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Uncertainty Quantification of Inifinitesimal Elastoplasticity 
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We analyse the stochastic finite element method for a class of mixed variational inequalities of the second kind, which 
arises in elastoplastic problems. The quasi-static von Mises elastoplastic rate-independent evolution problem with 
linear isotropic hardening is considered with the emphasis on the presence of uncertainty in the description of 
material parameters. Within one time-step of backward Euler discretization, the stochastic finite element method 
leads to a minimisation problem for smooth convex functions on discrete tensor product subspaces, whose unique 
minimiser is obtained via the closest point projection method. To this end, we use a description in the language of 
non-dissipative and dissipative operators and introduce a well-developed stochastic Newton iterative algorithm for 
solving coupled nonlinear systems of equations. Finally, the proposed framework is demonstrated by a numerical 
simulation in plane strain conditions. 
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Introduction 
HE deterministic description of the inelastic behaviour 
[3, 9] is not applicable to heterogeneous materials due 

to the uncertainty of corresponding characteristics at the 
micro-structural level. Namely, the deterministic approach 
has one disadvantage: the description of the material 
parameters is given by the first order statistical moment 
called a mean value or mathematical expectation. However, 
such representation neglects the most important property of 
material characteristics - their random nature. Due to this 
reason, we consider a mathematical model which 
approximates material parameters as random fields and 
processes in order to closely capture the real nature of the 
random phenomena. 

The history of the stochastic elastoplasticity begins with the 
work of Anders and Hori [1]. They declared elastic modulus as 
a source of the uncertainty and treated all following subsequent 
uncertainties with the help of a perturbation technique. 
Thereafter, Jeremić [4] introduced the Fokker-Plank equation 
approach based on the work of Kavvas, who obtained a 
generic Eulerian-Lagrangian form of the Fokker-Plank 
equation corresponding to any nonlinear ordinary differential 
equation with random forcing and a random coefficient. In 
other words, Jeremić and his coworkers reformulated the 
original stochastic partial differential equations of quasi-
elastoplasticity as deterministic ones. However, these methods 
are either mathematically very complicated to deal with or not 
enough accurate to be used for. Namely, the perturbation 
technique is limited only to the problems described by a small 
variation of input properties. In addition, the method 
experiences a "closure-problem" or the dependence of the 
lower-order moments on the higher-order moments. On other 
side, even though the Fokker-Planck method predicts the mean 
behaviour exactly, it over-predicts the standard deviation of the 
solution. The main reason for this are the Dirac delta initial 

conditions. In general both methods assume one uncertain 
parameter which is not enough to properly describe the 
problem. 

In order to quantify uncertainties in a more appropriate 
manner, we introduce several material parameters as 
uncertain and propose spectral stochastic finite element 
method as a solution procedure. According to this, the 
paper is organized as follows: in the first section the 
irreversible behaviour is modelled as a quasi-static inelastic 
problem followed by description of material properties and 
solution strategy in second part. This is then accompanied 
by a stochastic closest point projection algorithm in the 
third section. Finally, the proposed method is validated on a 
simple numerical example in plain strain conditions by 
comparison with the Monte Carlo approach.  

Model problem 
Consider a material body occupying a bounded domain 

d∈RG  with a piecewise smooth Lipschitz continuous 
boundary ∂G  on which are imposed the boundary 
conditions in the Dirichlet and Neumann form on DΓ ⊆ ∂G  
and NΓ ⊂ ∂G  respectively, such that D NΓ ∩ Γ = ∅  and 

N DΓ ∪ Γ . The probability space is defined as a triplet 
( ), ,Ω PB , with Ω  beign the space of all events, B  the σ - 
algebra and P  a probability measure. In such defined space 
the balance of the momentum localized about any point x  
in the domain G  in time [ ]: 0,t T∈ =T  leads to an 
equilibrium equation required to hold almost surely in ω , 
i.e. P -almost everywhere: 

 0div fσ + =  on G  (1) 

T 
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The corresponding boundary conditions are specified as: 

 n gσ =  on NΓ  (2) 

 0u =  on DΓ  (3) 

where u  denotes the displacement field over , f G  the body 
force, σ  the stress tensor, n  the unit normal at Nx ∪ Γ , 
and g  a prescribed surface tension. For the sake of 
simplicity, we use homogeneous Dirichlet boundary 
conditions, and under the assumptions of small deformation 
theory introduce the strain 

 ( ) .u Duε =  (4)  

Here the linear bounded operator D is defined in a weak 
sense as: 

 

 ( ) ( ) ( )( ) ( )1 2 1 2: .SD u x u u x uω ω→ ∇  (5) 

However, instead of finding the solution which holds 
absolutely with respect to the deterministic and stochastic 
domain, we search for the solution of a weak counterpart of 
Eq. (1) with respect to the test functions. In this manner, the 
elastoplastic problem transforms to a stochastic variational 
inequality of the second kind. 

