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Stability and Stabilization of Fractional Order Time Delay Systems 

Mihailo Lazarević1) 

In this paper, some basic results of the stability criteria of fractional order system with time delay as well as free delay 
are presented. Also, we obtained and presented sufficient conditions for finite time stability and stabilization for 
(non)linear (non)homogeneous as well as perturbed fractional order time delay systems. Several stability criteria for 
this class of fractional order systems are proposed using a recently suggested generalized Gronwall inequality as well 
as “classical” Bellman-Gronwall inequality. Some conclusions for stability are similar to those of classical integer-
order differential equations. Finally, a numerical example is given to illustrate the validity of the proposed procedure 
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Introduction 
HE question of stability is of main interest in the 
control theory. Also, the problem of investigation of 

time delay systems has been exploited over many years.  
Delay is very often encountered in different technical 
systems, such as electric, pneumatic and hydraulic 
networks, chemical processes, long transmission lines, 
etc.,[1]. Delays are inherent in many physical and 
engineering systems. In particular, pure delays are often 
used to ideally represent the effects of transmission, 
transportation, and inertial phenomena. This is because 
these systems have only limited time to receive information 
and react accordingly. Such a system cannot be described 
by purely differential equations, but has to be treated with 
differential difference equations or the so-called differential 
equations with difference variables. Delay differential 
equations (DDEs) constitute basic mathematical models for 
real phenomena, for instance in engineering, mechanics, 
and economics, [2]. The basic theory concerning the 
stability of systems described by equations of this type was 
developed by Pontryagin in 1942. Also, important works 
have been written by Bellman and Cooke in 1963, [3]. The 
presence of time delays in a feedback control system leads 
to a closed-loop characteristic equation which involves the 
exponential type transcendental terms. The exponential 
transcendentality brings infinitely many isolated roots, and 
hence it makes the stability analysis of time-delay systems a 
challenging task. It is well recognized that there is no 
simple and universally applicable practical algebraic 
criterion, like the Routh–Hurwitz criterion for stability of 
delay-free systems, for assessing the stability of linear time-
invariant time-delayed (LTI-TD) systems. On the other 
side, the existence of pure time delay, regardless if it is 
present in the control or/and state, may cause an 
undesirable system transient response, or generally, even an 
instability. Numerous reports have been published on this 
matter, with a particular emphasis on the application of  
Lyapunov`s second method, or on using the idea of matrix 

measure[4-7]. The analysis of time-delay systems can be 
classified such that the stability or stabilization criteria 
involve the delay element or not. In other words, delay 
independent criteria guarantee global asymptotic stability 
for any time-delay that may change from zero to infinity. 
As there is no upper limit to time-delay, often delay 
independent results can be regarded as conservative in 
practice, where unbounded time-delays are not so realistic. 
In practice, one is not only interested in system stability 
(e.g. in the sense of Lyapunov), but also in the bounds of 
system trajectories. A system could be stable but still 
completely useless because it possesses undesirable 
transient performances. Thus, it may be useful to consider 
the stability of such systems with respect to certain subsets 
of state-space which are defined a priori in a given 
problem. Besides that, it is of particular significance to 
consider the behavior of dynamical systems only over a 
finite time interval. These boundedness properties of 
system responses, i.e. the solution of system models, are 
very important from the engineering point of view. 
Realizing this fact, numerous definitions of the so-called 
technical and practical stability were introduced. Roughly 
speaking, these definitions are essentially based on the 
predefined boundaries for the perturbation of initial 
conditions and the allowable perturbation of a system 
response. Thus, the analysis of these particular boundedness 
properties of solutions is an important step, which precedes 
the design of control signals, when finite time or practical 
stability control is considered. Motivated by a “brief 
discussion” on practical stability in the monograph of 
LaSalle and Lefschet,[8] and  Weiss and Infante,[9] have 
introduced various notations of stability over a finite time 
interval for continuous-time systems and constant set 
trajectory bounds. A more general type of stability 
(“practical stability with settling time”, practical 
exponential stability, etc.) which includes many previous 
definitions of finite stability was introduced and considered 
by Grujić,[10,11]. A concept of finite-time stability, called 
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“final stability”, was introduced by Lashirer and Story, [12] 
and a further development of these results was due to Lam 
and Weiss,[13]. Recently, finite-time control/stabilization, 
and methods for stability evaluation of linear systems on 
finite time horizont have been proposed by Amato et al., 
[14,15], respectively. Also, an analysis of linear time-delay 
systems in the context of finite and practical stability was 
introduced and considered in [16-18] and as well as finite-
time stability and stabilization [19]. 

Recently  there have been some advances in the control 
theory of fractional (non-integer order) dynamical systems 
for stability questions such as robust stability, bounded 
input–bounded output stability, internal stability, finite time 
stability, practical stability, root-locus, robust 
controllability, robust observability, etc. For example, 
regarding linear fractional differential systems of finite 
dimensions in a state-space form, both internal and external 
stabilities are investigated by Matignon,[20]. Some 
properties and (robust) stability results for linear, 
continuous, (uncertain) fractional order state-space systems 
are presented and discussed [20,21]. However, we cannot 
directly use algebraic tools, e.g. Routh-Hurwitz criteria, for 
the fractional order system because we do not have a 
characteristic polynomial but a pseudopolynomial with a 
rational power-multivalued function. An analytical 
approach was suggested by Chen and Moore,[22], who 
considered the analytical stability bound using Lambert 
function W. Further, analysis and stabilization of fractional 
(exponential) delay systems of retarded/neutral type are 
considered [23,24], as well as BIBO stability [25]. Whereas 
Lyapunov methods have been developed for the stability 
analysis and the control law synthesis of integer linear 
systems and have been extended to stability of fractional 
systems, only few studies deal with non-Lyapunov stability 
of fractional systems. Recently, for the first time, the finite-
time stability analysis of fractional time delay systems has 
been presented and reported in papers [26,27]. Here, a 
Bellman-Gronwall`s approach is proposed, using  a 
“classical” Bellman-Gronwall inequality as well as a 
recently obtained generalized Gronwall inequality reported 
in [28] as a starting point. The problem of sufficient 
conditions that enable system trajectories to stay within the 
a priori given sets for a particular class of (non)linear 
(non)autonomous fractional order time-delay systems has 
been examined.  

Fundamentals of the fractional calculus  
Fractional calculus (FC) as an extension of ordinary 

calculus has 300 years old history. FC was initiated by 
Leibniz and L`Hospital as a result of a correspondence 
which lasted several months in 1695. Both Leibniz and 
L`Hospital, aware of ordinary calculus, raised the question 
of a noninteger differentiation (order 1/ 2n = ) for simple 
functions. Fractional derivatives were subsequently 
mentioned, in one context or the other, by (for example) 
Euler in 1730, Lagrange in 1772, Laplace in 1812, Lacroix 
in 1819, Fourier in 1822, Riemann in 1847, Green in 1859, 
Holmgren in 1865, Grunwald in 1867, Letnikov in 1868, 
Sonini in 1869, Laurent in 1884, Nekrassov in 1888, Krug 
in 1890, and Weyl in 1919, etc. [29]. In that way, the theory 
of the fractional-order derivative was developed mainly in 
the 19th century. Since 19th century,  as a foundation of 
fractional geometry and fractional dynamics, the theory of 
FO, the  theory of FC and FDEs and  application research in 
 particular, have been developed rapidly in the world. The 

modern epoch started in 1974 when a consistent formalism 
of the fractional calculus has been developed by Oldham 
and Spanier,[4], and later Podlubny,[6]. Applications of FC 
are very wide nowadays, in rheology, viscoelasticity, 
acoustics, optics, chemical physics, robotics, control theory 
of dynamical systems, electrical engineering, 
bioengineering, etc. [4-12]. In fact, real world processes 
generally or most likely are fractional order systems. The 
main reason for the success of FC applications is that these 
new fractional-order models are more accurate than integer-
order models, i.e. there are more degrees of freedom in the 
fractional order model. Furthermore, fractional derivatives 
provide an excellent instrument for the description of 
memory and hereditary properties of various materials and 
processes due to the existence of a ”memory” term in a 
model. This memory term insures the history and its impact 
to the present and future. A typical example of a non-
integer (fractional) order system is the voltage-current 
relation of a semi-infinite lossy transmission line [17] or 
diffusion of the heat through a semi-infinite solid, where 
heat flow is equal to the half-derivative of the temperature 
[6]. In his 700 page-long book on Calculus, 1819 Lacroix 
[30] developed the formula for the n-th derivative of 
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where ( )n m≤  is an integer. Replacing the factorial 
symbol by the Gamma function, he further obtained the 
formula for the fractional derivative 
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where α  and β  are fractional numbers and the Gamma 
function ( )zΓ  is defined for 0z >  by the so-called Euler 
integral of the second kind: 

