l  

and the Burgers vector b  (see Fig.2). Then we denote a 
point of a dislocation line in the configuration space as 
( ),r φ . By the so-called “lift” of a spatial curve (in our case 
a circular curve which represents a curved dislocation line) 
in the configuration space where each spatial point 
r R R∈ ×  gets mapped to the point ( ),r R R Sφ ∈ × × , with 
S denoting the line orientation space [0...2 )S π= . The 
orientation φ  extends in the configuration space S  and it 
is normal to the spatial plane 1 2x x (for the visualization of 
this concept see Fig.2.). However, in this case we consider 
the averages over so-called lifts of dislocation lines to the 
configuration space instead of the averages over the spatial 
dislocation lines (for a complete derivation of the ECT in 
such a notation see ref. [21]). The introduction of this space 
necessitates the notion of the generalized line direction L  
and the generalized velocity V , which denote the line 
direction along the lifted line and the velocity respectively, 
where the generalized velocity is perpendicular to the 
generalized line direction 

 
( , ) 1 2rL cos e sin e ke

l ke
φ φ

φ

φ φ= + +
= +  (24) 

where  

 1 2cos sinl e eφ φ= +  (25) 

The vectors 1e , 2e and eφ  are orthogonal unit vectors on 

the 1x , 2x  and φ  axis, respectively, l  is the spatial line 
direction which is a tangent vector on the curve. Unlike the 
previous case, where dislocation lines are in the spatial 
plane and the spatial line direction l  is described only by 
two components ( cosφ  and sinφ ), with a definition of the 
generalized line direction we introduce the third component 
k which is the (pseudo) scalar field variable representing the 
curvature. We have to make a sign convention in order to 
define L  and V . Therefore, for the sign of k we consider a 
circular loop oriented counter–clockwise as positively 
curved, 0k > .  

From Fig.1 we can see that the velocity of the lifted 
curve contains two components: the first one is the spatial 
velocity v  orthogonal to the spatial dislocation line and the 
second one is a component in the φ  direction (in the 
configuration space) which accounts for the rotation of line 
segments during dislocation motion. The second component 
is pseudo-scalar rotation velocity and in the following text 
is denoted as θ . We will regard the velocity of a positively 

oriented loop as positive if the loop expands. 
Finally, for the generalized velocity V  we have 

 ( , ) 1 1 2 2rV v e v e eφ φθ= + +  (26) 

where v  is the spatial velocity 
 1 1 2 2v v e v e= +  (27) 

where 1v vsinφ=  and 2v vcosφ= −  
The third component θ  in (26) is determined by the 

change of velocity along the lifted line 

 ( )L DIVvθ = − ⋅  (28) 

 
a) 

 
b) 

Figure 2. The arrows which surround the lower loop indicate the spatial 
velocity and the arrows attached to the upper curve indicate the 
generalized velocity along the line. 
a) Dislocation circular curve in a spatial plane, with the spatial line 
direction and the spatial velocity normal to the spatial line direction 
b) Visualisation of the lift (upper blue line) of a planar curve in the 1 2x x - 
plane (lower closed loop). Reproduced from [14]. 

Evolution equations in a single glide situation 
In the center of the extended continuum theory (ECT) of 

dislocations lies a so-called dislocation density tensor of the 
second order ( ),

II
r φα . For a compete derivation of this tensor 

with a close analogy to the Kröner-Nye dislocation theory, 
the reader is referred to [21]. This tensor represents a 
natural generalization of the Kröner-Nye dislocation 



 CAJIĆ,M.: AN INTRODUCTION TO THE THEORY OF THREE DIMENSIONAL CURVED DISLOCATIONS 83 

density tensor to a higher dimensional configuration space.  
According to the observation in [21], the averaging 

volume i.e. a volume element in the configuration space 
contains dislocations of one orientation only and therefore, 
there is no cancelation of dislocations of opposite directions 
during averaging of spatial tangent vectors. As a 
consequence of this contention, we find that ( ),r φρ  gives 
the spatial line length per volume (of the configuration 
space) of dislocations at the point r  with the direction l .  

