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An Introduction to the Theory of Three Dimensional Curved
Dislocations

Milan Caji¢"

Plastic deformation of crystals is the result of dislocation motion. Owing to the long-range nature of dislocation
interactions, the development of a continuum theory of plasticity, based on the averaged dynamics of dislocation
systems, represents a difficult mathematical problem. Here, we summarize current advances in the field of size-
dependent continuum plasticity of crystals, based on the dislocation density measure which is able to account for the
evolution of systems of three-dimensional curved dislocations. In the first part of the current work we introduce a
self-consistent theory and its dislocation density measure with a definition and an evolution equation which is a direct
generalization of the definition and the kinematic evolution equation of the Kroner-Nye dislocation density tensor. In
the second part of this paper we show a Finite Element Method application of a 3D continuum theory of curved
dislocations, which is based on the definition of dislocation density in higher dimensional state space containing

dislocation orientation information

Key words: crystallography, continuum mechanics, crystal deformation, plastic deformation, deformation tensor,

density tensor, dislocation.

Introduction

HE first suggestion of dislocations was provided by
observations [1], [2] in the nineteenth century that the
plastic deformation of metals proceeded by the formation of
slip bands, wherein one portion of a specimen sheared with
respect to another. Initially, the interpretation of this
phenomenon was obscure, but with the discovery that
metals were crystalline, it was appreciated that such a slip
must represent the shearing of one portion of a crystal with
respect to another on a crystallographic plane [3].
Continuum theories of dislocations have already been
introduced in the 1950s independently by Kroner [4], Nye
[5], Bilby and co-workers [6] and Kondo [7]. Their theories
were founded on the so-called Kroner-Nye dislocation
density tensor, which served as a measure for the defect
state of a crystal. However, already then it was obvious that
the dislocation density tensor as an averaged object does
not carry enough information about the dislocation state to
deduce the rate of plastic deformation from it (for details
see the third chapter). In general, it is not possible to build a
closed theory of plasticity solely on the Kroner-Nye
dislocation density tensor. However, such a formulation can
be used in the case of a single dislocation as singular
densities and in special cases where dislocations form
smooth bundles of parallel lines of the same orientation
(e.g. as done by Acharya [8], [9], [10] and by Sedlacek at
al. [11]). Only in these cases the density function p

coincide with the total dislocation density and the averaged
line direction gives the true direction of dislocation lines.
Using this dislocation density measure in more general
situations leads to non-closed formulations which need to
be ’patched up’ by phenomenological assumptions.

Another approach in terms of higher-dimensional density
measure was proposed by Kosevich [12] and similarly by
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El-Azab [13]. The first one defines dislocation densities in
a space which includes parameters characterizing the line
orientation as an independent variable and the second one
extended the statistical mechanics to systems of curved
dislocation lines by using densities that evolve in a higher
dimensional state space. According to the observations in
[21], the measures of these two systems are not capable of
distinguishing a distribution of circular loops from the
distribution of randomly oriented dislocation straight lines
in a plane with the same Burgers vector.

The recent study by Hochrainer [14] introduced the
Extended Continuum Theory (ECT) which is applicable to
very general dislocation configurations. In this theory,
mathematical foundations required for transferring the
methods of statistical mechanics consistently with three
dimensional systems of curved dislocations have been
formulated. In the following text, we will briefly introduce
the ECT. For a complete introduction and derivation of this
theory, the reader is referred to [14] and [15].

According to the observation in [16], advances in
addressing a problem of the formulation of a size-dependent
continuum theory based on the mechanics of discrete
dislocations have been accomplished and given in a rigorous
mathematical form. However, the problem of describing grain
boundaries and interfaces as well as their interactions with
dislocations still has many unsolved issues. Mesarovi¢ has
analyzed the second problem within the continuum framework
and with a particular emphasis on the slip relaxation at
interfaces (for details see e.g. [16, 17, 18]).

All these approaches, outlined above, provide a general
framework to study dislocation kinematics and dynamics,
dislocation density evolution, description of grain
boundaries and interfaces and their reactions with
dislocations.  Nevertheless, the subject of this
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communication is much narrower and shows a short review
of the ECT theory and the FEM application of an improved
model of the Kroner-Nye dislocation density measure
(ECT) in a single glide situation.

In the current paper, we use the following definitions and
conventions: V denotes the gradient operator, x; and x,
are the spatial plane coordinates, and with ¢ we denote the

third dimension in a configuration space which physically
represents the dislocation line orientation (for a more
detailed description see the third chapter). Accordingly,
with the capitalized DIV we denote the divergence operator
which is operating in a higher-dimensional space which
includes the orientation ¢ and it is written as

DIV:= (3%1 % %) The small-lettered div is the

divergence operator in a spatial plane div:=| -2 -2 |. The

8x1 ze
Laplace operator A is given by the gradient of divergence
and introduces the second derivative