 ( ) 1

0
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On the other hand, Liouville (1809-1882) formally 
extended the formula for the derivative of integral order n 

 , arbitrary ordern ax n ax ax axD e a e D e a eα α α= ⇒ = −  (3) 

Using the series expansion of a function, he derived the 
formula known as Liouville`s first formula for fractional 
derivative, where α  may be rational, irrational or complex. 
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where ( )
0

exp( ), Re 0n n n
n

f x c a x a
∞

=

= >∑ . However, it can be 

only used for functions of the previous form. Also, it was 
J.B.J.Fourier [31] who derived the functional representation 
of the function 

 ( ) ( )( )1( ) cos
2

R R

f t f x d dζ ξ ζ ζ ξ
π

= −∫ ∫ , (5) 

where he also formally introduced the fractional derivative 
version. In 1823, Abel considered a mechanical problem, 
namely Abel’s mechanical problem [32]. In the absence of 
friction, the problem is reduced to an integral equation  
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where ( ) ( )21 ( ) ,u z z zφ φ′= +  is an increasing function, g 

is the constant downward acceleration, ( )f y  is a 
prescribed function. Then Abel solved (6) in [33]. Also an 
Abel transform of a sufficiently well behaved function u  
was generalized to 
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where ( ), 0,1a b α−∞ ≤ < ≤ ∞ ∈  and (.)Γ  is the well 
known Euler's gamma function. Here, it is assumed the 
solution of classical Abel integral equation exists and  the 
fractional derivative with order ( )1,0∈α  exists in ),(1 baL , 
[34], so we have following results: 

Lemma1.Consider, for ( ) ∞≤<≤∞−∈ ba,1,0α , the 
classical Abel integral equation  
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Then there exists at most one solution of equation (8) in 
),(1 baL . Moreover, if the function f  is absolutely 

continuous on [a, b], then equation (8) has a solution 
in ),(1 baL , given by (9) 
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If a  is finite and f  is extended by 0 to the left of a , 
then 
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From the viewpoint of fractional calculus, we can see 
that (9)–(12) are just some other forms of fractional 
derivatives, with order ( )1,0∈α , under some different 
hypotheses on f . Fractional derivatives are typically 
treated as a particular case of pseudo-differential operators. 

Since they are nonlocal and have weakly singular kernels, 
the study of fractional differential equations seems to be 
more difficult and fewer theories have been established 
than for classical differential equations. In 1832-1837 a 
series of papers by Liouville [35,36] reported the earliest 
form of the fractional integral, though not quite rigorously 
from the mathematical point of view. The formula was 
taken as follows 
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That is now called the Liouville form of fractional 
integral with the factor ( )p1−  being omitted. Next 
significant work was done by Riemann [37]. Although he 
wrote his paper in 1847 when he was just a student, it was 
not published until 1876, ten years after his death. Riemann 
arrived at the expression 
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for fractional integration. Furthermore, we have the most 
useful forms of left-hand and right-hand Riemann- 
Liouville (RL) derivatives defined as follows 
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where 1m mα− ≤ < , a, b are the terminal points of the 
interval [ ],a b , which can also be  ,−∞ ∞ . The definition 
(15) of the fractional differentiation of Riemann-Liouville 
type leads a conflict between the well-established and 
polished mathematical theory and proper needs, such as the 
initial problem of the fractional differential equation, and 
the nonzero problem related to the Riemann-Liouville 
derivative of a constant, etc. A certain solution to this 
conflict was proposed by Caputo first in his paper [38] 
(1967) .Caputo’s definitions can be written as 
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where 1m mα +− ≤ < ∈ . Obviously, the Caputo 
derivative is stricter than the Riemann-Liouville derivative, 
one reason is that the m-th order derivative is required to 
exist. The Caputo and Riemann-Liouville formulations 
coincide when the initial conditions are zero. Besides, the 
RL derivative is meaningful under weaker smoothness 
requirements. In addition, the RL derivative can be 
presented as: 

 ( ) ), ( ), 1, ,n n
RL x a xD f x D D f x n nα α α− ⎡= ∈ −⎣  (17) 

and the Caputo derivative  



34 LAZAREVIĆ.M.: STABILITY AND STABILIZATION OF FRACTIONAL ORDER TIME DELAY SYSTEMS  

 ( ), ,( ) ( ), 1, ,n n
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where nDZn ,+∈  is the classical n -order derivative. 
Moreover, previous expressions show that the fractional-
order operators are global operators having a memory of all 
past events, making them adequate for modeling hereditary 
and memory effects in most materials and systems. In 
addition, for the RL derivative, we have 
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However, for the Caputo derivative, we have   
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Obviously, ( ), ,RL aD nα ∈ −∞ +∞  varies continuously 
with n , but the Caputo derivative cannot do this. On the 
other hand, the initial conditions of fractional differential 
equations with the Caputo derivative have a clear physical 
meaning and the Caputo derivative is extensively used in 
real applications.  On the other hand, Grunwald [39] (in 
1867) and Letnikov [40] (in 1868) developed an approach 
to fractional differentiation based on the definition 
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which is the left Grunwald-Letnilov (GL) derivative as a 
limit of a fractional order backward difference. Similarly, 
we have the right one as 
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Therefore, one can define a new form of the Grunwald-
Letnikov derivative as follows 

 
( )( )

0

1( ) lim ,
2cos

2

h h
GL x h

f f x
D f x

h

α α
α

απα
−

→

Δ + Δ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (23) 

which is called the Grunwald-Letnikov-Riesz derivative. As 
indicated above, the previous definition of GL is valid for 
α>0 (fractional derivative) and for α<0 (fractional integral) 
and, commonly, these two notions are grouped into one 
single operator called differintegral. The GL derivative and 

RL derivative are equivalent if the functions they act on are 
sufficiently smooth. For numerical calculation of the 
fractional–order differ-integral operator, one can use a 
relation derived from the GL definition. 
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where L is the "memory length", h is the step size of the 
calculation,   
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[ ]x  is the integer part of x  and ( )
jb α±  is the binomial 

coefficient given by 
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For convenience, the Laplace domain is usually used to 
describe the fractional integro-differential operation for 
solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 
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Where for 0α <  (i.e., for the case of a fractional 
integral) the sum in the right-hand side must be omitted). 
Also, the Laplace transform of the Caputo fractional 
derivative is:  
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which implies that all the initial values of the considered 
equation are presented by a set of only classical integer-
order derivatives. Besides that, a geometric and physical 
interpretation of fractional integration and fractional 
differentiation can be found in Podlubny’s work [41]. 