The kinematic evolution equation for the second order 
dislocation tensor has the following form:  

 ( )
( )( ),

,

II
r II

rcurl Vt
φ

φ
∂

= − ×
∂
α

α  (29) 

where ( ),
II
r φα  is  

 ( ) ( ) ( ), , ,
II
r r rL bφ φ φρ= ⊗α  (30) 

where we assume a constant Burgers vector as 
1( ,0)b b be= =  i.e. parallel with the 1x  direction of a 

chosen coordinate system and ( , )r φρ
 

denotes the scalar 
density function.  In some formulas, the index ( , )r φ  is 
dropped out to abbreviate the notation and in the following 
text we always imply that all quantities are evaluated at the 
point ( , )r φ  in the configuration space [0, 2 )R R π× × . 

The second order dislocation density tensor in a matrix 
form reads as  

 ( ) ( )

( ) ( )

1 2

1 2
, ,

1 2
, ,

II
r r

r r

b cos b cos
b sin b sin
b k b k

φ φ

φ φ

φ φ
ρ φ φ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

α  (31) 

or 

 ( ) ( )
( )

, ,

,

0
0
0

II
r r

r

cos
sin b
k

φ φ

φ

φ
ρ φ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

α  (32) 

If we assume that the dislocations move in the direction 
of the spatial velocity 1 2[ , ,0]v v v=  perpendicular to the 

line direction l  (see e.g. [23]). The generalized velocity 
that we have introduced before is also included in the 
following equations, where in the case of a single glide 
situation, we have  kinematic evolution equations for ρ  
and k  instead of the second order dislocation density 
tensor: 

 
( )

( ) ( )
DIV V vt

div v vk

ρ ρ ρ

ρθ
ρ ρφ

∂ = − + =
∂

∂
− + +

∂

 (33) 

and  

 ( ) ( )2k vk v kt
∂ = − + Δ −∇
∂

 (34) 

In the above evolution, the equations Δ  denote the 
second derivative along the generalized line direction and 
∇ denotes the first derivative along the generalized velocity 
direction.  

The terms in the above evolution equations have a 

physical meaning. The first two terms in (33) govern the 
transport of scalar density in the configuration space and 
the last term accounts for the increase of density due to the 
expansion of curved loops. In (34), the first term considers 
the curvature change during expansion, the second term 
accounts for the curvature change during the line rotation, 
while the third term considers the change in the generalized 
direction of motion [see e.g. 22].  

If we (as it was done in [23]) use the evolution of the 
product kρ , where 3: [m ]-n kρ= , instead of the evolution 

equation for k 1[m ]- , than instead of evolution equation 
(34) we use the following equation  

 ( ) ( )n DIV nV DIV Lt ρθ∂ = − + ⋅
∂

 (35) 

Both evolution equations (33) and (35) are kinematically 
closed where the history of the dislocation velocity v  is a 
given quantity. In general, v  is a function of the local stress 
and it can be determined by a constitutive relation. 
However, such an example is not the subject of this paper 
and it can be found in ref. [21] for example. 

A link to the material response on the continuum level is 
given by the evolution equation for the plastic distortion 

plβ  in the following form 

 ( ) ( )

2

, ,

0

pl

r r d n bt

π

φ φρ υ φ∂ = ⊗
∂ ∫β

 (36) 

where we obtain eq. in a similar form as eq. (14) with the 
only difference that here we obtain the above form by the 
integration of the scalar dislocation density ( ),r φρ  and the 

velocity ( ),r φυ  in the orientation space [0...2 )S π=  where 

dφ  denotes an infinitesimal change in the orientation φ . 

Weak form of the evolution equations  
The strong form consists of the governing equations and 

the boundary conditions for a physical system. The 
governing equations are usually partial differential 
equations, but in the one-dimensional case, they become 
ordinary differential equations. The weak form is an 
integral form of these equations, which is needed to 
formulate the finite element method. 

In some numerical methods for solving partial 
differential equations, the partial differential equations can 
be discretized directly (i.e. written as linear algebraic 
equations suitable for a computer solution). For example, in 
the finite difference method, one can directly write the 
discrete linear algebraic equations from the partial 
differential equations. However, this is not possible in the 
finite element method (for details see e.g. [24] by Fish and 
[26] by Kojić). 

(i) Reformulation of the PDEs 

To derive the weak form, we need to reformulate 
evolution equations (i.e. PDEs). If we introduce new 
notations where F , w  and Φ  replace the terms of the 
evolution equations (33) and (35) in the following way 

: ( , )TF nρ=  (37) 

Here the left-hand sides of the evolution equations (33) 
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and (35) (scalar functions ρ  and n ) are substituted by the 

F  vector. 

