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The Stability of Linear Discrete Time Delay Systems  
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This paper gives sufficient conditions for the practical and finite time stability of a particular class of linear discrete 
time delay systems. Analyzing the finite time stability concept, these new delay-independent conditions are derived 
using an approach based on the Lyapunov–like functions. The practical and attractive practical stability for discrete 
time delay systems has been investigated. The above mentioned approach was supported by the classical Lyapunov 
technique to guarantee the attractivity properties of the system behavior. 
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Introduction 
HE time delay systems have been investigated over 
many years. Time delay was often encountered in 

different technical systems, such as electric, pneumatic and 
hydraulic networks, chemical processes, long transmission 
lines, etc. 

The existence of pure time delay, regardless if it is 
present in the control or/and state, may cause an 
undesirable system transient response or even instability. 
Consequently, the problem of the stability analysis of this 
class of systems has been one of the main interests of many 
researchers.  

In general, the introduction of time lag factors makes the 
analysis more complicated.  
In the existing stability criteria, two approaches have 
mainly been adopted. Namely, one direction (or one soluti-
on) was to contrive stability conditions which did not inclu-
de any information on the delay.  

The other was a method which took into account the 
time delay itself. The former case is often called the delay-
independent criterion and, generally, provides smooth 
algebraic stability conditions. Numerous results have been 
reported on this matter, with a particular emphasis on the 
application of Lyapunov’s second method. The other 
solutions were based on the idea of the matrix measure as 
presented in Lee, Diant (1981), Mori et al (1982) and 
Hmammed (1986). 
From a practical point of view, the emphasis must be placed 
not only on the system stability (e.g. in the sense of 
Lyapunov), but also in the bounds of system trajectories.  
A system could be stable, yet completely useless because it 
possesses undesirable transient performances.  

Thus, it may be useful to consider the stability of such 
systems with respect to the certain state-space subsets 

which are defined a priori in a given problem. 
Besides that, it is of particular significance to investigate 

the behavior of dynamic systems only over a finite time 
interval. These boundedness properties of system 
responses, i.e. the solution of system models, are very 
important from the engineering point of view. Realizing 
this fact, numerous definitions of the so-called technical 
and practical stability have been introduced. Generally 
speaking, these definitions are essentially based on the 
predefined boundaries for the perturbation of the initial 
conditions and allowable perturbation of the system 
response. In engineering applications of control systems, 
this fact becomes important and sometimes crucial for the 
purpose of characterizing in advance, in a quantitative 
manner including possible deviations of the system 
response. Thus, the analysis of these particular boundedness 
properties of the solutions is an important step, which 
precedes the design of control signals, when finite time or 
practical stability control is taken into account.  

It should be noticed that up to now, no results have been 
reported concerning the aforementioned problem of the 
non-Lyapunov stability for discrete time delay systems. 
Motivated by discussions on practical stability in La Salle, 
Lefschet  (1961) and Weiss, Infante (1965, 1967) various 
notations of the stability over a finite time interval for 
continuous-time systems and constant set trajectory bounds 
have been introduced so far.  

Further developments of these results were presented 
later by other authors.  

For the first time, the results of finite or practical 
stability for a particular class of the nonlinear singularly 
perturbed multiple time delay systems were introduced in 
Fang, Hunsarg  (1996).  

The definitions presented were similar to those in Weiss, 
Infante (1965, 1967) clearly adapted to time delay systems. 

T 
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It should be noticed that these definitions are significantly 
different from the definitions presented earlier, by the first 
named author of this article.  

In the context of finite time and practical stability  
for linear continuous time delay systems, various results 
were presented in Debeljkovic et al (1997.a, 1997.b)  
and Nenadic et al (1997).  

In Debeljkovic et al (1997.a) and Nenadic et al (1997) 
some basic results from the area of finite time and practical 
stability were extended to a particular class of linear 
continuous time delay systems.  

Stability sufficient conditions dependent on delay 
expressed in terms of time delay fundamental system 
matrix have been derived.  

Also, in certain circumstances when it was possible to 
establish the suitable connection between the fundamental 
matrices of linear time delay and the non-delay systems, the 
presented results enable an efficient procedure for testing 
the practical as well as the finite time stability of time delay 
systems.  

For the analysis of the practical and finite time stability 
of linear time delayed systems, the matrix measure 
approach has been applied in Debeljkovic et al (1998, 
1999).  

Based on the Coppel’s inequality, the matrix measure 
approach was introduced. It provides simple delay-
dependent sufficient conditions of the practical and finite 
time stability. In the presented method there was no need 
for time delay fundamental matrix calculations.  

In Debeljkovic et al (1997.b) this problem has been 
solved for forced time delay systems.  