T
o 0 0 0
A:= grad (6xl’8x2’6¢j

The tensors are denoted in bold-face letters and scalar
quantities are written in non-bold ones, while cur/ denotes
the rot-operator. The vector product is denoted by x, and
the tensor product by ® . The symmetric part of a matrix
M of the second rank tensor m; (for example) can be

obtained by the S= 3 (M +MT) , where M" is the
transpose of a matrix.
Elasto-plasticity for small strains
Consider a material distortion P as
B:=Vu )

where u(z;,l) is a continuous and differentiable material

displacement field, which usually characterizes the
deformation of a body in continuum mechanics, and # is

the displacement vector with a form u :uxf+u},]+uzl€

(see ref. [19] by Raskovi¢ or [20] by Hedrih (Stevanovic)).
The gradient of such a smooth vector field Vu , denoted by
B, in some literature (in ref. [4] by Kroener, for example)
is called the distortion tensor or, in references mentioned
above, it is called the functional matrix. However, in a
matrix form and the Cartesian coordinates for  we obtain

ou, Ou, Ou,
ox Oy Oz
b= Ou, Ou, Ou,
ox oy oz
Ou, Ou, Ou,
ox Oy oz

The symmetric part of the distortion tensor is called the
strain tensor and has the following form

8:=symB=%(B+BT) (2

In the small-strain approximation, the material distortion
(see ref. [4] by Kroner) can be additionally decomposed
into a plastic and an elastic part

B=B" +B G
and the same applies to the strain tensor
e=¢" +¢ 4

The relation between the elastic tensor and the local
stress, obtained by the double contraction of two tensors, is
given in the Cartesian coordinates

/
o = Ciuth (%)

where Cj,; is the forth order tensor of the material

elasticity constant and & is the elastic part of the strain
tensor. We write Navier-s balance equations (also in the
Cartesian coordinates) as

0o, Ty  OrT
=24 X '=0 1, =7

ox Oy Oz -

or, 0o, O0t, o 3

E® + P + p= +Y'=0 r7.=1,

or, 0o, O0t, o 3

E® + P + p= +Y,'=0 r7,.=1, (6)

where o; and 7; (i,j=x,y,z) are the normal and the

tangential components of the local stress tensor o;; (see ref.
[19] by Raskovi¢ or [20] by Hedrih (Stevanovi¢)). In the
absence of the volume body and the inertial forces ( X} ',
Y,', Z,"), we obtain

0o, Ty Gz'zx:

ax Tyt a Y T

or,, 0o, 01, _

Ew + Y + pe =0 r7,=71,

or, 0o, O0rt, _

x Ty e ) =T ™

or in a tensorial form
. T
dive=0 and 6 =0

As noted in [22], the purpose of constitutive modeling is
to derive evolution equations for the plastic distortion p*’

based on the current stress state and possibly various internal
variables of the material. The ECT is an example of a theory
where the evolution of the plastic distortion is expressed in
terms of internal variables (dislocation density and
dislocation curvature) which represent statistical averages
over the discrete dislocation pattern within the crystal.

The Kroner-Nye dislocation density tensor

The Kroner-Nye definition of the dislocation density
tensor as the curl of the plastic distortion, given by Kroner
(and similarly by Nye), is defined as
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a = curlp” (8)

From the definition of the Kroner-Nye tensor in eq.(8)
and identity (A.2) it follows that

diva =0 )

which expresses the physical fact that dislocation cannot
end inside a crystal.

If we analyze this theory at the smallest scale on which
the continuum theory can be used, i.e., spatial resolution
such that all dislocation lines are captured separately by the
curl operation, then the Kroner-Nye tensor completely
characterized the dislocation system (see e.g. [21]). If we

assume c(s) as an oriented curve which represents a
dislocation line parameterized by the arc length S, i.e.
dc / ds is the unit tangent vector to the dislocation line. In
this manner we assume that all dislocations share the same

Burgers vector b . The last assumption reduces calculus to
the usual calculus of differential forms (see ref. [21]) and
the treatment of dislocations is reduced to a theory of
distributed curves. If we define J, as a density measure
along the dislocation line

Le
é'c(r)zj‘é'(c(s)—r)ds (10)
0
where L, is the total length of the curve ¢(s) and &(r) is the

standard Dirac measure (’delta function’) in the three-
dimensional space. Then we may write the discrete Kroner-
Nye tensor (indicated by superscript “d”) in the following
manner

d _ dé o1
o _Z@. Lo (11)

where the sum runs over all dislocation lines.
The standard definition of the Burgers vector for a single
dislocation [28] is given as

b =<I> Bedl (12)

where the line integral is to be taken in the right-handed
sense with respect to the tangent vector to the dislocation

line. dl is an oriented element of the closed boundary c of
the area A through which the dislocation is piercing, and

B¢ is the elastic distortion caused by the dislocation. In the

case of continuously distributed dislocations and by
applying eq. (8) and (A.7), eq. (12) transforms to

5=Iada
A

Here b is the resulting Burgers vector of all the
(continuously distributed) dislocations piercing through A
(see ref. [29]). The differential representation of eq. (12) is

db = ada (13)

where db is the resulting Burgers vector of all the
continuously distributed dislocations piercing through the
infinitesimal area da .