Let us introduce the Hilbert space Z  of the solution w  
and the convex, closed and non-empty cone ∞ ⊂K Z  such 
that the weak formulation in the primal form reads: 

Proposition 2.1. find w  with ( )0 0w =  such that for 

almost all t ∈T , w ∞∈K and all z ∞∈K holds: 

 ( ) ( ) ( ) ( )( ) ( )( ), .a w t z w t j z j w t z w− + − ≥ −  (6) 

Here = ×Z U E  represents a Hilbert space of the primal 
solution ( ): , pw u E= , with u being the displacement and 

pE  the generalised plastic deformation containing the 
plastic deformation pε  and the vector of internal variables 
η . Thus, the displacement U  and the deformation E  
spaces are given as appropriate tensor products of 
deterministic spaces of the solution and the space of 
random variables with finite variance ( ) ( )2:S L= Ω . 
Namely, the space of the displacements is given as: 

 ( ) ( )1
0H S= ⊗U G  (7) 

while the space of the generalised plastic deformation as: 

 ( ) ( )2L S= ⊗E G  (8) 

With this notation, we may introduce the bilinear form 
:a × →Z Z R as: 

 ( ) ( )( ) ( ), : , ,p pa z A u v Hω ε ε ε ε η μ = − − +  (9) 

with ( ),0E ε=  being the total deformation, A  elastic and 
H  hardening constitutive tensor. Here the notation ,⋅ ⋅  
signifies the duality pairing: 

 ( ), d d .xσ ε σ ε ω
Ω

= ⋅  ∫ ∫G P  (10) 

In similar manner, one may introduce the linear form: 

 ( ): : ,z f z→    =Z R  (11) 

representing the right hand side. The functional ( )j z  is the 
dissipation functional assumed to be convex, positively 
homogenous, non-negative and lower-semi continuous. To 
this one adds the symmetry, Z -ellipticity and boundness of 
the bilinear from a  in order to show the existence and 
uniqueness of the solution of the primal problem [3]. 

Since the primal formulation is not the one we are 
interested in, we try to reformulate it with respect to the 
dual space ∗Z  to a so called mixed variational problem: 

Theorem 2.1. There are unique functions, 
( )1 ,w H ∗∈ T Z  and ( )1 ,w H∗ ∗∈ T Z  with ( )0 0w =  and 

( )0 0w∗ = , which solve the following problem i.e. t T∈ : 
 

 ( )( ) ( ) ( ), , ,a w t z w t z f t z∗+ =  (12) 

and 

 ( ) ( ): , 0z w t z w t∗ ∗ ∗∀ ∈   − ≤K  (13) 

In this description, the first equation represents the 
equilibrium equation, while the second one is the flow rule 
describing the rate of change of the plastic deformation. 
Under similar conditions as in primal problem, we may 
show the existence and uniqueness of the mixed solution. 

Material Properties 
The input random fields ( ),xκ ω  (bulk and shear 

modulus, yield stress) are assumed to be exponential 
piecewise transformations of a Gaussian random field, i.e. 
the lognormal random fields. Their discretisation is done by 
a combination of the truncated Karhunen-Loeve and 
polynomial chaos expansion (KLE/PCE) such that one has: 

 

Figure 1. Realisation of shear modulus 
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where 

 { }
1

: 0, :j j
j

J j M pγ γ γ λ
∞

=

=   ∀ > =   = ≤∑  (15) 

represents the multi-index set, lλ KL eigenvalues, ( )l xκ  

the KL eigenfunctions, ( )
l
γκ  the coefficients of polynomial 

chaos expansion of KL - random variables and ( )Hγ θ  
Hermite polynomials in Gaussian random variables θ . 