Another approach, based on the known Bellman-
Gronwall lemma, was applied in Debeljkovic et al (1998). 
The method provided new, more efficient sufficient delay-
dependent conditions for checking finite and practical 
stability of continuous systems with state delay.  

The collection of all previous results and contributions 
was presented in Debeljkovic et al (1999) with the overall 
comments and a slightly modified Bellman-Gronwall 
approach.  

Some of the initial results completely based on the 
discrete fundamental matrix of the system have been 
published in Debeljkovic, Aleksendric (2003). It is known 
that computing the discrete fundamental matrix is 
sometimes more difficult than to find the solution of the 
system of retarded difference equations.  

The reported results in Debeljkovic, Aleksendric (2003) 
represented the extension of the concept of finite time and 
practical stability to the class of linear discrete time delayed 
systems for the first time. In discrete time delay systems, 
time delay can cause complicated problems in systems 
dynamics and in developing stability criteria as well. 

 In order to get a better understanding of the described 
discrete systems, short recapitulations and some results 
derived for ordinary discrete time delayed systems have 
been presented in the sequel. 

System Description 
A linear discrete system with state delay was considered. 

The system is described by 
 ( ) ( ) ( )0 11 1k A k A k+ = + −x x x ,(1.a) 
with a known vector valued function of the initial 
conditions: 

 ( ) ( )0 0 0, 1 0k k k= − ≤ ≤x ψ , (1.b) 

where x(k) ∈ Zn is a state vector and constant matrices A0 
and A1 of the appropriate dimensions.  

The time delay is constant and equal to one. 
It is also assumed that (1.a) satisfies the adequate 

smoothness requirements. Consequently, the solution of 
(1.a) exists and is unique and continuous, with respect to k 
and the initial data. The solution is bounded for all bounded 
values of its arguments. 

Let Zn denote the state space of the systems given by (1)  
and ( )⋅  the Euclidean norm. 

The solutions of (1) are denoted by: 

 ( ) ( )0 0, ,k k k≡x x x . (2) 

The discrete–time interval is denoted by KN, as a set of 
non–negative integers: 

 { }0 0:N Nk k k k k= ≤ ≤ +K . (3) 

The quantity kN can be a positive integer or the symbol 
+∞, so the finite time stability and practical stability can be 
treated simultaneously. 

Let V: KN × Zn →Z, so that V(k, x) is bounded and for 
which ( )x  is also bounded.  
The total difference ΔV (k, x(k)) was defined along the 
trajectory of systems (1) as: 

 ( , ( )) ( 1, ( 1)) ( , ( ))V k k V k k V k kΔ = + + −x x x . (4) 

For time–invariant sets it is assumed that ( )S  is a 

bounded open set.  
Let βS  be a given set of all allowable states of the 

system Nk∀ ∈K . Set αS , α β⊂S S  denotes the set of all 
allowable initial states. Sets αS and βS  are connected and a 
priori known. λ ( ) denotes the eigenvalues of matrix. 

maxλ and minλ are the maximum and minimum 
eigenvalues, respectively. 

Motivation 
In the following part we have presented two different 

approaches to the problem of discrete time delay systems. 
Namely, the first result is expressed directly in terms of 
eigenvalues of the basic system matrices A0 and A1 
naturally occurring in the system model.  

The approach avoids the need to introduce any canonical 
form or transformation into the statement of the following 
theorems. In the second case, the geometric theory of 
consistency leads to the natural class of positive definite 
quadratic forms on the subspace containing all the 
solutions. This fact makes the construction of  the 
Lyapunov and non-Lyapunov stability theory possible even 
for the linear continuous time delay systems in sense that 
the attractive property is equivalent to the existence of 
symmetric, positive definite solutions to a general form of 
the Lyapunov matrix equation. 

The conditions which refer to the boundedness of 
solutions are incorporated into the solution.  

The first method is based on a classical approach mostly 
used in deriving sufficient delay independent conditions for 
the finite time stability. In the second case a new definition 
is introduced, based on the attractivity properties of the 
system solution, which can be treated as analogous to the 
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quasi-contractive stability as in Weiss, Infante (1965, 1967)  
Moreover, a new delay dependent sufficient condition 

has been derived to guarantee that the system under 
consideration will be practically stable with the attractivity 
properties of its solution.  

This approach can be treated as a new concept of the so-
called non-Lyapunov stability. Investigating the system 
stability throughout the discrete fundamental matrix is 
cumbersome, so there is a need to find some more efficient 
expressions that should be based on the calculation of 
appropriate eigenvalues or norms of appropriate systems 
matrices.  

The solution for this problem was proposed in this 
article. 

Practical stability and instability 
As far as we know the only result, considering  

and investigating the problem of non–Lyapunov analysis  
of linear discrete time delay systems, is one that has  
been mentioned in the introduction, e.g. Debeljković, 
Aleksendrić (2003) where this problem has been considered 
for the first time. 