Preliminaries on integer time-delay systems 
A linear, multivariable  time-delay system can be 

represented by a differential equation: 

 0 1
( ) ( ) ( )dx t A x t A x t

dt
τ= + −  (29) 

and with the associated function of the initial state: 

 ( ) ( ), 0,xx t t tψ τ= − ≤ ≤  (30) 

Equation (29) is referred to as a homogenous state 
equation. Also, a more general, linear, multivariable  time-
delay system can be represented by the following 
differential equation: 

 0 1 0 1
( ) ( ) ( ) ( ) ( ),dx t A x t A x t B u t B u t

dt
τ τ= + − + + −  (31) 



 LAZAREVIĆ.M.: STABILITY AND STABILIZATION OF FRACTIONAL ORDER TIME DELAY SYSTEMS 35 

and with the associated function of the initial state and 
control: 
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Equation (31) is referred to as a nonhomogenous or 
unforced state equation, ( )x t is a state vector, ( )u t is a 
control vector, 0 1 0, ,A A B  and 1B are constant system 
matrices of appropriate dimensions, and τ  is pure time 
delay, τ =const. (τ >0). Moreover, a class of a non-linear 
system with time delay, considered here, is described by the 
state space equation: 
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with the initial functions (32) of the system. The vector 
functions , , 1, , 1,i jf f i n j m= =  present nonlinear 
parameter perturbations of the system in respect to ( )tx  
and ( )t τ−x , respectively. In addition, the next assumption 
that: 
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is introduced, where  ,i jc c R+∈  are known real positive 
numbers. Moreover, a linear multivariable time-varying 
delay system can be represented by the differential equation 
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where ( )tτ is an unknown time–varying parameter  which 
satisfies  

 ( ) [ ]0 00 , , , ,Mt t J J t t T J Rτ τ≤ ≤ ∀ ∈ = + ⊂  (37) 

Moreover, here is considered a class of perturbed non-
linear system with time delay described by the state space 
equation 
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with the given initial functions of the system and the vector 
function 0f .The vector function 0f  presents nonlinear 
parameter perturbations of the system in respect to ( )x t  and 

( ( ))x t tτ− , respectively, and the matrices 0 1,A AΔ Δ  present 
perturbations of the system, too. Also, it is assumed that  
the next assumption  is true. 
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where 0 1,c c R+∈  are known real positive numbers. The 

dynamical behavior of system (29), (31) or (33) with the 
initial functions (30) or (32) is defined over the time 
interval { }0 0,J t t T= + , where the quantity T may be either 
a positive real number or the symbol +∞ , so finite time 
stability and practical stability can be treated 
simultaneously. It is obvious that J R∈ . Time invariant 
sets, used as the bounds of system trajectories, are assumed 
to be open, connected and bounded. Let the index " "ε  
stands for the set of  all allowable states of the system and 
the index " "δ  for the set of  all initial states of the system, 
such that  the set S Sδ ε⊆ . In general, one may write: 

 { } [ ]2: ( ) , ,QS tρ ρ ρ δ ε= < ∈x x , (40) 

where Q will be assumed to be a symmetric, positive 
definite, and real matrix. uSα  denotes the set of the all 

allowable control actions. Let ( ).x  be any vector norm 

(e.g., . 1, 2,= ∞ ) and (.)  the matrix norm induced by this 
vector. The matrix measure has been widely used in the 
literature when dealing with stability of time delay systems. 
The matrix measure μ  for any matrix n nA C ×∈  is defined 
as follows: 

 ( )
0

1
lim

I A
A

ω

ω
μ

ω→

+ −
=  (41)  

The matrix measure defined in (36) can be subdefined in 
three different ways, depending on the norm utilized in its 
definitions [42]. 

 ( ) ( )1
1

max Re
n

kk ikk
i
i k

A a aμ
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , (42) 

 ( ) ( )2
1

max Re
n

kk ikk
i
i k

A a aμ
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , (43)  

and 

 ( ) ( )
1

max Re
n

ii kii
i
i k

A a aμ∞
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑  (44)  

Expression (32)  can be written in its general form as:  

[ ]
[ ]

0

0

( ) ( ), 0, ( ) ,0
( ) ( ), 0, ( ) ,0

x x

u u

t C
t C

θ ψ θ τ θ ψ θ τ
θ ψ θ τ θ ψ θ τ

+ = − ≤ ≤ ∈ −
+ = − ≤ ≤ ∈ −

x
u , (45) 

where 0t  is the initial time of observation of the system 

(29) and [ ],0C -τ  is the Banach space of continuous 
functions over a time interval of the length τ , mapping the 
interval [ ]t,t τ−  into nR  with the norm defined in the 
following manner:  

 
0

max ( )C
τ θ

ψ ψ θ
− ≤ ≤

= , (46) 

It is assumed that the usual smoothness condition is 
present so there is no difficulty with questions of existence, 
uniqueness, and continuity of solutions with respect to 
initial data. 
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Some previous results related to integer time-delay systems 
The existing methods developed so far for stability check 

are mainly for integer-order systems.  
Definition 1: The system given by (31) with 
( ) 0,t - tτ ≡ ∀u , satisfying initial condition (4) is finite 

stable w.r.t ( ){ }0( ), , , , , 0 ,ut J Aς ε α τ μ ≠  if nd only if: 

 [ ], ,0x S tδψ τ∈ ∀ ∈ −   (47) 

and 

 ( ) ,ut S t Jα∈ ∀ ∈u  (48) 

imply: 

 [ ]0( ; , ) , 0,t t S t Tε∈ ∀ ∈0x x  (49) 

The illustration of the previous definition is given in 
Fig.1.  

 

Definition 2: The system given by (31) satisfying initial 
condition (32) is finite stable w.r.t 

( ){ }0, , , , , , 0u J Aψδ ε α α τ μ ≠  if and only if: 

 [ ], ,0x S tδψ τ∈ ∀ ∈ −  (50) 

 [ ]0 , ,0u S tαψ τ∈ ∀ ∈ −  (51) 

and 

 ( ) ,ut S t Jα∈ ∀ ∈u  (52) 

imply: 

 0 0( ; , , ( )) ,t t t S t Jε∈ ∀ ∈x x u  (53) 

Theorem 1. The system given by (31), with initial 
function (32) is finite time stable w.r.t 

( ){ }0, , , , , , 0u J Aψδ ε α α τ μ ≠  if the following condition is 
satisfied,[43]: 

 ( )2 01 ( ) 1
2 0( ) /A tA eμμ ε δ σ− −<  (54) 

where: 

( ) ( )( ) ( )( )( )2 0 2 01
1 2 0 1 1 21 1A A ta A a e c e cμ τ μσ μ − −−= + − + − (55) 

 ( ) ( )2 0 1 1 1, 1c b b c b ψγ γ γ= + = + +  (56) 

 1 1

1 1 1 0 0 1

/ , / , ,
/ , /

u a A
b B a b B a

ψ ψγ α ε γ α ε= = =
= =

 (57)  

The results that will be presented in the sequel enable 
checking the finite time stability of the nonautonomous 

system to be considered (29),(31) or (33) and (30),(32) 
without finding the fundamental matrix or the 
corresponding matrix measure.   

Definition 3: The system given by (31) satisfying initial 
condition (32) is finite stable w.r.t { }0, , , , , ,u ot Jδ ε α α , 
δ ε<  if and only if: 

 0, ,x uC Cψ δ ψ α< <  (58) 

 ( ) ,ut t Jα< ∀ ∈u  (59) 

imply:  

 ( ) ,t t Jε< ∀ ∈x  (60) 

Theorem 2. The nonautonomous system given by (31) 
satisfying initial condition (33) is finite time stable w.r.t. 
{ }0 0, , , , , ,u t Jδ ε α α , δ ε<  if the following condition is 
satisfied,[44]: 

( ) max 0( ) * *
max 0 1 0 01 ( ) / ,

.