As noted in [15], the Kroner-Nye dislocation density
tensor as an average object which does not carry enough
information about the dislocation state to deduce the rate of

op”' /ot from  it.  As

oo/ 0t = curl OB’ / ot , the absence of a relation between

plastic deformation

a and the deformation rate p”' implies that the evolution

of a itself cannot be formulated in a closed form. In other
words, it is in general not possible to build a closed theory
of plasticity solely on the Kroner-Nye dislocation density
tensor. The Kroner-Nye formulation is suitable only for the
treatment of single dislocations as singular densities and
situations where dislocations form smooth bundles
(dislocations in the same volume element are parallel and
have the same orientation), and this formulation is exploited
by Sedlacek et al. in [11].

The local rate of plastic distortion can be deduced from
Orowan’s relation, and given in the tensorial form

pld - _ .
aﬁat :—Zé‘cun®b:—uxad (14)

where 7n is a glide plane normal and it is equal to
n=vxdc/ds. Farther, o =0v is the local dislocation
velocity, with v denoting the scalar velocity. The unit
vector in the dislocation glide direction is v. With
evolution equation (14), we define a plastic deformation
rate in materials.

If we define the discrete dislocation current by J¢ = & x a“
and using the Kroner-Nye tensor (as it was done in [22]), then

we obtain the evolution equation for a“ )

d
%:—curlﬂ :—rot(Dxad) (15)

The definition of the dislocation current J¢ is a
mathematical concept taken from differential geometry and
currents. In the literature (for details see ref. [15]) currents
are defined as functionals on (admissible) spaces of
differential forms and this concept includes sub-manifolds
and differential forms. However, the subject of this paper is
much narrower than getting into the details of this concept;
therefore, the reader is referred to references [14] and
especially [15]. As a physical interpretation of evolution
equation (15), we take that it represents the “low” of the
dislocation density distribution over time.

If we attempt to use statistical averaging over the
Kroner-Nye dislocation density tensor for constructing a
coarse-grained theory, then, according to observations in
[21], we lose some essential information of our density
measure. We denote spatial average over some small

volume V, of size V' centered at r by

<(...)>V,r::(I/V)J‘Vr(...)d%. (16)

A scalar measure of the average dislocation density,
which characterizes the fotal dislocation density, is given

by the dislocation line length within a small volume V,,
divided by the averaging volume
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pzéz j lds =;Z.I[1£5(E(s)—l7')d3r'ds =

¢ enV ¢

= :E:‘i

with a similar notation we define the average dislocation
density tensor (11) by

<ad>:<25ci,§®l;> (18)

The average line direction, given by the unit vector, has

the following form
dc
7 < 5“ ds>
R 19)

St

The definition of the geometrically necessary dislocation
pg 1s given as

a

PG =

o)

The average dislocation density tensor written in terms

(20)

of geometrically necessary dislocations pg; and the
average line direction [ is
0=pl ®b 1)

If we interpret O as the pointwise vectorial average of
the velocities along the dislocation lines, then the average
dislocation density tensor does not fulfill the equation

op*’
ot

= —Oxa 22)

In that case, the relation between plastic distortion and
dislocation density is lost except for a special case as
follows. After using eq. (14) and averaged eq. (15), we
obtain an evolution equation for the averaged tensor

do _ _ 5 dC o1
% _ curl<Zé‘cux ds®b> 23)

As concluded in [21], the threefold product within the
average can be written as a product of averages only if all
dislocations within the averaging volume share the same
tangent vector [ =dé/ds and the velocity 0. As we
mentioned above, this is possible only if one dislocation is
present (the discrete case) or if the dislocation forms

smooth line bundles (special case). In these cases, o = p;,

o= pi xb , and then equation (15) is correct for both local

and the averaged scale.

In a more general case, the averaging volume contains
dislocations of different orientations. Additional terms
appear in the evolution equation due to the fact that
averaging leads to a reduced dislocation density po; < p ,

and the dislocation density tensor does not obey (15) when

U is considered as an average velocity. In the literature,
such terms have been recognized but all publishing
attempts, until the appearance of ECT theory, provided
phenomenological patches which do not really resolve the
underlying theoretical problem.

t=0

[ a)

X b)

Figure 1. Dislocation loop expansion in a spatial plane with the same
Burgers vector
a) Loop expansion of two dislocations at time =0

b) Loop expansion of two dislocations at time # =¢+ At

Before the introduction of ECT, in Fig.l1 we show the
visualization of the loop expansion of two dislocations in a
spatial plane x;x, (which shares the same Burgers vector)
at the time ¢ and ¢+ Af¢. From Fig.1 we can see how the

line orientation vector / at the point r changes its angle ¢

with respect to the Burgers vector during the loop
expansion.

ECT and a line-like character of dislocation lines

The key idea of the ECT is to distinguish dislocation
lines in a given spatial point r according to their line

direction [ (see e.g. [22]). Such a description makes sense
as long as we stay at a level of a discrete description.
However, if we average over a mesoscopic volume, then a
distinction becomes evident. According to [21], it is much
more realistic to assume that dislocations which do have
the same direction move in the same manner than the
assumption that all dislocation lines in a mesoscopic
volume have the same direction and move with the same
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velocity in response to an acting stress.