 

Figure 2. Realisation of yield stress 

Stochastic Galerkin method 
The variational inequality Eq. (12) may be equivalently 

formulated as a minimisation problem [3], where one has to 
minimise the convex functional in one time step with 
respect to the displacement u  and the stress field Σ . After 
spatial discretisation, the problem can be solved on the 
computer via a return mapping algorithm [9]. 

In order to solve the mixed problem, one may observe 
the dependence of the generalised stress Σ  on the 
displacement u  and the generalised plastic strain pE . 
Following this, we may reformulate Eq. (12) for all v ∈U  
to: 

 ( )( ) ( )[ ] ( ), , , ,p pa v u E A E u v t vΣ = =  (16) 

which defines a hemicontinuous operator A . In order to 
solve this equation numerically, we need to perform several 
discretisations. The first one is the discretisation with 
respect to time in Euler backward manner. Thus, we divide 
the time interval T  into L  identical steps of size 

1n n nt t t −Δ = − , such that the incremental quantities are 
represented as ( ) ( ) ( ) 1n n−Δ ⋅ = ⋅ − ⋅ . In this way, Eq. (16) 
obtains incremental form further spatially discretised using 
the finite element method. By taking the space of the 
piecewise linear continuous functions hU  for the 
displacement, we may separate the deterministic part of the 
solution from the stochastic one: 

 ( ) ( ) ( )
1

:
P

h
i i

i

u u N x Nuω ω
=

= =∑  (17) 

where [ ]1,..., PN N N=  represents the vector of shape 

functions, and ( ) ( )[ ]1 ,... T
Pu u uω ω=  the displacement 

vector. For the discretisation of the stress are used the 
piecewise constant functions; and the appropriate integrals 
are calculated numerically over the spatial domain G  via 
quadrature rules. Following this, one search for the solution 
( ),h h

n nu Σ  which satisfies discretised equlibrium: 

 ( ) ( ), , ,h h h h
n n ha v t v vΣ = ∈U  (18) 

However, the previous equation is semi-discretised since 
both sides, left- and right-hand, depend on the parameter 
ω . This means that one has to discretise the infinite space 
(S). by taking a stochastic ansatz for the solution in a space 
of multivariate Hermite polynomials: 

 { },:I
M pS span H Sγ γ  ∈ ⊂J  (19) 

Here represents the index set of truncated polynomial chaos 
expansion of order p and M random variables. Inserting the 
stochastic ansatz back to Eq. (18) and projecting the 
obtained residual in a standard Galerkin manner, we obtain 
a system of equations: 

( ) ( ) ( )( ) ( )[ ]( )( )..., , ,... 0pr u H f A E uβ θ θ θ θ⎡ ⎤= − =⎣ ⎦E (20) 

which may be further solved by a stochastic counterpart of 
the Newton-Raphson iterative technique (Newton-Raphson, 
BFGS, etc.). After the linearisation of Eq. (20), the system 
is solved by preconditioned Krylov subspace methods.  

Stochastic closest point projection 
Computationally, the solution of the elastoplastic 

problem collapses to the (iterative) solution of a convex 
mathematical programming problem, with a goal to find the 
closest distance in the energy norm of a trial state to a 
convex set K  of the elastic domain, known as the closest 
point projection. In other words, one search for: 

 ( )
( )

( )arg minn
ω

ω ω
Σ ∈

Σ =
K
I  (21) 

where I  is given as: 

 
( )

( )11: arg min , :2
trial trial

n nA
ω

−

Σ ∈

⎡ ⎤= Σ − Σ Σ − Σ⎢ ⎥⎣ ⎦K
I  (22) 

in the time step n  described by an implicit Euler difference 
scheme. Here trialΣ  denotes the trial stress leading to the 
typical operator split of the closest point projection 
algorithm into two steps: elastic predictor and plastic 
corrector. 

Predictor step. The predictor step calculates the 
polynomial chaos expansion of the displacement k

nu  (in the 
iteration k ) by solving the equilibrium Eq. (20) [7, 6]. The 
displacement is then used for the calculation of the strain 
increment k

nEΔ  and the trial stress ,trial k
nΣ , assuming the 

step to be purely elastic. If the stress ,trial k
nΣ  lies outside of 

the admissible region K , we proceed with the corrector 
step. Otherwise, ,k k trial

n nΣ = Σ  represents the solution and we 
may move to the next step. 
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Figure 3. Approximation of the random variable by polynomial chaos 
expansion 

Corrector step. The purpose of the corrector step is to 
project the stress outside of admissible region back onto 
point on K . In other words one solves the minimisation 
problem in Eq. (21)  in terms of Lagrangian: 