AA t tt t e t t

t J

σσ γ γ τ ε δ−⎡ ⎤+ − ⋅ + − + ≤⎣ ⎦

∀ ∈
 (61) 

where  

 
( )

( )

* *
1 1 0 0 1 0 1

0 0 1

/ , / , ,u

u

b b

b

γ γ δ γ γ δ γ α

γ α α

= = = +

= −
, (62) 

Preliminaries on the stability of fractional  order 
systems including time-delays 

In the field of fractional-order control systems, there are 
many challenging and unsolved problems related to the 
stability theory such as robust stability, bounded input – 
bounded output stability, internal stability, root-locus, 
robust controllability, robust observability, etc. In 
engineering, the fractional order α  is often less than 1, so 
we restrict ( )0,1α ∈  as usual. Even if 1α > , we can 
translate the fractional systems into systems with the same 
fractional order which lies in ( )0,1  provided some suitable 
conditions are satisfied [45]. In order to demonstrate the 
advantage of fractional calculus in characterizing a system 
behavior (here, stability properties), let us consider the 
following illustrative example, [46].  

Example 1: Compare the following two systems with 
the initial condition (0)x  for 0 1α< < , 

 1 1
0,( ) , ( ) , 0 1.C t

d x t t D x t tdt
ν α νν ν α− −= = < <  (63) 

The analytical solutions of the previous systems are 

(0)t xν +  and ( )
1( ) (0)t x

ν αν ν
ν α

+ −Γ +
Γ +

, respectively. One may 

conclude that the integer-order system is unstable for any 
( )0,1ν ∈ . However, the second given fractional dynamic  

system is stable as 0 1ν α< < − , which implies that the 
fractional-order system may have an additional attractive 
feature over the integer-order system. Also, in [47], Tarasov 
proposed that stability is connected to motion changes at 
fractional changes of variables where systems which are 
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unstable “in sense of Lyapuov”' can be stable with respect 
to fractional variations. In 1996, Matignon [48] studied the 
following fractional differential system involving the 
Caputo derivative 

 ( ) ( )0, 0, (0) , 0,1C t
d xD Ax t x x
dt

αα
α α= = = ∈  (64) 

where ( )1 2, ,..., T
nx x x x=  with the initial value 

( )0 10 20 0, ,..., ,T n n
nx x x x A R ×= ∈ . The stability of the 

equilibrium of system (64) was first defined and established 
by Matignon as follows. 

Definition 4. The autonomous fractional order system 
(64) is said to be 
a) stable if for any 0x , there exists 0ε >  such that  

 x ε≤   for   0t ≥  (65) 

b)  asymptotically stable if  

 ( )lim 0t x t→∞ =  (66) 

Also, Matignon [48] proposed a definition of the BIBO 
stability for the fractional differential system.  

Definition 5. An input/output linear fractional system 
(67) 

 
0, (0)d x Ax Bu x x

dt

y Cx

α

α = + =

=
 (67) 

nx R∈ , py R∈  is externally stable or bounded-input 

bounded-output (BIBO) if ( ), mu L R R∞ +∀ ∈ , 

( ), py h u L R R∞ += ∗ ∈  which is equivalent to: 

( )1 , p mh L R R+ ×∈ . 
Also, in [49], the authors give two definitions of the 

stability for differential  systems with the Caputo derivative 
and the Riemann-Liouville derivative, respectively. 
Besides, the asymptotical stability of higher-dimensional 
linear fractional differential systems with the Riemann-
Liouville fractional order and the Caputo fractional order 
were studied where the asymptotical stability theorems 
were also derived. 

Definition 6. The zero solution of the following 
differential system with the α-th order Caputo derivative in 
which 0 < α < 1  

 0,C tD X AXα =  (68) 

is said to be: 
(i) Stable, if 0, 0,ε δ∀ > ∃ >  when 0X δ≤ , the solution 

( )X t  to (68) with the initial condition  

 ( ) 0X t X=  satisfies ( )X t ε≤  for any  0t ≥ . (69) 

(ii) Asymptotically stable, if the zero solution to (68) is sta-
ble, and it is locally attractive, i.e., there exists a 0δ  
such that 0 0X δ≤  implies that 

 lim ( ) 0
t

X t
→+∞

=  (70) 

Definition 7. The zero solution of the following 
differential system with the α-th order Riemann- Liouville 
derivative in which 0 < α < 1 

 0,RL tD X AXα =  (71) 

is said to be: 
(iii)Stable, if 0, 0,ε δ∀ > ∃ >  when 0X δ≤ , the solution 

( )X t  to (71) with the initial condition 

( )1
0, 00RL t t

D X t Xα−
=

⎡ ⎤ =⎣ ⎦  satisfies 

 ( )X t ε≤  for any  0t ≥ . (72) 

(iv)Asymptotically stable, if the zero solution to (71) is sta-
ble, and it is locally attractive, i.e., there exists a 0δ  
such that 0 0X δ≤  implies that  

 lim ( ) 0
t

X t
→+∞

=  (73) 

Next, one may study the stability of fractional 
differential systems in two spatial dimensions, and then 
study the fractional differential systems with higher 
dimensions. Now, the fractional differential system with the 
Caputo derivative is studied, 

 ( )* 0, , 0,1 , n n
tD X AX A Rα α ×= ∈ ∈  (74) 

where the fractional derivative 
* 0, 0, 0,(..) (..) (..)t C t RL tD D or Dα α α= . They studied the 
fractional differential system with the Caputo derivative, as 
follows: 

 ( )0, , 0,1 ,C n n
tD X AX A Rα α ×= ∈ ∈  (75) 

Theorem 3. If the real parts of all the eigenvalues of A 
are negative, then the zero solution to system (75) is 
asymptotically stable.  

Also for the fractional differential system with the 
Riemann-Liouville derivative 

 ( )0, , 0,1 ,RL n n
tD X AX A Rα α ×= ∈ ∈  (76) 

they stated the following theorem. 
Theorem 4. If the real parts of all the eigenvalues of A 

are negative, then the zero solution to system (76) is 
asymptotically stable. 

A fractional-order linear time invariant system can be 
represented in the following pseudostate space form: 

 
( ) ( ) ( )

( ) ( )

d x t Ax t Bu t
dt

y t Cx t

α

α = +

=
 (77) 

where the notation /d dtα α  indicates the Caputo fractional 
derivative of the fractional commensurate order α , 

,n mx R u R∈ ∈  and py R∈  are pseudo-state, input, and 
output vectors of the system, respectively, and 

, ,n n n m p nA R B R C R× × ×∈ ∈ ∈ . It is worth mentioning that 
the state space form Eq.(77) is a pseudo-representation 
because the knowledge of the vector x  at the time 0t t=  
and the input vector ( )u t  for 0t t≥  are not entirely 
sufficient to know the behavior of system (77) for 0t t> . A 
fractional-order model is in fact infinite dimensional; 
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therefore, its true state vector should also be infinite 
dimensional.  

Theorem 5[48]: The following autonomous system, (64) 

 ( )0 0
( ) ( ), , 0 1d x t Ax t x t x

dt

α

α α= = < ≤  (78) 

nx R∈ , and A is an n n×  matrix, is asymptotically stable if 
and only if ( ) / 2arg λ απ>  is satisfied for all eigenvalues 

( )λ  of the matrix A. In this case, each component of the 
states  decays towards 0 such as t α− . Also, this system is 
stable if and only if ( ) / 2arg λ απ>  is satisfied for all 

eigenvalues ( )λ  of the matrix A with those critical 
eigenvalues satisfying ( ) / 2arg λ απ=  have a geometric 
multiplicity of one. 