The example presented here can be considered as a
generalization of the two-dimensional case treated by
Sedlacek et. al. in [11]. Here we assume that a dislocation
system is completely specified by its motion in the xx, -
plane by considering a system as homogenous in the x;
direction. The difference between an ECT model and the
one founded by Sedlacek is that the first one allows for
dislocations with different directions at each point.

In the case where dislocations move by gliding only,
their line direction can be parameterized by the scalar

variable ¢ which is the angle between the line direction [

and the Burgers vector b (see Fig.2). Then we denote a
point of a dislocation line in the configuration space as
(r,¢) . By the so-called “lift” of a spatial curve (in our case
a circular curve which represents a curved dislocation line)
in the configuration space where each spatial point
re RxR gets mapped to the point (r,4) € RxRxS, with
S denoting the line orientation space S =[0..27). The
orientation ¢ extends in the configuration space S and it
is normal to the spatial plane x,x, (for the visualization of
this concept see Fig.2.). However, in this case we consider
the averages over so-called lifts of dislocation lines to the
configuration space instead of the averages over the spatial
dislocation lines (for a complete derivation of the ECT in
such a notation see ref. [21]). The introduction of this space
necessitates the notion of the generalized line direction L

and the generalized velocity ¥, which denote the line
direction along the lifted line and the velocity respectively,
where the generalized velocity is perpendicular to the
generalized line direction

Z(r,¢) = cosge, + singe, + ke,
7 (24)
=/ + k€¢
where

[ =cos @e, +sin ge, (25)

The vectors €, €, and ¢, are orthogonal unit vectors on

the x;, x, and ¢ axis, respectively, [ is the spatial line
direction which is a tangent vector on the curve. Unlike the
previous case, where dislocation lines are in the spatial
plane and the spatial line direction / is described only by
two components (cos¢ and sing ), with a definition of the
generalized line direction we introduce the third component
k which is the (pseudo) scalar field variable representing the
curvature. We have to make a sign convention in order to
define L and V . Therefore, for the sign of k we consider a
circular loop oriented counter—clockwise as positively
curved, £ >0.

From Fig.l1 we can see that the velocity of the lifted
curve contains two components: the first one is the spatial
velocity v orthogonal to the spatial dislocation line and the
second one is a component in the ¢ direction (in the
configuration space) which accounts for the rotation of line
segments during dislocation motion. The second component
is pseudo-scalar rotation velocity and in the following text
is denoted as 8. We will regard the velocity of a positively

oriented loop as positive if the loop expands.
Finally, for the generalized velocity V we have

17(,.’¢) = Vlél + Vzéz + €é¢ (26)
where v is the spatial velocity
\7 = vlél + Vzéz (27)

where v, = vsing and v, = —vcos¢
The third component & in (26) is determined by the
change of velocity along the lifted line

0 =-L-(DIWV) (28)

7

b)

Figure 2. The arrows which surround the lower loop indicate the spatial
velocity and the arrows attached to the upper curve indicate the
generalized velocity along the line.

a) Dislocation circular curve in a spatial plane, with the spatial line
direction and the spatial velocity normal to the spatial line direction

b) Visualisation of the lift (upper blue line) of a planar curve in the xx, -
plane (lower closed loop). Reproduced from [14].

Evolution equations in a single glide situation

In the center of the extended continuum theory (ECT) of
dislocations lies a so-called dislocation density tensor of the

second order a('f,m. For a compete derivation of this tensor
with a close analogy to the Kroner-Nye dislocation theory,

the reader is referred to [21]. This tensor represents a
natural generalization of the Kroner-Nye dislocation
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density tensor to a higher dimensional configuration space.
According to the observation in [21], the averaging
volume i.e. a volume element in the configuration space
contains dislocations of one orientation only and therefore,
there is no cancelation of dislocations of opposite directions
during averaging of spatial tangent vectors. As a
consequence of this contention, we find that p, 4 gives

the spatial line length per volume (of the configuration

space) of dislocations at the point » with the direction l.
The kinematic evolution equation for the second order
dislocation tensor has the following form:

day’ -
6(7)) = —curl(V X “(Z,:p) ) (29)
where afi,@ is
(r.g) = Plrg)Lirp) ©b (30)

where we assume a constant Burgers vector as
b =(b,0)=be, i.e. parallel with the x direction of a
chosen coordinate system and p,. 4 denotes the scalar

density function. In some formulas, the index (¢ is
dropped out to abbreviate the notation and in the following
text we always imply that all quantities are evaluated at the
point (r,¢) in the configuration space Rx Rx[0,27).