 ( )
( )

1 2

1 2
:

T

T
V v v

nv nv nnV
DIV V

DIV
DIV nV

ρ ρ ρ ρθ
θ

ρ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞
⎜ ⎟⇒ =
⎜ ⎟
⎝ ⎠

Φ

Φ
 (38)

 
The right-hand sides of (33) and (35) are replaced by the 

matrix Φ  and the vector w . The matrix Φ  replaces the 
first and the second term in the evolution equations.  

( ) ( ):
nvvk

w div l nDIV L
ρ

θρθρθ φ

⎛ ⎞⎛ ⎞
⎜ ⎟= = ∂⎜ ⎟ +⎜ ⎟⎝ ⎠ ∂⎝ ⎠

 

 

(39) 
We use the vector w  instead of the last term in (33) and 

the last term in (35). Then we obtain a compact formulation 
of the PDEs 

  F DIV wt
∂ = − +
∂

Φ  (40) 

More about the PDE you can see in ref. [26] by Hedrih 
(Stevanović).  

(ii) Derivation of the weak form 

For the final derivation of the weak form of evolution 
equations we have to define the domain. We consider a 
cube of the volume V̂  in the configuration space bounded 
by the surface ˆ ˆ ˆ

xV V Vφ∂ = ∂ ∪∂  (where x̂V∂ is the top and 

the bottom surface and V̂φ∂  is the side area surface) and the 

surface normal is denoted by N . Also we need a test 
(weight) function ( )1 2

Tη ηη= . Upon integrating equation 
(40) over the entire volume, the following result is obtained 

 ( )
ˆ ˆ ˆ

ˆ ˆ ˆ

V V V

F dV DIV dV w dVt η η η∂ ⋅ = − ⋅ + ⋅
∂∫ ∫ ∫Φ  (41)

 Then we rearrange the first term on the right-hand side 
of (41) (DIV term) 

 
( ) 1311 12

1
1 21,2

2321 22
2

1 2

ij

ji

DIV x x x

x x

η η η
φ

η
φ

=

∂ ∂∂ ∂⎛ ⎞⋅ = ⋅ = + + ⋅⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∂∂ ∂⎛ ⎞+ + + ⋅⎜ ⎟∂ ∂ ∂⎝ ⎠

∑ Φ ΦΦ ΦΦ

ΦΦ Φ
(42) 

Applying the divergence theorem and then rearranging 
the terms yields Green’s formula: 

 

( )
ˆ

,ˆ ˆ

ˆ

ˆ ˆ
V

T i
ij

ji jV V

DIV dV

N dA dVx

η

ηη
∂

− ⋅ =

∂− +
∂

∫
∑∫ ∫T

Φ

Φ Φ
 (43) 

We consider the second term on the right-hand side in 
the following form 

 
,ˆ ˆ

ˆ ˆ ˆ: i
ij

ji jV V

dV dVx
ηη ∂⋅∇ =
∂∑∫ ∫Φ Φ  (44) 

where 
∧

∇  denotes DIV operator in configuration space. 
 

A special case:

 If we assume for that the velocity on the boundary x̂V∂  
is zero 0=v , then ˆ 0T

xV N∂ ⇒ =TΦ . After applying 
this to formula (43), we obtain the following weak form 
equation

  ( )
ˆ ˆ ˆ

ˆ ˆ ˆ

V V V

F dV DIV dV w dVt η η η∂ ⋅ = ⋅ + ⋅
∂∫ ∫ ∫Φ  (45) 

This assumption that the velocity on the boundary is zero 
follows from the fact that dislocation loops expand until 
they reach the boundary of the domain (cube). 

After collecting “like” terms, we finally obtain the form 
of the equation we are looking for  

 ( )
ˆ

ˆ 0
V

F w DIV dVt η η⎡ ⎤⎛ ⎞∂ − ⋅ − ⋅ =⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦∫ Φ  (46) 

Distribution of expanding circular loops in a FEM 
simulation 

To simulate the distribution of expanding circular loops 
we applied the Finite Element solver COMSOL and its 
interface to MATLAB for the simulation and post-
processing purposes.  In this simulation, we discretized the 
configuration space (cube model) by a uniform mesh with 
tetrahedral mesh elements. For time stepping, we used the 
so-called BDF (backward differentiation formula) method 
which is an implicit method and is implemented in the 
COMSOL Multiphysics software.  

We assume that all dislocations move in a single glide 
system with the glide plain normal n  and the Burgers 
vector b . The system is also assumed homogeneous in the 
direction of the plane normal n .  