Investigating system stability throughout the discrete 
fundamental matrix is very cumbersome, so there is need to 
find some more efficient expressions that should be based 
on calculating appropriate eigenvalues or norms of 
appropriate systems matrices as it has been done in a 
continuous case. 

Definition 1. System (1) is attractively practically stable 
with respect to { }0 , , ,Nk α βK S S , α β< , if and only if  

( )
0 0 0 0

2 2
0 0T TA PA A PA

k α= <x x , implies 
0 0

2( ) TA PAk β<x , 

Nk∀ ∈K , with the property that: ( )
0 0

2lim 0TA PAk
k

→∞
→x .   

Definition 2. System (1) is practically stable with 
respect to{ }0 , , ,Nk α βK S S , if and only if 2

0 α<x , 

implies 2( )k β<x , Nk∀ ∈K . 
Definition 3. System (1) is attractively practically 

unstable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if 

and only if for 
0 0

2
0 TA PA

α<x , there exists a moment 

*
Nk k= ∈K , so that the condition 

0 0

2*( ) TA PA
k β≥x  is 

fulfilled with the property ( )
0 0

2lim 0TA PAk
k

→∞
→x . 

Definition 4. System (1) is practically unstable with 

respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if and only if for 

2
0 α<x , there exists a moment *

Nk k= ∈K , such that 

the condition 
2*( )k β≥x  is fulfilled for some 

*
Nk k= ∈K . 

Definition 5. Linear discrete time delay system (1.a) is 
finite time stable with respect to ( ){ }0, , , ,Nk kα β ⋅ , 

α β≤ , if every trajectory ( )kx  satisfies the initial 
function given by (1.b) such that 

( ) , 0, 1, 2, ,k k Nα< = − − ⋅⋅⋅ −x  which implies 

( ) 2 , Nk kβ< ∈x K , Debeljković, Aleksendrić (2003). 
This Definition is analogous to the one presented  

in Debeljkovic et al (1997.a, 1997.b) and Nenadic et al  
(1997). 

Some previous results 
 Theorem 1. For linear discrete time delay system 

(1) to be finite time stable with respect to 

( ){ }2, , , ,M Nα β ⋅ , α β< , α, β ∈ Z+, it is sufficient that: 

 ( )

1

1 , 0,1, ,
1

M

j
j

k k N
A

β
α

=

Φ < ⋅ ∀ = ⋅⋅⋅
+∑

,  (5) 

Debeljković, Aleksendrić (2003). 
Remark 1. The matrix measure is widely used when 

continuous time delay systems are investigated. 
The nature of discrete time delay enables using the 

presented approach as well as the Bellman’s principle.   
The solution of the stability was based only on matrix 

norms calculation.  
This result is analogous to the one derived in 

Debeljkovic et al (1997.a), for continuous time delay 
systems. 

 Theorem 2. System (1), with 1det 0A ≠ , is 
attractively practically stable with respect to 

( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there exists 0TP P= > , 

which is the solution of: 

 0 02 TA PA P Q− = − , (6) 

where 0TQ Q= > and if the following conditions are 
satisfied: 

 ( )
11

1 22
1 min 1 1 max 0

T TA Q A PA Q A Pσ σ
−− −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟< −

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
, (7) 

 ( )
1
2
max ,

k
Nkβλ

α
< ∀ ∈K ,  (8) 

where: 

( ) ( ) ( ){ ( ) ( ) }max 1 1 0 0max : 1T T T Tk A PA k k A PA kλ = =x x x x .
(9) 

Proof. The following function was used, as a possible 
aggregation function for the system: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k P k k Q k= + − −x x x x x , (10) 

with the matrices 0TP P= >  and 0TQ Q= > . 
The rest of the proof is omitted here for the sake of 

brevity and can be found in Debeljkovic (2011). Q.E.D. 
Remark 2. The assumption 1det 0A ≠  does not reduce 

the generality of this result, since this condition is not 
crucial when discrete time systems are considered. 

Remark 3. The Lyapunov asymptotic stability and the 
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finite time stability are independent concepts: a system that 
is finite time stable may not be Lyapunov asymptotically 
stable, conversely, a Lyapunov asymptotically stable 
system could not be finite time stable, if its motion exceeds 
the pre-specified bounds β  during the transients. 

The attractivity property is guaranteed by (6) and (7) and 
the system motion within pre-specified boundaries is gua-
ranteed by condition (8). 

Remark 4. For the numerical treatment of this problem 
( )maxλ can be calculated in the following way, Kalman,  

Bertram  (1960): 

 ( ) { } ( ) 1
max max 1 1 0 0max T TA PA A PAλ λ

−⎛ ⎞= = ⎜ ⎟
⎝ ⎠x

, (11) 

Remark 5. These results are in some sense analogous to 
those given in Amato et al (2003), although the results 
presented there have been derived for continuous time 
varying systems. 