The second order dislocation density tensor in a matrix
form reads as

b'cosp b*cose

(] 4) = Prg)| D'sing b’sing (€20
1 2
bkirg) 07krg)

or

cos¢p 0
o

u(r,¢):p(r',¢) szn¢ 01b (32)
kg O

If we assume that the dislocations move in the direction
of the spatial velocity v =[v,v,,0] perpendicular to the

line direction / (see e.g. [23]). The generalized velocity
that we have introduced before is also included in the
following equations, where in the case of a single glide
situation, we have kinematic evolution equations for p

and k instead of the second order dislocation density
tensor:

6—")z—DJV(pV)Jrvpz

ot
(33)
—div(pv)+ o(p0) + pvk

and

%~ +A(v)-V (k) (34)
In the above evolution, the equations A denote the
second derivative along the generalized line direction and
V denotes the first derivative along the generalized velocity
direction.
The terms in the above evolution equations have a

physical meaning. The first two terms in (33) govern the
transport of scalar density in the configuration space and
the last term accounts for the increase of density due to the
expansion of curved loops. In (34), the first term considers
the curvature change during expansion, the second term
accounts for the curvature change during the line rotation,
while the third term considers the change in the generalized
direction of motion [see e.g. 22].

If we (as it was done in [23]) use the evolution of the

product pk , where n:= pk[m™], instead of the evolution

equation for & [m'], than instead of evolution equation
(34) we use the following equation

% = DIV (nV)+-DIV  p6L) (35)

Both evolution equations (33) and (35) are kinematically
closed where the history of the dislocation velocity V is a
given quantity. In general, V is a function of the local stress
and it can be determined by a constitutive relation.
However, such an example is not the subject of this paper
and it can be found in ref. [21] for example.

A link to the material response on the continuum level is
given by the evolution equation for the plastic distortion

B”" in the following form

0

l}pl 2z -
P JP(;~,¢)U(r,¢)d¢” ®b (36)
0

where we obtain eq. in a similar form as eq. (14) with the
only difference that here we obtain the above form by the
integration of the scalar dislocation density p, 4 and the

velocity vy, 4 in the orientation space S =[0...27) where

d¢ denotes an infinitesimal change in the orientation ¢ .

Weak form of the evolution equations

The strong form consists of the governing equations and
the boundary conditions for a physical system. The
governing equations are usually partial differential
equations, but in the one-dimensional case, they become
ordinary differential equations. The weak form is an
integral form of these equations, which is needed to
formulate the finite element method.

In some numerical methods for solving partial
differential equations, the partial differential equations can
be discretized directly (i.e. written as linear algebraic
equations suitable for a computer solution). For example, in
the finite difference method, one can directly write the
discrete linear algebraic equations from the partial
differential equations. However, this is not possible in the
finite element method (for details see e.g. [24] by Fish and
[26] by Koji¢).

(i) Reformulation of the PDEs

To derive the weak form, we need to reformulate
evolution equations (i.e. PDEs). If we introduce new

notations where F, w and @ replace the terms of the
evolution equations (33) and (35) in the following way

F:=(p,n)’ (37)

Here the left-hand sides of the evolution equations (33)
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and (35) (scalar functions p and n) are substituted by the

ﬁ vector.

@ = (pV ] _ (PVl PV2 ng
R nv, nv, né
v ( pﬁ)] (38)

= DIV® = _
[DIV(nV)

The right-hand sides of (33) and (35) are replaced by the
matrix @ and the vector w. The matrix @ replaces the
first and the second term in the evolution equations.

pvk ny
- (DIV(,OHZ)] = | div(pol )+ na—¢

We use the vector w instead of the last term in (33) and
the last term in (35). Then we obtain a compact formulation
of the PDEs

%—f = _DIV® + i (40)

More about the PDE you can see in ref. [26] by Hedrih
(Stevanovic).

(i) Derivation of the weak form

For the final derivation of the weak form of evolution
equations we have to define the domain. We consider a

cube of the volume ¥ in the configuration space bounded
by the surface ov = GI}X u@@ (where 8I}x is the top and
the bottom surface and 6@ is the side area surface) and the

surface normal is denoted by N . Also we need a test

= (771 P! )T
(40) over the entire volume, the following result is obtained

(weight) function 77 . Upon integrating equation

Ot

14 14

OF Gy - IDIV )ﬁdI}+J.v"v~ﬁdI} (1)

Then we rearrange the first term on the right-hand side
of (41) (DIV term)

_ NO0?; (o, L0, 0D
D[V(q’)”‘;ax ‘( o | ox, | 0

axl 0xy 6¢

) (42)

Applying the divergence theorem and then rearranging
the terms yields Green’s formula:

—J.DIV(CD)ﬁdI} =

J. NT®"7dA + Z J' @, 2’71 av

We consider the second term on the right-hand side in
the following form

(43)

J @®-VijdV:= ZICI),, 2771 dv (44)

Lj oy
where v denotes DIV operator in configuration space.

A special case:
If we assume for that the velocity on the boundary oV,

is zero v=0, then 8I}x = N'®" =0. After applying
this to formula (43), we obtain the following weak form
equation

8t F ray - ~[cb DIV (7 )dV+JvT/ﬁdV (45)
v v

This assumption that the velocity on the boundary is zero
follows from the fact that dislocation loops expand until
they reach the boune?ggof the domain (cube).