The cube model is divided in 5 subdomains where 4 of 
them (each for one side of the cube) are external and one 
domain is in the center of the cube. We assume a constant 
velocity for expanding the dislocation loop in the central 
subdomain and for other four subdomains we assume that 
the velocity decreases until it reaches the zero value on the 
boundary. Considering that ( ),r φρ  gives the spatial line 
length per volume (of the configuration space) of 
dislocations at r with the direction l  for the initial 
conditions, we assume the density to be 12 -2

0 1 [10 m ]ρ = , 
and for the initial value of n  (which is the product of kρ  
and the curvature k is equal to a reciprocal radius of the 
curve 1/k R= ) we give 0 10n = , where the curvature i.e. 
the initial radius of the curve is 0 0.1 [μm]R = . For the time 
step tΔ  we take 0.01tΔ =  and for the simulation time 

3t s= . After the implementation of the weak form of 
evolution equations (46) in the COMSOL and discretization 
(meshing) of the cube model, we run the software solver.  
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Numerical results 
Solving the evolution equations leads to a spatial density 

distribution as shown in Fig.2. As we can see, the 
solenoidality of dislocation density based on the lifting of 
dislocation loops in the configuration space is proved. 
There is a periodic dislocation density distribution in the φ  
direction, where the red color represents a higher density 
value and its distribution along the boundary. However, this 
solution has some deficiencies and it is not “smooth”. This 
is caused by a loop-like density distribution that gets 
fragmented during the loop expansion and it is directly 
related to a growing divergence of αII, whereas the 
dislocation theory requires this divergence to be zero 
(dislocation cannot end in the crystal) [22].  

A numerical error calculated by formula (47) is shown in 
Fig.3. As it can be seen, the numerical error grows 
exponentially after one second of the running simulation.  

 
ˆ

ˆ ˆ( )
V

L dVρ∇∫  (47) 

To avoid fragmentation, get a ”smoother” solution and to 
maintain solenoidality of the density distribution, as it was 
done in [22], we use the iteration formula 

 ( )II II II
new old artc⇐ + Δα α α  (48) 

which minimizes the total divergence of IIα . 

Scalar density 12 210 mρ −⎡ ⎤⎣ ⎦  

 
Figure 3. Simulation results of dislocation density evolution for a cube 
configuration space model after 300 steps with 0.01tΔ =  [s]. The scale 
shows dislocation density (line length per volume) and its value for an 
appropriate color in the cube model. The coordinate system is in the center 
of the cube lower base and each side of the cube has its length of 2π  
(because of the periodical boundary condition inφ  direction). The initial 

conditions are: ]m10 [1 -212
0 =ρ for the dislocation density, the 

dislocation curvature 6 -1
0 10 [10 m ]k =  i.e. the initial radius of the 

dislocation curve  0 0.1 [μm]R = and max 1v = for the dislocation velocity. 

With the operator Δ , we introduce the second 
derivatives which have a diffusive effect and suppress 
fragmentation, but also act in the perpendicular direction 
and cause a broadening of the line. 

According to the observations in [33] and [35], this 
relaxation scheme has some drawbacks conserving only 

IIα  but not ρ , which causes unphysical changes in the 
dislocation density during the relaxation step. 

 
Figure 4. Numerical error for the solution in Fig.2, calculated by the 
formula (47) 

An improved relaxation scheme which corrects the 
drawbacks of the previous scheme and conserves the total 
dislocation density is obtained by modifying (48). This 
provides a solution where ρ  is relaxed along the line 

 new old artcρ ρ ρ⇐ + Δ  (49) 

In this formula artc  denotes an artificial diffusion 
coefficient which is a factor controlling the step size and 
can be adjusted to achieve efficient relaxation. 

This relaxation scheme causes some changes in 
evolution equations (33) and (35) which now have a 
modified form  

 ( ) artDIV V vn ct
ρ ρ ρ∂ + = + Δ
∂

 (50) 

 ( ) art
n div nv l c Nt ρθ∂ − − = Δ
∂

 (51) 

The derivation of the weak form is the same as in the 
previous case.  

Scalar density 12 210 mρ −⎡ ⎤⎣ ⎦  

 
Figure 5. Simulation results of the dislocation density evolution for the 
cube configuration space model with the implemented relaxation scheme 
and for the coefficient 0.1artc = after 300 steps with 0.01 [s]tΔ = . The 
dimensions of the cube model and the initial conditions are the same as in 
Fig.2. The scale shows the dislocation density (line length per volume) and 
 its value for the appropriate color in the cube model. 
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After we run the simulation with the new relaxation 
scheme and the initial configuration is the same as in the 
previous case, the efficiency of this relaxation scheme can 
be seen in Fig.5. 