The demonstration of this theorem is based on the 
computation of the state vector of system 
( ) , 0, 0.x t Nt tα α−< > >  Response to non-zero initial 

conditions. However, this result remains valid whatever the 
definition used, given that for a linear system without delay, an 
autonomous system with the non-zero initial conditions can be 
transformed into a non-autonomous system with the null initial 
condition. Also, the stable and unstable regions for 0 1α< ≤  
are shown in Fig.2 and they denote the stable and unstable 
regions for 0 1α< ≤  by Cα

−  and Cα
+ , respectively.  

 
Figure 2. Stability region of a fractional-order linear time invariant  
system with order 0 1α< ≤  

For a minimum realization of (77), Matignon has also 
demonstrated the following theorem,[48]. 

Theorem 6. In [48], consider a system given by the 
following linear pseudostate space form with the inner 
dimension n: 

 0
( ) ( ) ( ), (0)

( ) ( )

d x t Ax t Bu t x x
dt

y t Cx t

α

α = + =

=
 (79) 

where 0 1α< ≤ . Also, assume that the triplet (A,B,C) is 
minimal. System (79) is bounded-input bounded-output 
(BIBO) stable if and only if ( )arg / 2λ απ>  is satisfied 

for all eigenvalues λ  of the matrix A. When system (79) is 
externally stable, each component of its impulse response 
behaves like 1t α− −  at infinity. 

Exponential stability thus cannot be used to characterize 
asymptotic stability of fractional systems. A new definition 

is introduced. 
Definition 8. t γ−  stability  
The trajectory x(t)=0 of system 
( ) ( )( )/ ,d x t dt f t x tα α =  (unforced system) is t γ−  

asymptotically stable if the uniform asymptotic stability 
condition is met and if there is a positive real γ such that: 

( ) ( )( )0 , ox t c Q x t∀ ≤ ∃   such that   

 ( )0 ,t t x t Qt γ−∀ ≥ ≤  (80) 

t γ−  stability will thus be used to refer to the asymptotic 
stability of fractional systems. As the components of the 
state ( )x t  slowly decay towards 0 following t γ− , fractional 
systems are sometimes called long memory systems.  

Stability of fractional delay systems 
In spite of intensive research, the stability of fractional 

order (time delay) systems remains an open problem. As for 
linear time invariant integer order systems, it is now well 
known that the stability of a linear fractional order system 
depends on the location of the system poles in the complex 
plane. However, the poles location analysis remains a 
difficult task in the general case. For commensurating 
fractional order systems, powerful criteria have been 
proposed. The most well-known is Matignon's stability 
theorem [48]. It permits us to check the system stability 
through the location in the complex plane of the dynamic 
matrix eigenvalues of the state space like system 
representation. Matignon's theorem is in fact the starting 
point of several results in the field. As we know, due to the 
presence of the exponential function se τ− , this equation has an 
infinite number of roots, which makes the analytical stability 
analysis of a time-delay system extremely difficult. In the 
literature few theorems are available for stability testing of 
fractional-delay systems. Almost all of these theorems are 
based on the locations of the transfer function poles [24, 50] 
and since there is no universally applicable analytical method 
for solving fractional-delay equations in s domain, the 
numerical approach is commonly used. In the field of infinite-
dimensional fractional-delay systems most studies are 
concerned about the stability of a class of distributed systems 
whose transfer functions involve s  and/or se− , [51]. Many 
examples of fractional differential systems with delay can be 
found in the literature. Simple examples such as 

( ) exp( ) / , 0G s a s s a= − >  arising in the theory of 
transmission lines [52], or one can find in [53] fractional delay 
 systems with the transfer function of linked to the heat 
equation which leads to transfer functions ( )G s such as  

 ( )cosh( )( ) , 0 1
sinh( )

x sG s x
s s

= ≤ ≤  (81) 

or  

 
2

2( )
(1 )

a s

a s
eG s

b e

−

−
=

−
 (82) 

For example, Hotzel [54] presented the stability 
conditions for fractional-delay systems with the 
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characteristic equation ( ) ( ) 0sas b cs d eα α ρ−+ + + = . Chen 
and Moore [22] analyzed the stability of a class of 
fractional-delay systems whose characteristic function can 
be represented as the product of factors of the form 
( ) 0r csas b e d+ + =  where the parameters , , ,a b c d ,and r 
are  all real numbers. In fact, they computed the 
characteristic roots of the system using the Lambert W 
function, which has become a standard library function of 
much mathematical software. In other words, they got a 
stability condition of (83), given by a transcendent 
inequality via the Lambert function [22, 55]. They 
considered the following delayed fractional equation 

 ( ) ( )
q

pq
d y t K y t

dt
τ= −  (83) 

where q and Kp are real numbers and 0 < q < 1, time delay 
τ is a positive constant and  all the initial values are zeros. 
We are interested in telling whether the system (10) is 
stable or not for a given set of combination of the three 
parameters: q, Kp and τ. The stability condition is that for 
all possible q , r and Kp 

 ( )( )1/ 0q
p

qW Kr
τ

τ ≤  (84) 

In inequality, W(.) denotes the Lambert function such that 
( )( ) W xW x e x= . However, such a bound remains analytic and 

is difficult to use in practice. In paper [55], the application of 
the Lambert W function to the stability analysis of time-delay 
systems is re-examined through actually constructing the root 
distributions of a transcendental characteristic equation’s 
(TCE) of some chosen orders. It is found that the rightmost 
root of the original TCE is not necessarily a principal branch 
Lambert W function solution, and that a derived TCE obtained 
by taking the nth power of the original TCE introduces 
superfluous roots to the system. Further, Matignon's theorem 
has been used in [56] to investigate fractional differential 
systems with multiple delays stability. The proposed stability 
conditions are based on the root locus of the system 
characteristic matrix determinant but the proposed conditions 
are thus difficult to use in practice. Authors used fractional 
derivative Caputo definition of derivative where, by using the 
Laplace transform, a characteristic equation for the above 
system with multiple time delays is introduced. They 
discovered that if all roots of the characteristic equation have 
negative parts, then the equilibrium of the above linear system 
with fractional order is Lyapunov globally asymptotical stable. 
If the equilibrium exists, it is almost the same as that of 
classical differential equations. Namely, the following n-
dimensional linear fractional differential system with multiple 
time delays: 

 

1

1

2

2

1

11 1 11 12 2 12 1 1

2

21 1 21 22 2 22 2 2

1 1 1 2 2 2

( )

( ) ( ) ... ( ),

( )

( ) ( ) ... ( ),
..............

( )

( ) ( ) ... ( ),

n

n

q

q

n n n

q

q

n n n

q
n

q

n n n n nn n nn

d x t
d t
a x t a x t a x t

d x t
d t
a x t a x t a x t

d x t
d t
a x t a x t a x t

τ τ τ

τ τ τ

τ τ τ

=

= − + − + + −

=

= − + − + + −

=

= − + − + + −

 (85) 

where iq  is real and lies in (0,1), the initial values 
( ) ( )i ix t tφ=  are given for − , maxmax 0i j ij tτ τ= − ≤ ≤  and 
1, 2,...,i n= . In this system, the time-delay matrix 

( ) ( )n n
ij n n

T Rτ
×+

×
= ∈ , the coefficient matrix ( )ij n nA a

×
= , the 

state variables ( ) ( ), ,i i ijx t x t Rτ− ∈  and the initial values 

( ) [ ]0 ,0i maxt Cφ τ∈ − . Its fractional order is defined as 

( )1 2, ,..., nq q q q= . If i jq q=  and 0, , 1, 2,...,ij i j nτ = = , 
then system (85) is actually the one considered in [56]. 

( )
1 11 12 1

21 2 22 2

1 2

11 12 1

21 22 2

1 2

...

...