 ( ) ( ) ( ) ( )( )ω ω λ ω ϕ ω= + ΣL I  (23) 

where ( ) ( )ϕ ωΣ  represents the yield function describing 

the convex set ( ) ( ){ }:  a.s. in Sω ϕ= Σ ∈   Σ  ΩK . In this 
formulation the unique minimiser of Eq. (23) is found by 
standard optimality conditions [5]: 

 

 ( ) ( )0 ω λ ϕ ωΣ Σ Σ∈ ∂ = ∂ + ∂L I  a.s. (25) 

The problem of the closest point projection is more 
complicated than its deterministic counterpart since we deal 
with functional representation of uncertain parameters, i.e. 
polynomial chaos expansions. Thus, the accuracy of the 
algorithm strongly depends on the truncation error in 
polynomial expansion. As one may see in Fig.3, the higher 
order of polynomial, the smaller the error. 

Numerical results 
The rectangular strip with a hole, Fig.4, under extension 

is considered. The shear and bulk modulus, yield stress and 
the isotropic hardening are considered as random 
parameters. Due to the positive definiteness of these 
properties, we model them as lognormal random fields, i.e. 
the piecewise exponential transformation of a Gaussian 
random field with a prescribed covariance function and 
correlation lengths. 

 

Figure 4. Geometry of the problem: plate with a hole 

The extension force is of a deterministic nature, and in 
the initial state does not depend on the parameter ω . 
However, in each iteration the force gets mixed with the 
uncertainty of input parameters and hence becomes 
random. The randomness in input parameters depends on 

the choice of the values of the standard deviations as well 
as the correlation lengths. The bigger the correlation length 
is, the less random field oscillates. Due to this reason, the 
correlation lengths  in this paper are chosen to be moderate, 
three times smaller than the dimensions of the plate. 

The problem is solved in two different ways: a pure 
sampling technique such as Latin Hypercube sampling 
(denoted as MC on the plots) [2] and the method given in 
this paper (denoted as SG on the plots). In each case, we 
have used the BFGS method for solving nonlinear 
equations and the Krylov subspace methods with a mean 
based preconditioner for solving the corresponding linear 
system of equations.  

 

Figure 5. Comparison of the mean value of the total displacement in the 
stochastic configuration with the deterministic and initial value 

Solving the equilibrium equation, one obtains the 
displacement and stresses. In Fig.5, we compared the 
displacement with the deterministic value obtained by running 
FEM with regard to the initial configuration. As one may 
notice, the stochastic solution is different from the 
corresponding deterministic one. This means that the 
deterministic solution is not completely reliable, since presence 
of moderate variation strongly influences the system response. 
The same phenomena may be observed in Fig.6 and Fig.7 
where the first two statistical moments of the shear and von 
Mises stress are plotted. The mean value, as expected, has the 
highest value on the edge of the hole, where the plastic process 
begins to occur. The same is valid for the variance of the field. 
With respect to plotted moments, we posses much more 
information about reversible processes than deterministic 
analysis can ever provide. Namely, we may extract how much 
the field varies and compute the corresponding probability 
exceedances of the quantities.  
In order to validate the method, we compare the relative 
error of the mean residual obtained by the Galerkin 
procedure with the corresponding one for the Monte Carlo 
simulation (100 000 realisations). In Fig.8, we may see that 
both methods have the same type of convergence. 
However, by measuring the error of higher order terms such 
as the variance in Fig.9, we obtain larger error by our 
method (104). This is understandable since the higher order 
moments are influenced by the accuracy of input 
approximations and the polynomial chaos algebra. Better 
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accuracy may be obtained by taking more terms in the 
expansion.  

 

 

Figure 6. The shear stress xyσ : the mean value and the standard deviation 

 

 

Figure 7. Von Mises stress: the mean value and the standard deviation 

 

Figure 8. Comparison of the converegence of the mean value of the 
residual between the latin hypercube sampling (MC) and the stochastic 
Galerkin method (SG) 

 

Figure 9. Comparison of the converegence of the mean value of the 
residual between the latin hypercube sampling (MC) and the stochastic 
Galerkin method (SG) 

The previous comparison is maybe not completely 
honest, since the number of realisations taken by the MC is 
much larger than the number of the terms in polynomial 
chaos expansion. In addition, the MC computational time is 
around 10 times bigger than the computational time of 
Galerkin method. 