We can see that the solution looks smoother and the 
negative values for the dislocation density are cut off, i.e. 
reduced to the minimum. The numerical error (Fig.6) 
calculated with formula (47) is smaller but still grows 
exponentially. If we change the artc  coefficient, we could 
achieve an efficient relaxation scheme but still some 
drawbacks cannot be avoided. 

We can calculate the total dislocation density tρ  as  

 
2

0

( )t d
π

ρ ρ φ φ= ∫  (52) 

 
Figure 6. Numerical error for the solution in Fig.5. calculated by the 
formula (47)  

 

Figure 7. Comparison of the numerical solutions for the dislocation 
density (with one dimension less) in the case of three simulations with 
different artificial diffusion coefficients, the initial configuration being the 
same as in the previous case. 

As it can be seen, by integrating the dislocation density 
we can eliminate the extra dimension (φ ). If we compare 
the solutions for the total dislocation density for three 
different simulations with the different values of the artc  

coefficient ( 0.01,artc =  0.1,artc =  1artc = ) and plot them 
on the same 2D graph, than we can see the impact of the 
artificial diffusion coefficient on the solution (Fig.6). 

Summary and outlook 
Modelling dislocation systems on small scales is very 

demanding because of the line character of these crystal 
defects and a complex network they form. The notion of 
’spatial resolution’ is very important if the scale of the problem 
comes to become of the same order of magnitude as the 
curvature radius of the dislocation lines. In that case, the line-
like character of the elementary objects cannot be neglected.  

In the current work, we showed by an FEM simulation 
that the ECT, with a proper relaxation scheme, is able to 
predict the evolution of circular loops correctly. In the 
numerical implementation presented here and compared to 
quasi-discrete examples in [21, 22], we do not neglect the 
rotational velocity and the change of the curvature along the 
dislocation line. Even with such a density distribution we 
maintain the solenoidality of the solution. Numerical 
problems arising from the discretization of the orientation 
space occur in both cases. However, the relaxation scheme 
used in this work is computationally expensive and works 
only with a coarser discretization of the domain. Achieving 
a well-relaxed configuration requires multiple relaxation 
steps, each of which is computationally about as expensive 
as one time integration step for the evolution equation. 
Very good results in the correction of fragmentation, that 
do not require many relaxation steps, can be achieved by 
the so-called “tangential diffusion”. The description of this 
method can be seen in paper [21].  

Summarizing the current advances, we give an example 
with a physically relevant situation and specify the 
constitutive law which relates the dislocation velocity (as a 
function of the local stress) to the dislocation pattern. 
However, such examples can be seen in many papers where 
some of them are outlined in the references below.  
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Notes 
1. We speak of a kinematically closed equation as we as-

sume the dislocation velocity v  at this point to be a 
given quantity. In general, v  is a function of the local 
stress, which in turn depends on the dislocation ar-
rangement. Hence, a mathematically closed theory re-
quires additional relationships between the dislocation 
state, as expressed by α , and the dislocation velocity 
v . If v  is a function of the stress and the line direction 
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only, these relationships may be derived from Kröner’s 
theory of eigenstresses [4]. 

2. It is worth noting that the definition of the second order 
dislocation density tensor does not necessarily require a 
metric or volume element. However, an invariant defini-
tion requires the use of advanced mathematical concepts 
such as e.g. differential forms. We refrain from intro-
ducing these concepts in the current paper and refer the 
interested reader to [15] and especially [14] for a more 
thorough treatment. 

Appendix 
Identities 

Let ( )v x
 
be a vector field on 3R , a

 
is a scalar valued 

function on 3R . The following identities and ’product 
rules’ hold: 

 ( ) ( )v v 0curl grad =∇× ∇⊗ =  (A.1) 

 ( ) ( )v v 0div curl =∇⋅ ∇⊗ =  (A.2) 

 ( ) ( )v v v 0curl a acurl grad a= + × =  (A.3) 

 ( )v v vdiv a adiv grad a= + ⋅  (A.4) 

 ( )grad ab a grad b bgrad a= +  (A.5) 

Stokes’ theorem 
Let C  be the boundary of a surface A . Let further 
( )v x  be a vector field, ( )T x  a second order tensor field. 