...

n

n

n n n nn

q s s s
n

s q s s
n

s s q s
n n nn

s
s a e a e a e

a e s a e a e

a e a e s a e

τ τ τ

τ τ τ

τ τ τ

− − −

− − −

− − −

Δ =
⎛ ⎞− − −
⎜ ⎟− − −⎜ ⎟=
⎜ ⎟
⎜ ⎟− − −⎝ ⎠

M M O M

 (86) 

where ( )sΔ  denotes a characteristic matrix of system (1) 

and ( )( )det sΔ  a characteristic polynomial of (86). The 

distribution of ( )( )det sΔ ’s eigenvalues totally determines 
the stability of system (86).  

Theorem 7. If all the roots of the characteristic equation 
( )( ) 0det sΔ =  have negative real parts, then the zero solution 

of system (1) is Lyapunov globally asymptotically stable. If n 
= 1, then (86) is reduced to the system studied in [56]. 

Bonnet and Partington [23,24] analyze the BIBO stability of 
fractional exponential delay systems which  are of retarded or 
neutral type. The conditions ensuring stability are given and  
these conditions can be expressed in terms of the location of 
the poles of the system. In view of constructing robust BIBO 
stabilizing controllers, explicit expressions of coprime and 
B´ezout factors of these systems are determined. In addition, 
they have handled the robust stabilization of fractional 
exponential delay systems of retarded type. The determination 
of coprime and B´ezout factors in the case of neutral systems is 
under study in both cases.  

However, all these contributions do not provide 
universally acceptable practical effective algebraic criteria 
or algorithms for testing the stability of a given general 
fractional delay system. Although the stability of the given 
general characteristic equation can be checked with the 
Nyquist criterion or the Mikhailov criterion, it becomes 
sufficiently difficult when a computer is used since one 
should find an angle of turn of the frequency response plot 
for an infinite variation of the frequency ω . A visual 
conclusion on stability with respect to the constructed part 
of the plot is not practically reliable, since, along with an 
infinite spiral, the delay generates loops the number of 
which is infinite. As evident from the literature, the lack of 
universally acceptable algebraic algorithms for testing the 
stability of the characteristic equation has hindered the 
advance of control system design for fractional delay 
systems. This is particularly true in the case of designing a 
fixed-structure fractional-order controller, e.g., PI Dα β . On 
the other hand, Hwang and Cheng [57] proposed a 
numerical algorithm which uses the methods  based on the 
Cauchy integral theorem and suggested the modified 
complex integral in the form of 

 ( )
( )1 2 2( )

i

k k
i

f s
J ds

s h ih f ih

∞

− ∞

=
+ +∫  (87) 
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where 1 0h >  and 2h  are randomly chosen real constants 
lying in a specified interval and k is a positive integer. The 
randomness of the parameters h1 and h2 makes the 
probability of the zero sum of the residues of all poles of 
the integrand being practically zero. Hence, the stability of 
a given fractional-delay system can be achieved by evalua-
ting the integral kJ  and comparing its value with zero. Al-
so, the proposed algorithm provides no idea about the num-
ber and the location of unstable poles. In paper [58], an ef-
fective numerical algorithm for determining the location of 
poles and zeros on the first Riemann sheet is presented. The 
proposed method is based on the Rouche’s theorem and can 
be applied to all multi-valued transfer functions defined on 
a Riemann surface with a finite number of  Riemann sheets 
where the origin is a branch point. This covers all practical 
(finite-dimensional) fractional-order transfer functions and 
fractional-delay systems. 

Finite time stability and stabilization of fractional order 
time delay systems  

As we know, the boundedness properties of system 
responses are very important from the engineering point of 
view. This enables system trajectories to stay within a  
priori given sets for the fractional order time-delay systems 
in the state-space form, i.e., system stability from the non-
Lyapunov point of view is considered. From this fact and 
our the best knowledge, we firstly introduced and defined 
finite-time stability for fractional order time delay systems 
[26-27, 60, 62-63]. We also need the following definitions 
to analyze the case of fractional order systems with time-
delay from non-Lyapunov point of view. First, we 
introduce the same order fractional differential system with 
time-delay (88) as well as multiple time delays (90) 
represented by the following differential equations: 

 
* , 0 1 0

( )( ) ( ) ( ) ( ),

0 1,

to t
d tD x t A t A t B u t

dt

α
α

α τ

α

= = + − +

< <

x x x

(88) 

with the associated function of the initial state:  

 [ ]0( ) ( ) ,0 , 0.xt t t C tψ τ τ+ = ∈ − − ≤ ≤x  (89) 

Moreover, it is shown in [26] that fractional-order time 
delay state space model of PDα  control of Newcastle robot 
can be presented by (88) in the state space form. Here, 
* , (.)to tDα  denotes either the Caputo fractional derivative 

, (.)C to tDα  or the Riemann-Liouville fractional derivative 

, (.)RL to tDα . Also, a fractional differential system with 
multiple time delays can be  presented as follows: 

 

* , 0 0
1

1 2

( )( ) ( ) ( ) ( ),

0 1,

0 ... ...

n

to t i i
i

i m

d tD x t A t A t B u t
dt

α
α

α τ

α

τ τ τ τ

=

= = + − +

< <

≤ < < < < < = Δ

∑x x x

(90) 

with the associated function of the initial state:  

 [ ]0( ) ( ) ,0 , 0.xx t t t C tψ τ+ = ∈ −Δ − ≤ ≤  (91) 

and where 0( 0,1,..., ),iA i m B=  are constant system 

matrices of appropriate dimensions, and 
0 ( 1, 2,..., )i i mτ > =  are pure time delays.  

Definition 9.[59] The system given by (88), ( ( ) 0u t ≡ ) 
satisfying initial condition (89) is finite stable w.r.t 
{ }, , , , ,ot J δ ε τ δ ε<  if and only if: 

 ,x C
ψ δ<  (92) 

implies:  

 ( ) , ,< ∀ ∈x t t Jε  (93) 

Definition 10.[59] The system given by (90), ( ( ) 0u t ≡ ) 
satisfying initial condition (91) is finite stable w.r.t 
{ }, , , , ,ot J δ ε δ εΔ <  if and only if: 

 ,<x C δψ [ ], , 0Δ Δ∀ ∈ = −Δ ∈t J J R , (94) 

implies: 

 ( ) , ,< ∀ ∈x t t Jε  (95) 

Definition 11.[27,62] The system given by (90) 
satisfying initial condition (91) is finite stable w.r.t 
{ }, , , , , , ,u ot Jδ ε α δ εΔ <  if and only if: 

 [ ], , ,0x C t J J Rψ δ Δ Δ< ∀ ∈ = −Δ ∈  (96) 

and  

 ( ) , , 0u ut t Jα α< ∀ ∈ >u   (97) 

imply: 

 ( ) ,t t Jε< ∀ ∈x  (98) 

Also, a nonlinear fractional differential system with time 
delay in state and control can be  presented as follows: 

 
( ) ( )

* , 0 1 0

1
1 1

( )( ) ( ) ( ) ( )

( ) ( ) ( ) , 0 1,

to t

n m

i j
i j

d tD x t A t A t B t
dt

B t f t f t

α
α

α τ

τ τ α
= =

= = + − + +

− + + − < <∑ ∑

x x x u

u x x
(99) 

and with the associated function of the initial state and 
control: 

 ( ) ( ), ( ) ( ), 0x ut t t t tψ ψ τ= = − ≤ ≤x u  (100) 

Equation (99) is referred to as a nonlinear nonhomogenous 
state equation, 0 1 0, ,A A B  and 1B are the constant system 
matrices of appropriate dimensions, and the vector 
functions , , 1, , 1,i jf f i n j m= =  present nonlinear 
parameter perturbations of the system in respect to ( )tx  
and ( )t τ−x  respectively.  