In the following part the delay independent criteria for 
the finite time stability are developed.  

Reducing the demand that a basic system matrix should 
be a discrete stable matrix, a system does not need to be 
necessarily asymptotically stable. 

Theorem 3. Suppose that the matrix A1 fulfills 

( )1 1 0TI A A− > . The system given by (1) is finite time 

stable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< ,  if 

there exists a positive  real number  p, p>1,  such that  

  ( ) ( ) ( )2 221 , ,k p k t k β− < ∀ ∈ℑ ∀ ∈x x x S , (12) 

and if the following condition is satisfied 

 ( )max ,k
Nkβλ

α
< ∀ ∈K ,  (13) 

where: 

 ( ) ( )( )2
max max 0 1 1 1 1 0

T T TA A I A A A A p Iλ λ= − + . (14) 

Proof. System (1) was analyzed.  
A function is defined: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k k k k= + − −x x x x x , (15) 

as a tentative Lyapunov–like function for the system under 
consideration.  

The rest of the proof is omitted here for the sake of 
brevity and can be found in Debeljkovic (2011). Q.E.D. 

Remark 6. In the case when 1A  is the null matrix result, 
given by (14), it reduces to that given in Debeljkovic (2001) 
developed for ordinary discrete time systems. 

VI   MAIN RESULTS 
Before presenting our crucial result, we need some 

preliminaries, discussions and explanations, as well some 
additional results 

The characteristic polynomial of system (1) is given by: 

 
( ) ( )

( )

( 1)

0

1
0 1

det , ,ˆ

          

n h
j

j j
j

h h
n

f M a a

M I A A

λ λ λ

λ λ λ

+

=

+

= = ∈

= − −

∑
 (16) 

Denote: 
 ( ){ } ( )| 0ˆ eqf Aλ λ λΩ = = = (17) 

the set of all characteristic roots of system (1).  
The number of these roots amounts to ( )1n h + .  
A root mλ  of  Ω  with a maximum module: 

 ( ): maxm m eqAλ λ λ∈Ω = 1 (18) 

let us call it a maximum root (eigenvalue).  
If the scalar variable λ in the characteristic polynomial  

is replaced by the matrix n nX ×∈  the two following  
monic matrix polynomials are obtained: 

 ( ) 1
0 1

h hM X X A X A+= − −  (19) 

 ( ) 1
0 1

h hF X X X A A+= − −  (20) 

It is obvious that ( ) ( )F Mλ λ= .  

A matrix n nS ×∈  is a right solvent of ( )M X , Dennis 
et al., (1976) if: 

 ( ) 0M S =  (21) 

If : 

 ( ) 0F R =  (22) 

then n nR ×∈ �  is a left solvent of ( )M X , Dennis et al. 
(1976).  

We will further use S to denote the right solvent and  R  
to denote the left solvent of ( )M X . 

In the present paper the majority of presented results 
start from the left solvents of ( )M X .  

In contrast, in the existing literature the right solvents of 
( )M X were mainly studied.  
 The mentioned discrepancy can be overcome by the 

following Lemma. 
Lemma 1. The conjugate transpose value of the left 

solvent of ( )M X  is also, at the same time, the right 
solvent of the following matrix polynomial: 

 ( ) 1
0 1

h T h T
TM X X A X A+= − −  (23) 

Proof. Let R be the right solvent of ( )M X .  
Then it holds: 

 
( ) ( ) ( )

( ) ( )

1* * *
0 1

*1 *
0 1           = 0

h hT T
T

h h

M R R A R A

R R A A F R

+

+

= − −

− − = =
 (24) 

so *R  is the right solvent of ( )TM X .Q.E.D. 
Conclusion 1. Based on Lemma 1, all characteristics of 

                                                           
1 See Appendix B. 
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the left solvents of ( )M X  can be obtained by the analysis 
of the conjugate transpose value of the right solvents of 

( )TM X .  
The following proposed factorization of the matrix 
( )M λ  will help us to understand better the relationship 

between the eigenvalues of left and right solvents and roots 
of the system. 

Lemma 2. The matrix ( )M λ  can be factorized in the 
following way: 

 
( ) ( ) ( )

( ) ( )

1
0

1

1
0

1
          

h
h h i i

n n
i

h
h h i i

n n
i

M I S A S I S

I R I R R A

λ λ λ λ

λ λ λ

− −

=

− −

=

⎛ ⎞
= + − −⎜ ⎟
⎝ ⎠

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠

∑

∑
 (25) 

Proof.  