After collecting * terms, we finally obtain the form
of the equation we are looking for

[ epr-emmapr-s  ao

Distribution of expanding circular loops in a FEM
simulation

To simulate the distribution of expanding circular loops
we applied the Finite Element solver COMSOL and its
interface to MATLAB for the simulation and post-
processing purposes. In this simulation, we discretized the
configuration space (cube model) by a uniform mesh with
tetrahedral mesh elements. For time stepping, we used the
so-called BDF (backward differentiation formula) method
which is an implicit method and is implemented in the
COMSOL Multiphysics software.

We assume that all dislocations move in a single glide

system with the glide plain normal 7 and the Burgers

vector b . The system is also assumed homogeneous in the
direction of the plane normal 7 .

The cube model is divided in 5 subdomains where 4 of
them (each for one side of the cube) are external and one
domain is in the center of the cube. We assume a constant
velocity for expanding the dislocation loop in the central
subdomain and for other four subdomains we assume that
the velocity decreases until it reaches the zero value on the
boundary. Considering that p, , gives the spatial line
length per volume (of the configuration space) of
dislocations at r with the direction / for the initial
conditions, we assume the density to be p, =1 [10”m?],
and for the initial value of # (which is the product of pk
and the curvature k is equal to a reciprocal radius of the
curve k=1/R) we give ny =10, where the curvature i.e.

the initial radius of the curve is Ry =0.1 [pum] . For the time

step At we take Ar=0.01 and for the simulation time
t=3s. After the implementation of the weak form of

evolution equations (46) in the COMSOL and discretization
(meshing) of the cube model, we run the software solver.
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Numerical results

Solving the evolution equations leads to a spatial density
distribution as shown in Fig.2. As we can see, the
solenoidality of dislocation density based on the lifting of
dislocation loops in the configuration space is proved.
There is a periodic dislocation density distribution in the ¢

direction, where the red color represents a higher density
value and its distribution along the boundary. However, this
solution has some deficiencies and it is not “smooth”. This
is caused by a loop-like density distribution that gets
fragmented during the loop expansion and it is directly
related to a growing divergence of a, whereas the
dislocation theory requires this divergence to be zero
(dislocation cannot end in the crystal) [22].

A numerical error calculated by formula (47) is shown in
Fig.3. As it can be seen, the numerical error grows
exponentially after one second of the running simulation.

I V(pL)dV (47
d

To avoid fragmentation, get a ’smoother” solution and to
maintain solenoidality of the density distribution, as it was
done in [22], we use the iteration formula

1 /4 Vi
Wy <= Upiq +CartA(a ) (48)

which minimizes the total divergence of a’ .

Scalar density p I:l 0”?m™

Time=3 Slice: rho

Max: 864.441

=200

-4 0

=G0

Min: -703.596

Figure 3. Simulation results of dislocation density evolution for a cube
configuration space model after 300 steps with Az=0.01 [s]. The scale
shows dislocation density (line length per volume) and its value for an
appropriate color in the cube model. The coordinate system is in the center
of the cube lower base and each side of the cube has its length of 27
(because of the periodical boundary condition in ¢ direction). The initial

conditions are: p, =1 [10”m™]for the dislocation density, the

dislocation curvature k, =10 [10°m™] ie. the initial radius of the

dislocation curve R, =0.1[pum]and v,,, =1 for the dislocation velocity.

With the operator A, we introduce the second
derivatives which have a diffusive effect and suppress
fragmentation, but also act in the perpendicular direction
and cause a broadening of the line.

According to the observations in [33] and [35], this
relaxation scheme has some drawbacks conserving only

o’ but not p, which causes unphysical changes in the
dislocation density during the relaxation step.
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Figure 4. Numerical error for the solution in Fig.2, calculated by the
formula (47)

An improved relaxation scheme which corrects the
drawbacks of the previous scheme and conserves the total
dislocation density is obtained by modifying (48). This
provides a solution where p is relaxed along the line

Prew <= Pola T cartAp (49)

In this formula c¢,; denotes an artificial diffusion
coefficient which is a factor controlling the step size and
can be adjusted to achieve efficient relaxation.

This relaxation scheme causes some changes in
evolution equations (33) and (35) which now have a
modified form

op 7\

2 +DIv (pV)=vn+catrp (50)
on_ . ( - 7\ _

E—dzv(nv — p0l ) =, AN (51)

The derivation of the weak form is the same as in the
previous case.

Scalar density p [1 0”m™ :I
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Figure 5. Simulation results of the dislocation density evolution for the
cube configuration space model with the implemented relaxation scheme

and for the coefficient c,, =0.1 after 300 steps with Az=0.01 [s]. The

dimensions of the cube model and the initial conditions are the same as in
Fig.2. The scale shows the dislocation density (line length per volume) and
its value for the appropriate color in the cube model.
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After we run the simulation with the new relaxation
scheme and the initial configuration is the same as in the
previous case, the efficiency of this relaxation scheme can
be seen in Fig.5.