Definition 12: The system given by (99) satisfying 
initial condition (100) is finite stable w.r.t 
{ }0, , , , , , ,u ot Jδ ε α α δ ε<  if and only if: 

 0, ,x uC Cψ δ ψ α< <  (101) 

 ( ) ,ut t Jα< ∀ ∈u  (102) 

imply: 
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 ( ) ,t t Jε< ∀ ∈x  (103) 

We then introduce the sufficient conditions on finite-
time stability. In [59], we considered the fractional time-
delay systems (88),(90) in the case of ( ) 0u t ≡ .  

Theorem 8.(A) The autonomous system given by (88) 
satisfying initial condition (89) is finite time stable w.r.t. 
{ }, , , , , ,ot Jδ ε τ δ ε< , if the following condition is 
satisfied:  

 ( )
( )

( )
max 0( )

max 0 11 / , .
1

A t tA t t
e t J

ασα
ασ

ε δ
α

−
Γ +⎡ ⎤−

+ ⋅ ≤ ∀ ∈⎢ ⎥Γ +⎢ ⎥⎣ ⎦
 (104)  

where max (.)σ  being the largest singular value of the matrix 
(.), namely: 

 ( ) ( )max max 0 max 1
A A Aσ σ σ= + , (105) 

and ( ).Γ  is the Euler's gamma function.  
B) The autonomous system given by (90) satisfying 

initial condition (91) is finite time stable w.r.t. 
{ }, , , , , ,ot Jδ ε δ εΔ < , if the following condition is 
satisfied: 

 ( )
( )

( )
0max ( )

max 0 11 / , .
1

A t tA t t
e t J

ασα
ασ

ε δ
α

Σ −
Σ Γ +⎡ ⎤−

+ ⋅ ≤ ∀ ∈⎢ ⎥Γ +⎢ ⎥⎣ ⎦
 (106) 

where ( )max (.)A
i i

i

Aσ σΣ =∑  of the matrices 

,iA i = 0,1,2,...,n . where max (.)σ  being the largest 
singular value of the matrix , 0,1, 2,...,iA i n= .  

The above stability results for linear time-delay 
fractional differential systems are derived using Bellman -
Gronwall’s inequality. In that way, one can check system 
stability over a finite time interval. 

Remark 1[60]:  If 1α = , case A, one can obtain the 
same conditions which related to integer order time delay 
systems (1) as follows: 

 

( ) 1
max 01 ( )

max 0 11 / ,1

, (2) 1

AA t tt t
e

t J

σσ
ε δ

−⎡ ⎤−
+ ⋅ ≤⎢ ⎥

⎢ ⎥⎣ ⎦

∀ ∈ Γ =
 (107)  

For the nonautonomous case, Zhang [61] also considered 
the following initial value problem  

 
( )

( ) ( ) [ ]

0, 0 1( ) ( ) ( ),

0; , ,0

RL tD x t A x t A x t f t

t x t t t

α τ

φ τ

= + − +

≥ = ∈ −
   (108) 

where 0 < α < 1, φ  is a given continuous function on [-τ, 
0], 0A  and 1A  are the constant system matrices of 
appropriate dimensions, and τ  is a constant with 0τ > . 
The system is defined over the time interval [ ]0,J T= , 
where T is a positive number, f(t) is a given continuous 
function on [0, T]. Similarly, the sufficient conditions of 
finite-time stability were derived by applying Bellman-
Gronwall’s inequality. 

Theorem 9. The system given by (108) satisfying the 
initial condition ( ) ( ) [ ], ,0x t t tφ τ= ∈ −  is finite-time 
stable w.r.t {0, J, δ, ε, τ}, δ <ε, if the following condition is 
satisfied: 

 
( )( )

( )
( )

max ( )
1 1 / , ,

1

A tM t
e t J

αμα
αμ

ε δ
α

Γ ++
⋅ ≤ ∀ ∈

Γ +
 (109) 

Where /M f φ≥ , and ( ).Γ  is the Euler’s gamma 

function, ( )0sup τ θφ φ θ− ≤ ≤=  

( ) ( ) ( )max max 0 max 1 1 max 1,A A A Aμ μ μ μ μ= + = . 

In paper [62], we considered a class of fractional non-
linear perturbed autonomous systems with time delay 
described by the state space equation: 

 
( ) ( ) ( )0 0 1 1 0

( )

( ) ( ) ( ) ,

d t
dt

A A t A A t f t

α

α

τ

=

= + Δ + + Δ − +

x

x x x
 (110) 

with the initial functions (89)of the system and the vector 
functions 0f  satisfied (34).  

Theorem 10. The nonlinear perturbed autonomous 
system given by (110) satisfying initial condition (89) and 
(34) is finite time stable w.r.t. { }, , , , ,ot Jδ ε δ ε< , if the 
following condition is satisfied: 

 ( )

( )
( )

0
0 1( )

1 / ,
1

p t t
p t t

e t J

αμα
αμ

ε δ
α

−
Γ +⎛ ⎞−

+ ≤ ∀ ∈⎜ ⎟Γ +⎝ ⎠
, (111) 

where (.)Γ  Euler's gamma function, and 

0 0 ,Aoco Ao A cμ σ γΔ= + +  11 1A A Aσ σ γΔ Δ= + , 1p Aoco Aμ μ σ Δ= + , 

1 1,Ao Ao A Aσ γ σ γΔ Δ Δ Δ≤ ≤  
Remark 2: If we have no perturbed system 

0 1 00, 0, ( ( )) 0tΔ = Δ = =A A f x  one can obtain the same 
conditions which related to Theorem 7. 

Further, paper [63] presents  a natural extension of our 
paper [59] where new stability criteria for nonautonomous 
fractional order time delay systems are obtained (88). 
Theorem 11. The nonautonomous system given by (88) 
satisfying initial condition (89) is finite time stable w.r.t. 
{ }0, , , , , , ,u ot Jδ ε α α δ ε< , if  the following condition is 
satisfied: 

 

( )
( )

( )
( )

max 0( )
max 0 1 0( )1 / ,

1 1

.

A t tA t t t te

t J

ασα α
ασ

γ ε δ
α α

−
Γ +⎡ ⎤− −+ ⋅ + ≤⎢ ⎥Γ + Γ +⎢ ⎥⎣ ⎦

∀ ∈
 (112) 

where 0 0 0/ ,ub B bγ α δ= = .  
Remark 3. If 1α = , one can obtain the same conditions 

which related to integer order time delay systems (31), 
1 0B =  as follows, [18]: 
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( ) 1
max 01 ( ) 1

max 0 01 ( )1 / ,1 1

, (2) 1

AA t tt t t te

t J

σσ
γ ε δ

−⎡ ⎤− −+ ⋅ + ≤⎢ ⎥
⎢ ⎥⎣ ⎦

∀ ∈ Γ =
 (113) 

Moreover, the same paper [63] proposes finite time 
stability criteria for a class of fractional non-linear 
nonautonomous systems with time delay in state and in 
control as follows: 

 
( ) ( )

0 1 0

1 0 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ,

d t A t A t B t
dt
B t f t f t

α

α τ

τ τ

= + − + +

+ − + + −

x x x u

u x x
 (114) 

with the initial functions (99) of the system and the vector 
functions 0 1,f f  satisfied (34). 

Theorem 12: The nonlinear nonautonomous system 
given by (114) satisfying initial condition (99) is finite time 
stable w.r.t. { }0, , , , , , ,u ot Jδ ε α α δ ε< , if the following 
condition is satisfied:  

   ( )

( )
( ) ( )

( )
( )
( )

( )
( )

0max 01
0 01max 01 0

1 0 01

( )1
1 1

/ ,
1 1

c t t
uc

u

t tt t e

t t
t J

ασ αα
α

α α

γσ
α α

γ τ γ τ
ε δ

α α

− •
Γ +

• •

−⎛ ⎞−+ + +⎜ ⎟Γ + Γ +⎝ ⎠
− −

+ + ≤ ∀ ∈
Γ + Γ +

 (115) 

where • • •
0 0 1 1 01 0 1/ , / , /u u u ub b bγ α δ γ α δ γ α δ= = = . 