( ) ( ) ( )
( )

1 1
0

1
1

0
0 0

h h h h
n n

h h
h i i h i i

n
i i

M M X I X A I X

X A X I X

λ λ λ

λ λ λ

+ +

−
− − −

= =

− = − − − =

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠
∑ ∑

 (26) 

If S is a right solvent of ( )M X , from (26) follows (25).  
Similarly, if R is a left solvent of ( )M X , from: 

( ) ( ) ( )1
0

1

( )
h

h h i i
n n

i

M F X I X I X X Aλ λ λ λ − −

=

⎛ ⎞
− = − + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑   

polynomial ( )f λ  is an annihilating polynomial for the 
right and left solvents of ( )M X .  

The eigenvalues and eigenvectors of the matrix have a 
crucial influence on the existence, enumeration and 
characterization of solvents of the matrix equation (21), 
Dennis et al., (1976) and Pereira (2003). 

Definition 6. Let ( )M λ  be a matrix polynomial in λ.  

If iλ ∈C  is such that ( )( )det 0iM λ = , then we say that 

λi is a latent root or an eigenvalue of ( )M λ . If a nonzero 
n

i ∈v  is such that: 

 ( )i iM λ =v 0  (28) 

then we say that vi is a (right) latent vector or a (right) 
eigenvector of ( )M λ , corresponding to the eigenvalue λi, 
Dennis et al., (1976) and Pereira (2003).  

The eigenvalues of the matrix ( )M λ  correspond to the 
characteristic roots of the system, i.e. eigenvalues of its 
block companion matrix Aeq Dennis et al., (1976)2.  

Their number is ( 1)n h + .  

Since ( ) ( )* *
TF Mλ λ=  holds, it is not difficult to show 

that the matrices ( )M λ  and ( )TM λ  have the same 
spectrum. 

In the papers Dennis et al., (1976, 1978), Kim (2000), 
Pereira (2003) and Lancaster, Tismenetsky, (1985) some 

                                                           
2 See The Appendix B. 

sufficient conditions for the existence, enumeration and 
characterization of right solvents of ( )M X were derived. 

They show that the number of solvents can be zero, finite 
or infinite.  

For the needs of system stability (1) only the so-called 
maximum solvents are usable, the spectrums of which 
contain the maximum eigenvalue mλ .  

A special case of the maximum solvent is the so-called 
dominant solvent Dennis et al., (1978) and Kim (2000), 
which, unlike maximum solvents, can be computed in a 
simple way. 

Definition 7. Every solvent mS  of ( )M X , whose 

spectrum ( )mSσ  contains the maximum eigenvalue mλ  of 
Ω is a maximum solvent. 

Definition 8. The matrix A dominates the matrix B if all 
the eigenvalues of A are greater, in modulus, than those of 
B.  

In particular, if the solvent 1S  of ( )M X  dominates the 
solvents 2 , , lS SK  we say it is a dominant solvent, Dennis 
et al., (1978) and Kim (2000). 

(Note that a dominant solvent cannot be singular.)  
Conclusion 3. The number of maximum solvents can be 

greater than one.  
The dominant solvent is at the same time the maximum 

solvent too. 
The dominant solvent 1S  of ( )M X , under certain 

conditions, can be determined by the Traub iteration  
Dennis et al., (1978) and Bernoulli iteration Dennis et al., 
(1978) and Kim (2000). 

The necessary and sufficient conditions for the 
asymptotic stability of linear discrete time-delay systems 
(1) are given with the following result. 

Theorem 4. Suppose that there exists at least one left 
solvent of ( )M X and let mR  denote one of them. Then, 
linear discrete time delay system (1) is asymptotically 
stable if and only if for any matrix * 0Q Q= >  there exists 

Hermitian matrix * 0P P= >  such that:  

 *
m mR PR P Q− = −  (29) 

Proof. (SuC) Define the following vector discrete 
functions: 

 ( ) { }, , 1, ... , 0k k h hϑ ϑ= + ∈ − − +x x  (30) 

 ( ) ( ) ( ) ( )
1

h

k
j

k j k j
=

= + Ξ −∑z x x x  (31) 

where, ( ) n nk ×Ξ ∈C  is, in general, some time varying 
discrete matrix function.  