The Stokes theorem states: 

 
C A

v dl curl v da=∫ ∫  (A.6) 

 
C A

Tdl curlTda=∫ ∫  (A.7) 
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Jedan pristup teoriji trodimenzionalnih zakrivljenih dislokacija 
Plastična deformacija kristala nastaje kao rezultat kretanja dislokacija u materijalu. Dalekosežna priroda 
međudejstva dislokacija, predstavlja veliki matematički problem za razvijanje  kontinuum teorije plastičnosti 
bazirane na usrednjavanju parametara dinamike dilslokacionih sistema. Prikazani su nedavni istraživački rezultati u 
kontinualnoj plastičnosti kristala i teorija proračuna gustine dislokacije kojom je moguće predvideti evoluciju sistema 
trodimenzionalnih zakrivljenih dislokacija. U prvom delu rada prikazana je samoodrživa teorija kinematike 
dislokacionih sistema (bez konstitutivnih jednačina koje daju vezu između brzine i napona) sa definicijom i 
evolucijskom jednačinom koja je direktna generalizacija Kröner-Nye-ovog tenzora gustine dislokacija. U drugom 
delu ovog rada prikazan je primer 3D kontinuum teorije zakrivljenih dislokacija urađen Metodom Konačnih 
Elemenata, zasnovan na definiciji gustine dislokacija u prostoru sa novom dimenzijom koja sadrži informacije o 
orjentaciji dislokacija (gustina dislokacija tada se definiše u prostoru koji uključuje parametre koji karakterišu 
orjentaciju dislokacione linije kao nezavisne promenljive). 

Ključne reči: kristalografija, mehanika kontinuuma, deformacija kristala, plastična deformacija, tenzor deformacije, 
tenzor gustine, dislokacija. 

Один из подходов к теории трёхмерных изогнутых дислокаций  
Пластическая деформация кристаллов является результатом движения дислокации в материале. 
Последствия дальнего характера взаимодействия дислокаций являются большой  математической проблемой 
и задачей разработать континуум теории пластичности (теория сплошной среды) на основе усреднения 
параметров динамики дислокационных систем. Здесь представлены результаты последних исследований в 
непрерывной пластичности кристалла и теория расчёта плотности дислокации, которая может предсказать 
эволюцию системы трёхмерных изогнутых дислокаций. Первая часть представляет собой жизнеспособную 
теорию кинематики дислокационных систем (без материальных уравнений, которые обеспечивают связь 
между скоростью и напряжением) с определением и эволюционным  уравнением, которое является прямым 
обобщением тензора плотности дислокаций Кронер-Ная (Kröner-Nye). Во второй части настоящей работы 
приведён пример 3D теории континуума изогнутых дислокаций, сделан Методом конечных элементов на 
основе определения плотности дислокаций в пространстве с новым измерением, которое содержит 
информацию об ориентации дислокаций (плотность дислокаций тогда определяется в пространстве, которое 
включает в себя параметры, характеризующие ориентацию линии дислокации в качестве независимой 
переменной).  

Ключевые слова: кристаллография, механика сплошной среды, деформация кристаллов, пластическая 
деформация, тензор деформации, тензор плотности, дислокация. 

Une approche à la théorie des dislocations courbées à trois 
dimensions  

La déformation plastique des cristaux est le résultat du mouvement des dislocations sans le matériel. En raison de la 
grande portée de la nature de l’interaction des dislocations, le développement de la théorie du continu de la plasticité, 
basée sur les dynamiques moyennes des systèmes de dislocation, pose un grand problème mathématique. On a 
présenté ici les résultats de récents essais dans la plasticité continue des cristaux et la théorie du calcul pour la densité 
de dislocation par laquelle on peut prévoir l’évolution du système des dislocations courbées à trois dimensions. Dans 
la première partie de ce travail on a exposé une théorie auto cohérente sur la cinématique des systèmes de dislocation 
(sans équations constituantes qui font la liaison entre la vitesse et la tension) avec la définition et l’équation évolutive 
de Kröner-Nye tenseur de la densité de dislocation. Dans la seconde partie de ce travail on a présenté l’exemple de la 
théorie 3D du continu pour les dislocations courbées, réalisé par la méthode de éléments finis et basé sur la définition 
de la densité des dislocations dans l’espace avec une nouvelle dimension contenant les informations sur l’orientation 
des dislocations.  

Mots clés: cristallographie, mécanique de continu, déformation de cristal, déformation plastique, tenseur de 
déformation, tenseur de densité, dislocation. 