Conclusion 
The idea of random variables as functions in an infinite 

dimensional space approximated by the elements of finite 
dimensional spaces has brought a new view to the field of 
stochastic elastoplasticity. In this paper, we have proposed 
an extension of the stochastic finite element method and 
related numerical procedures to the resolution of inelastic 
stochastic problems in the context of Galerkin methods. 
This strategy may be understood in a sense of the model 
reduction technique due to the applied Karhunen Loeve and 
polynomial chaos expansion. A Galerkin projection 
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minimises the error of the truncated expansion such that the 
resulting set of the coupled equations gives the expansion 
coefficients. If the smoothness conditions are met, the 
polynomial chaos expansion converges exponentially with 
the order of polynomials. In contrast to the Monte Carlo 
technique, the Galerkin approach, when properly imple-
mented, can achieve fast convergence and high accuracy. 
With such properties the method may appear to be highly 
efficient in particular practical computations. 
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Kvatnifikacija slučajnih veličina infinitezimalne elastičnoplastičnosti 
U ovom radu analizirana je metoda stohastičkih konačnih elemenata za klasu  varijacionih nejednakosti drugog reda, 
kojom su opisani elastoplastični problemi. Poseban fokus je stavljen na kvazistatičan proporcionalno-nezavisan 
evolucioni von Mises-ov problem opisan slučajnim  materijalnim karakteristikama i linearnim izotropnim ojačanjem. 
Uz pomoć implicitne integracije stochastička metoda konačnih elemenata se svodi na minimizacijski problem u 
stohastičkom tenzorskom prostoru, u kome su definisane glatke konveksne funkcije slučajnog karaktera. Jedinstveno 
rešenje ovog minimizacijskog problema je dobijeno uz pomoć stohastičkog radial return algoritma, koji se sastoji od 
disipativnog (plastičnog) i elastičnog operatora, slično klasičnoj teoriji elastoplastičnosti. Model je verifikovan na 
primeru ploče sa otvorom u uslovima ravanskog stanja deformacije.  

Ključne reči: elastičnoplastičnost, stohastički proces, metoda konačnih elemenata, stohastička metoda, stohastički 
algoritam 

Расчёт неточностей в задаче эластопластичности малой 
деформации 

В настоящей работе анализирован стохастический метод конечных элементов для класса смещённых 
вариационных неравенств второго порядка, которые возникают в задаче эластопластичности. Здесь 
рассматривается квази-статичная эластопластичная эволюционная задача вон Миза с линейным 
изотропичным упрочнением при условии наличия неточности в описании параметров материала.  Внутри 
одного временного шага обратного метода Эйлера стохатический метод конечных элементов приводит к 
задаче минимума для гладкой выпуклой функции на тензорном продукте пространств. Уникальный 
минимизатор пространств получен по radial return методу. После этого мы используем описание на языке 
недиссипативных и диссипативных операторов и предлагаем итеративный метод Ньютона для решения 
связанной нелинейной системы уравнений. В заключении, предложеный метод иллюстрируется на 
численном двух-размерном примере. 

Ключевые слова: эластопластичность, стохастический процесс, метод конечных элементов, стохастический 
метод, radial return метод. 
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Incertitude de la quantification des paramètres d’élasticité plastique 
infinitésimale  

On a analysé la méthode des éléments stochastiques finis pour la classe des inégalités de variation du deuxième type 
par laquelle ont été décrits les problèmes d’élasticité plastique. L’accent particulier a été mis sur le problème quasi 
statique et indépendant proportionnellement de von Mises . Ce problème a été décrit au moyen des caractéristiques 
matérielles aléatoires et par le renforcement linéaire isotrope. A l’aide de l’intégration implicite la méthode 
stochastique se réduit au problème de minimisation dans l’espace tensorielle stochastique où les fonctions convexes 
plates du type aléatoires sont définies. La solution unique de ce problème de minimisation a été obtenue par 
l’algorithme stochastique radial return qui se compose d’un opérateur dissipatif (plastique) et élastique , pareil à la 
théorie classique de l’élasticité plastique. Le modèle a été vérifié au moyen d’une plaque à ouverture dans les 
conditions de l’état plat de déformation.  

Mots clés: élasticité plastique, problème stochastique, méthode des éléments finis, méthode stochastique, algorithme 
stochastique. 

 
 