The conclusion of the theorem follows immediately by 
defining the Lyapunov functional for the system (1), as: 

 ( ) ( ) ( )* *, 0k k kV P P P= = >x z x z x  (32) 

It is obvious that ( )k =z x 0  if and only if k =x 0 , so it 

follows that ( ) 0kV >x  for k∀ ≠x 0 .  
The forward difference of (32), along the solutions of 

system (1) is:  
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 ( ) ( ) ( )
( ) ( ) ( ) ( )

*

* *
k k

k k k k

V P k
P P

Δ = Δ
+ Δ + Δ Δ

x z x z
z x z x z x z x

 (33) 

The difference of ( )kΔz x  can be determined in the 
following manner: 

 ( ) ( ) ( ) ( )
1

h

k
j

k j k j
=

Δ = Δ + Ξ Δ −∑z x x x  (34) 

with: 

 ( ) ( ) ( ) ( )0 1nx k A I x k A x k hΔ = − + −  (35) 

and: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

1 1

1

h

j
j k j k k

h k h k h
=

Ξ Δ − = Ξ − − +⎡ ⎤⎣ ⎦

+Ξ − + − −⎡ ⎤⎣ ⎦

∑ x x x

x x

L
 (36) 

Then simple manipulations lead to: 

 

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( )

1

1

2 1 1
1 1

h

j

s j k j k h k h

k
h h k h

=

Δ − = Ξ −Ξ −

+ Ξ −Ξ − +
+ Ξ −Ξ − − +

∑ x x x

x
x

L  (37) 

Define a new matrix Π  by:  

 ( )0 1AΠ = +Ξ  (38) 

If: 

 ( ) ( )1h A hΔΞ = −Ξ  (39) 

then ( )kΔz x  has a form: 

 ( ) ( ) ( ) ( ) ( )
1

h

k n
j

I k j k j
=

Δ = Π − + ΔΞ ⋅ −∑z x x x  (40) 

If one adopts: 

 ( ) ( ) ( ) , 1, 2, ... ,nj I j j hΔΞ = Π − Ξ = , (41) 

then ( )kΔz x  becomes:  

 ( ) ( ) ( )k n kIΔ = Π −z x z x . (42) 

Therefore, (33) becomes: 

 ( ) ( )( ) ( )* *
k k kV P P xΔ = Π Π −x z x z  (43) 

It is obvious that if the following equation is satisfied:  

 * *, 0P P Q Q QΠ Π − = − = >  (44) 

then ( ) 0,k kVΔ < ≠x x 0 .  
 In the Lyapunov matrix equation (44), of all possible 

solvents R of ( )M X , only one of the maximum solvents is 
of importance, for it is the only one that contains the 
maximum eigenvalue mλ ∈Ω  (Conclusion 2), which has 
dominant influence on the stability of the system.  

So, (29) represents the stability sufficient condition 
(SuC) for the system given by (1).  

The matrix ( )1Ξ  can be determined in the following 
way.  

From (41) follows: 

 ( ) ( )1 1hh RΞ + = Ξ , (45) 

and using (38) and (39) one can get (22), and for the sake of 
brevity, instead of the matrix ( )1Ξ , one introduces a 
simple notation Ξ . 

If a solvent which is not maximal is integrated into the 
Lyapunov equation, it may happen that there is a positive 
definite solution of Lyapunov matrix equation (29), 
although  the system is not stable.  

Conversely, if system (1) is asymptotically stable then 
all roots iλ ∈Ω  are located within the unit circle. Since 

( )mRσ ⊂ Ω , ( ) 1mRρ <  follows, so the positive definite 
solution of Lyapunov matrix equation (29) exists 
(necessary condition NcC). Q.E.D. 

Theorem 5. Suppose that there exists at least one left 
solvent of ( )M X and let mR  denote one of them.  

Then, linear discrete time delay system (1), with 
1det 0A ≠ , is attractively practically  stable with respect to 

( ){ }2, , , ,M Nα β ⋅ , α β< , α, β ∈ Z+,, if for any matrix 

* 0Q Q= >  there exists the Hermitian matrix * 0P P= >  
such that:  

 *
m mR PR P Q− = −  (46) 

as well as the following condition is satisfied: 

 ( )

1

1 , 0,1, ,
1

M

j
j

k k N
A

β
α

=

Φ < ⋅ ∀ = ⋅⋅⋅
+∑

,  (47) 

Proof. The proof is more than obvious and directly 
follows from the fact that the attractivity property is 
guaranteed by (46), Stojanovic, Debeljkovic (2008) and 
finite time stability by (47), Debeljkovic, Aleksendric 
(2003). 