We can see that the solution looks smoother and the
negative values for the dislocation density are cut off, i.e.
reduced to the minimum. The numerical error (Fig.6)
calculated with formula (47) is smaller but still grows
exponentially. If we change the c,, coefficient, we could

achieve an efficient relaxation scheme but still some
drawbacks cannot be avoided.

We can calculate the total dislocation density p, as

2z
o= | p@)as (52)
0
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Figure 6. Numerical error for the solution in Fig.5. calculated by the
formula (47)
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Figure 7. Comparison of the numerical solutions for the dislocation
density (with one dimension less) in the case of three simulations with
different artificial diffusion coefficients, the initial configuration being the
same as in the previous case.

As it can be seen, by integrating the dislocation density
we can eliminate the extra dimension (¢). If we compare
the solutions for the total dislocation density for three
different simulations with the different values of the c,,

coefficient (c,, =0.01, ¢,, =0.1, ¢,, =1) and plot them
on the same 2D graph, than we can see the impact of the
artificial diffusion coefficient on the solution (Fig.6).

Summary and outlook

Modelling dislocation systems on small scales is very
demanding because of the line character of these crystal
defects and a complex network they form. The notion of
’spatial resolution’ is very important if the scale of the problem
comes to become of the same order of magnitude as the
curvature radius of the dislocation lines. In that case, the line-
like character of the elementary objects cannot be neglected.

In the current work, we showed by an FEM simulation
that the ECT, with a proper relaxation scheme, is able to
predict the evolution of circular loops correctly. In the
numerical implementation presented here and compared to
quasi-discrete examples in [21, 22], we do not neglect the
rotational velocity and the change of the curvature along the
dislocation line. Even with such a density distribution we
maintain the solenoidality of the solution. Numerical
problems arising from the discretization of the orientation
space occur in both cases. However, the relaxation scheme
used in this work is computationally expensive and works
only with a coarser discretization of the domain. Achieving
a well-relaxed configuration requires multiple relaxation
steps, each of which is computationally about as expensive
as one time integration step for the evolution equation.
Very good results in the correction of fragmentation, that
do not require many relaxation steps, can be achieved by
the so-called “tangential diffusion”. The description of this
method can be seen in paper [21].

Summarizing the current advances, we give an example
with a physically relevant situation and specify the
constitutive law which relates the dislocation velocity (as a
function of the local stress) to the dislocation pattern.
However, such examples can be seen in many papers where
some of them are outlined in the references below.
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Notes

1. We speak of a kinematically closed equation as we as-
sume the dislocation velocity v at this point to be a
given quantity. In general, v is a function of the local
stress, which in turn depends on the dislocation ar-
rangement. Hence, a mathematically closed theory re-
quires additional relationships between the dislocation
state, as expressed by o, and the dislocation velocity
v.If v is a function of the stress and the line direction
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only, these relationships may be derived from Kroner’s
theory of eigenstresses [4].

. It is worth noting that the definition of the second order

dislocation density tensor does not necessarily require a
metric or volume element. However, an invariant defini-
tion requires the use of advanced mathematical concepts
such as e.g. differential forms. We refrain from intro-
ducing these concepts in the current paper and refer the
interested reader to [15] and especially [14] for a more
thorough treatment.

Appendix

Identities

Let v(x) be a vector field on R*, a is a scalar valued

function on R®. The following identities and ’product

rules’ hold:
curl grad (v) =Vx(V®v)=0 (A1)
div curl(v)=V-(V®v)=0 (A2)
curl (av)=acurlv+grad(a)xv=0  (A.3)
div(av)=adiv v+ grada-v (A.4)
grad(ab)=agrad b+bgrad a (A.5)

Stokes’ theorem

Let C be the boundary of a surface 4. Let further

v(x) be a vector field, T(x) a second order tensor field.

The Stokes theorem states:

@ vdl =J‘ curlvda (A.6)
e 4
(ﬁ Tdl :I curlTda (A.7)
C A
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Jedan pristup teoriji trodimenzionalnih zakrivljenih dislokacija

Plasticna deformacija Kristala nastaje kao rezultat kretanja dislokacija u materijalu. DalekoseZna priroda
medudejstva dislokacija, predstavlja veliki matematicki problem za razvijanje kontinuum teorije plasti¢nosti
bazirane na usrednjavanju parametara dinamike dilslokacionih sistema. Prikazani su nedavni istraZivacki rezultati u
kontinualnoj plasti¢nosti kristala i teorija proracuna gustine dislokacije kojom je moguce predvideti evoluciju sistema
trodimenzionalnih zakrivljenih dislokacija. U prvom delu rada prikazana je samoodrZiva teorija Kinematike
dislokacionih sistema (bez konstitutivnih jedna¢ina koje daju vezu izmedu brzine i napona) sa definicijom i
evolucijskom jedna¢inom koja je direktna generalizacija Kroner-Nye-ovog tenzora gustine dislokacija. U drugom
delu ovog rada prikazan je primer 3D Kkontinuum teorije zakrivljenih dislokacija uraden Metodom Konacnih
Elemenata, zasnovan na definiciji gustine dislokacija u prostoru sa novom dimenzijom koja sadrZi informacije o
orjentaciji dislokacija (gustina dislokacija tada se definiSe u prostoru koji uklju¢uje parametre koji karakteriSu
orjentaciju dislokacione linije kao nezavisne promenljive).