Theorem 6. Suppose that the matrix A1 fulfills 

( )1 1 0TI A A− > . A system given by (1), is practically 

unstable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< ,  if 

there exists a positive  real number p, p>1,  such that:  

 ( ) ( ) ( )2 221 , ,k k k k β− <℘ ∀ ∈ ∀ ∈x x xK S , (48) 

if there exists a real, positive number ] [,  0,δ δ α∈  and 

time instant ( )* *
0,  : Nk k k k k= ∃! > ∈K  for which the 

next condition is fulfilled: 

 *
min ,k

Nkβλ
δ

∗
> ∈K  . (49) 

Proof. Let 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k k k k= + − −x x x x x . (50) 

Following the identical procedure as in  Theorem 3, one 
can get: 
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 ( ) ( ) ( ) ( ) ( )minln 1 1 ln lnT Tk k k k λ+ + − >x x x x , (51) 

where: 

 ( ) ( ) 1 2
min min 0 1 1 1 1 0

T T TA A I A A A A p Iλ λ
−⎛ ⎞= − +⎜ ⎟

⎝ ⎠
. (52) 

 If the summing 
0

0

1k k

j k

+ −

=
∑  is applied on both sides of 

(51) for Nk∀ ∈K , one can obtain:  

 
( ) ( )

( ) ( ) ( ) ( )
0

0

0 0
1

max max 0 0

ln

ln ln ln

T
N

k k
k T

j k

k k k k k

k kλ λ
+ −

=

+ + ≥ ∀ ∈

≥ ≥ +∏
x x

x x

K
 (53) 

 It is clear that for any 0x , 2
0δ α< <x  follows and 

for some Nk∗ ∈K , taking into account the basic condition 
of Theorem 4, eq. (45), it can be concluded: 

 

( ) ( )
( )( ) ( ) ( )

( )

0 0

min 0 1 0 0

min

ln

ln , , ln

ln ln ln , for some

T

k T

k
N

k k k k

A A t k k

k

λ ϕ
βδ λ δ βδ

∗

∗

∗ ∗

∗

+ + >

> + >

> ⋅ > ⋅ > ∈

x x

x x

K

 (54) 

Q.E.D. 

Conclusion 
New definitions and theorems have been established and 

proved for a particular class of the discrete time delay 
systems.  

The conditions guarantee the practical attractivity and 
only practical stability within the pre-specified time-
invariant sets in the state space.  

Moreover, based on a classical definition, new theorems 
have been derived for the so-called finite time stability as 
well as the corresponding results for discrete time delay 
systems, to the ones given in Debeljkovic et al (2010) and 
Debeljkovic,  Nestorovic  (2010). 

It is necessary to underline the difference between 
Theorem 5 and all the others. 

The former belongs to the class of so-called time delay 
dependent conditions and all the others to the criteria which 
do not include the value of time delay in the final result. 

The later are easier  to apply for technical purposes. 
The system instability was analyzed as well. 

APPENDIX A - Notation  
 

 Real vector space 
+T  All the non-negative integers 
 Complex vector space 

*λ  Conjugate of λ ∈  

F∗  Conjugate transpose of matrix n nF ×∈�  
0F >  Positive definite matrix 
( )det F  Determinant of matrix F  

( )i Fλ  Eigenvalue of matrix F  

( )Fλ  ( ){ }| det 0F Iλ λ− =  

( )Fσ  Spectrum of matrix F  

( )Fρ  Spectral radius of matrix F  

 

APPENDIX B 
System can be expressed with the following 

representation without delay, Mori et al., (1982), Malek - 
Zavarei, Jamshidi, (1978)  
and Gorecki et al., (1989). 

 

( ) ( ) ( ) ( )

( ) ( )

1 0

1

1 , ( 1)ˆ
0 0

0 0
0

T T T N
eq

eq eq eq

n

N N
eq

n

k k h k h k

k A k N n h
I

A I
A A

×

⎡ ⎤= − − + ∈⎣ ⎦
+ = = +

⎛ ⎞
⎜ ⎟

= ∈⎜ ⎟
⎜ ⎟
⎝ ⎠

x x x x

x x

L

L
M M O M

L
L

(B.1) 

The system defined by (B.1) is called the equivalent 
system, while the matrix eqA , the matrix of equivalent 
system. 

APPENDIX  C 
Linear discrete time systems – Chronological overview 

of basic results 
A specific concept of discrete time systems, practical 

stability operating on the finite time interval, was 
investigated by Hurt (1967) with a particular emphasis on 
the possibilities of error arising in the numerical treatment 
of results. 

The finite time stability concept was, for the first time, 
extended to discrete time systems by Michel and Wu 
(1969). 

Practical stability or “set stability”, throughout 
estimation system trajectory behavior on the finite time 
interval was given by Heinen (1970, 1971). He was the first 
to give necessary and sufficient conditions for this concept 
of stability, using the Lyapunov approach based on the 
“discrete Lyapunov functions” application. 

Even more detailed analysis of these results considering 
different aspects of discrete time systems practical stability 
as well as the questions of their realization and 
controllability was given by Weiss (1972). The same 
problems were treated by Weiss and Lam (1973), who 
extended them to the class of nonlinear complex discrete 
systems. 

Efficient sufficient conditions of finite time stability of 
linear discrete time systems expressed through norms 
and/or matrices were derived by Weiss and Lee (1971). 