Kljucne reci: kristalografija, mehanika kontinuuma, deformacija kristala, plasti¢na deformacija, tenzor deformacije,
tenzor gustine, dislokacija.

OnauH U3 MOAX0A0B K TEOPHH TPEXMEPHBIX U30THYThIX JUCIOKALUN

IlnacTuyeckast nedopmManusi KPHCTAUIOB SIBJIsIETCSl  Pe3yJbTATOM JBH:KeHMsl JHMCIOKAIIMM B MaTepHale.
IMocneacTBus JaabHEro XapakTepa B3auMOAeHCTBHA TUCTOKANMIL SABJISIOTCS 00IbII0H MaTeMaTH4YecKOil mpodaemoii
M 3ajaveil pa3padoraTh KOHTHHYYM TEOPHH ILUIACTHYHOCTH (TeOpHsl CILUIOIIHOW Cpelbl) HA OCHOBE YCpPeIHEHHs
NapamMeTpoB IHHAMHKHU AHCJIOKALUOHHBIX CHCTeM. 3/ech NMPEACTABJIEHbI Pe3y/bTAThl MOCJIEIHUX HCCIEN0BAHUI B
HeNpepbIBHON IIACTUYHOCTH KPHCTAJLIA H TEOPHsl PACYéTa MJIOTHOCTH AMCIOKAIMH, KOTOPasi MOXKeT IpeIcKa3aTh
IBOJIIOIHIO CHCTeMbl TPEXMEPHBIX M30THYTHIX AucaoKanmii. IlepBas yacTh npeacrapisieT co00i KMU3HECIOCOOHYIO
TeOpUI0 KMHEMATHKH IUCJIOKALMOHHBIX cHcTeM (0e3 MaTepHAJIbLHBLIX YPpaBHEeHMii, KOTOpble 00ece4YuBAIOT CBSI3b
Me:KAy CKOPOCTBIO H HamNpsizKeHHeM) ¢ ompeJe/ieHHeM M 3BOJIOIMOHHBLIM YPaBHeHHeM, KOTOpoe siBJsieTcsl PSIMbIM
00001meHnemM TeH3opa miaoTHocTH auciaokauuii Kponep-Hasi (Kroner-Nye). Bo BTopoii yacTu Hacrosimeii padoTbi
npuBeléH npumep 3D TeopuH KOHTHHYYMAa H30THYTBIX IHCJIOKALMM, caelaH MeTogoM KOHEYHBIX 3JIEMEHTOB Ha
OCHOBE omnpe/eJeHHsl IUIOTHOCTH AMCIOKAIMI B NPOCTPAHCTBE € HOBBLIM HM3MeEpEHHEM, KOTOpPOe COHEepP:KHT
HHPOPMANHIO 00 OPMEHTALMH AUCIOKALMI (MJIOTHOCTH JHCI0KALMII TOr/a onpee/isieTcsi B IPOCTPAHCTBe, KOTOpPoe
BKJIIOYaeT B ce0sl mapaMeTpbl, XapaKTepH3ylollHe OPUEHTALMIO JHHHHM AUCJIOKALMH B KayecTBe He3aBHCHMOIi
nepeMeHHoit).

Kuwouesvie cnosa: kpucrajuiorpadgus, MexaHumka CIUIOIIHON cpeabl, AedopManus KPUCTAIOB, IUIacTHYeCKAs
aedopmanus, Ten3op AegopManyu, TEH30P MJIOTHOCTH, IMCIOKAIMS.

Une approche a la théorie des dislocations courbées a trois
dimensions

La déformation plastique des cristaux est le résultat du mouvement des dislocations sans le matériel. En raison de la
grande portée de la nature de ’interaction des dislocations, le développement de la théorie du continu de la plasticité,
basée sur les dynamiques moyennes des systémes de dislocation, pose un grand probléeme mathématique. On a
présenté ici les résultats de récents essais dans la plasticité continue des cristaux et la théorie du calcul pour la densité
de dislocation par laquelle on peut prévoir I’évolution du systéme des dislocations courbées a trois dimensions. Dans
la premiére partie de ce travail on a exposé une théorie auto cohérente sur la cinématique des systémes de dislocation
(sans équations constituantes qui font la liaison entre la vitesse et la tension) avec la définition et I’équation évolutive
de Kroner-Nye tenseur de la densité de dislocation. Dans la seconde partie de ce travail on a présenté I’exemple de la
théorie 3D du continu pour les dislocations courbées, réalisé par la méthode de éléments finis et basé sur la définition
de la densité des dislocations dans I’espace avec une nouvelle dimension contenant les informations sur I’orientation
des dislocations.

Mots clés: cristallographie, mécanique de continu, déformation de cristal, déformation plastique, tenseur de
déformation, tenseur de densité, dislocation.