Lam and Weiss (1974) were the first who applied the so–
called concept of “final stability” on discrete time systems 
whose motions are scrolled within the time varying sets in 
the state space. 

Some simple definitions connected to sets representing 
difference equations or at the same time discrete time 
systems were given by Shanholt (1974). 

Only the sufficient conditions are given by the 
established theorems. These results are based on the 
Lyapunov stability and can be used, in a way, for a finite 
time stability concept, for which reason they are mentioned 
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here. 
Grippo, Lampariello (1976) have generalized all 

foregoing results and have given the necessary and 
sufficient conditions of different concepts of finite time 
stability inspired by the definitions of practical stability and 
instability, earlier introduced by Heinen (1970). 

The same authors applied the before–mentioned results 
in the analysis of “large–scale systems”, Grippo, 
Lampariello (1978). 

Practical stability with settling time was for the first time 
introduced by Debeljković (1979.a) in connection with the 
analysis of different classes of linear discrete time systems, 
general enough to include time invariant and time varying 
systems, systems operated in free or forced operating 
regimes, as well as the systems whose dynamical behavior 
is expressed through the so–called “functional system 
matrix”. In the mentioned paper, the sufficient conditions of 
practical instability and a discrete version of a very well 
known Bellman–Gronwall lemma have also been derived. 

Other papers, Debeljković (1979.b, 1980.a, 1980.b, 
1983) deal with the same problems and mostly represent the 
basic results of the PhD dissertation, Debeljković (1979.a). 

For the particular class of discrete time systems with the 
functional system matrix, sufficient conditions have been 
derived in Debeljković (1993). 
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Stabilnost linearnih diskretnih sistema sa čistim vremenskim 
kašnjenjem na konačnom vremenskom intervalu: Pregled rezultata 

U ovom radu su izvedeni, dovoljni uslovi praktične stabilnosti i stabilnosti na konačnom vremenskom intervalu 
posebne klase linearnih dikretnih sistema sa čistim vremenskim kašnjenjem. Analizirajući koncept stabilnosti na 
konačnom vremenskom intervalu, ovi novi od čisto vremenskog kašnjenja nezavisni uslovi, dobijeni su prilazom koji 
počiva na korišćenju kvazi Ljapunovljevih funkcija, koje ne moraju da budu određene po znaku, kao ni njihovi 
izvodi.  
Takođe, je razmatran koncept praktične stabilnosti, a po prvi put, i koncept atraktivne praktične stabilnosti. 
Pomenuti prilaz, jasno, oslanja se u velikoj meri na klasičnu Ljapunovljevu tehniku, kako bi se garantovala globalna 
osobina privlačenja kretanja sistema.  

Ključne reči: linearni sistemi, diskretni sistemi, stabilnost sistema, sistem sa kašnjenjem, sistem na konačnom 
vremenskom intervalu, Neljapunovska stabilnost. 

Устойчивость линейных дискретных систем с чистым 
временем задержки в конечном интервале времени:  

Обзор результатов 
В данной работе получены достаточные условия практической устойчивости и устойчивости на конечном 
временном интервале особого класса линейных дискретных систем с чистым временем задержки. 
Анализируя понятие и концепции устойчивости на конечном временном интервале, эти новые независимые 
условия с чистым временем задержки получены путём подхода обоснованного на использовании Ляпунова-
подобные функций, которые не должны определяться знаком, вместе с их функционированием. 
Также исследована концепция практической устойчивости, и в первый раз, концепция привлекательной и 
практической устойчивости.Вышеупомянутый подход, в значительной степени ясно опирается на 
классическую технику Ляпунова, для того, чтобы гарантировать глобальные свойства привлекательности 
движения системы. 

Kly~evwe slova: Линейные системы, дискретные системы, устойчивость системы, системные задержки, 
системы на конечном временном интервале, устойчивость не-Ляпунова. 

Stabilité des systèmes linéaires discrets à délai temporel sur 
l’intervalle temporelle finie : tableaux des résultats  

Dans ce papier on présente les conditions suffisantes pour la stabilité pratique et la stabilité sur l’intervalle temporelle 
finie de classe particulière des systèmes linéaires discrets à pur délai temporel. Analysant le concept de stabilité sur 
l’intervalle temporelle finie, ces nouvelles conditions, indépendantes du délai temporel pur, ont été réalisées par 
l’approche basée sur les quasi fonctions de Lyapunov .On a étudié également  le concept de la stabilité pratique et, 
pour la première fois, le concept de la stabilité pratique attractive. Evidement, l’approche citée repose en grande 
partie sur la technique classique de Lyapunov pour garantir la propriété globale de l’attraction du mouvement du 
système.  

Mots clés: système linéaire, système discret, stabilité de système, système à délai, système sur l’intervalle temporelle 
finie, stabilité de non Lyapunov. 

 
 