Recently, a finite-time stability analysis of linear 
fractional order single time delay systems has been carried 
out and reported in [27]. The Bellman-Gronwall`s approach 
is proposed there, using as the starting point a recently 
obtained generalized Gronwall inequality reported in [28].  

Theorem 13. The linear nonautonomous system given 
by (88) satisfying initial condition ( ) ( ), 0xx t t tψ τ= − ≤ ≤  
is finite time stable w.r.t. { }0, , , , ,u Jδ ε α δ ε< , if the 
following condition is satisfied: 

    
( ) ( ) ( )

{ }

0max 01
max 01

0

1 / ,
1 1

0,

u tt E t

t J T

αα
α

α
γσ σ ε δ

α α

•⎛ ⎞
+ + ≤⎜ ⎟Γ + Γ +⎝ ⎠

∀ ∈ =
, (116) 

where 0 0 /u ubγ α δ• = , and max (.)σ  being the largest 
singular value of the matrix (.), where: 

( ) ( )max 01 max 0 max 1A Aσ σ σ= +  and ( ).Eα  denotes the 
Mittag-Leffler function (see Appendix). 

Remark 4. If 1α = , one can obtain the same conditions 
which related to integer order time delay systems (31), 

1 0B =  as follows [18]: 

  

( ) 1
max 01 ( ) 1

max 0 01

1

( )1 / ,1 1

, (2) 1, ( )

AA t t

z

t t t te

t J E z e

σ

α

σ
γ ε δ

−

=

⎡ ⎤− −+ ⋅ + ≤⎢ ⎥
⎢ ⎥⎣ ⎦

∀ ∈ Γ = =
 (117) 

Theorem 14. The linear autonomous system given by 
Eq.(88) 0 0B = , satisfying initial condition 

( ) ( ), 0xx t t tψ τ= − ≤ ≤  is finite time stable w.r.t. 

{ }0, , , ,Jδ ε δ ε< , if the following condition is satisfied: 

    ( ) ( )max 01
max 01 01 / ,

1
t E t t J
α

α
α

σ σ ε δ
α

⎛ ⎞
+ ≤ ∀ ∈⎜ ⎟Γ +⎝ ⎠

, (118) 

Remark 5. In the same manner, one may conclude that 
if 1α = , see (21), the  same conditions follow [60], 
Eq.(107) which relate to integer order time delay systems 
(29). 

Here, we are interested in finite time stabilization of  the 
linear perturbed fractional order time- delay system–scalar 
case as follows 

 ( ) ( )0 0 1 1 0
( ) ( ) ( ) ( ),d x t a a x t a aA x t b u t

dt

α

α τ= + Δ + + − +  (119) 

Theorem 15: (Finite time stabilization) System (119) 
controlled by the following linear feedback 

 ( ) ( )u t kx t=   (120) 

i.e closed loop system is finite time stable  0t J∀ ∈  wrt 
{ , ,Tδ ε }, there exists the scalar k  such that the following 
 condition is satisfied  

( )
( ) ( )( )01

01
( )

1 ( ) /
1

abo
abo

k t
E k t

α
α

α
μ μ

μ μ ε δ
α

Σ
Σ

⎛ ⎞+
+ + ≤⎜ ⎟Γ +⎝ ⎠

 (121) 

Proof: Using (120) and applying the norm ( ).  we 
obtain a solution in the form of the equivalent Volterra 
integral equation 

 
( ) ( )

( )
( )( ) ( )
( )

0 0 01

10

0

1 ( )
( ( ))

t

1

x t x

a b k a x s
t s ds

a a x s s
α

α τ
−

≤ +

⎧ ⎫+ + Δ
+ − ⎨ ⎬Γ + + Δ −⎩ ⎭∫

 (122) 

Let   

  
1

0 0 1 1 1

1

( ) , ,
( ) ( ) .

o

o o

abo o

abo abo

k a b k a a a
k k

μ μ μ
μ μ μ μ μ μ

Δ Σ

Σ Δ Σ Σ

= + = Δ = + Δ
= + + = +

 (123) 

Taking into account (123) and (122), it follows (124) 

( ) ( ) ( ) ( ) 1

0

1 sup ( ) .
1

M

t

x C
t t t

tx t t s x t ds
α

α

τ

μ μψ
α α •

−Σ Σ

− ≤ ≤

⎡ ⎤
≤ + + −⎢ ⎥Γ + Γ⎣ ⎦ ∫  (124) 

Finally, applying the generalization of Bellman-
Gronwall lemma  and the condition of Theorem 15, (121) 
we complete the proof of the theorem. 

An illustrative example 
Using a Time-Delay PDα  compensator on a linear 

system of equations with respect to the small perturbation  
( ) ( ) ( )de t y t y t= − , one may obtain:  

( )( ) ( ) ( ) ( ) / ( ),P De t e t K e t K de t dt u tα αω τ τ+ = − + − +&  (125) 

where: 1/ 2, 2α ω= = , ( )3, 4,p DK K u t= = -feedforward 
control. Also, all initial values are zeros. Introducing 

1/2 1/2
1 2( ) ( ), ( ) ( ) /x t e t x t d e t dt= = ,one may write (125) in 

the state-space form, ( )( ) , T
1 2t x x=x : 

1/2 1 1

2 2

0 1 ( ) 0 0 ( ) 0( ) ( )2 0 ( ) 3 4 ( ) 1t
x t x tD t u tx t x t

τ
τ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
x , (126) 

with an associated function of the initial state: ( ) ( ) 0xt t= =x ψ , 
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0tτ− ≤ ≤ . Now, we can check the finite time stability wrt 
{ }{ }0 0, 0,2 , 0.1, 100, 0.1, 1ut J δ ε τ α= = = = = =  where 

[ ]( ) 0, 0.1,0x t tψ = ∀ ∈ − . From the initial data and Eq.(126) it 
yields:  

 ( )
( )

max 0

max 1 max 0,1

( ) 0.1, 2,
5, 7

x Ct A
A

ψ σ
σ σ

< =
= ⇒ =

 (127) 

Applying the condition of Theorem 13 (116), one can 
get: 

 
( )

0.5
0.5

0.5

0.5

71 70.886
10 100 / 0.1 0.1 .0.886

e
e

e
e

T E T

T T s

⎡ ⎤
+ ⋅ +⎢ ⎥

⎣ ⎦
⋅+ ≤ ⇒ ≈

 (128) 

eT  being “estimated time” of finite time stability. 

Conclusion 
In this paper, some basic results of the stability criteria 

of fractional order systems with time delay as well as free 
delay are presented. We have employed the “classical” and 
the generalization of Gronwall Belmann lemma to obtain 
finite time stability and stabilization criteria for a proposed 
class of time delay systems. In addition, we presented some 
basic results concerning the stability of fractional order 
time delay systems as well as free delay systems. Finally, a 
numerical example is given to illustrate the validity of the 
proposed procedure. 
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Appendix 

Mittag-Leffler Function 

Similar to the exponential function frequently used in the 
solutions of integer-order systems, a function frequently 
used in the solutions of fractional-order systems is the 
Mittag-Leffler function defined as 

 ( ) ( )0

,
1

k

k

zE z
kα α

∞

=

=
Γ +∑  (A1) 

where 0α >  and z C∈ . The Mittag-Leffler function with 
two parameters appears most frequently and has the 
following form 

 ( ) ( ),
0

,
k

k

zE z
kα β α β

∞

=

=
Γ +∑  (A2) 

where 0, 0α β> > , and z C∈ . For 1β =  we obtain 

( ) ( ),1E z E zα α=  and ( )1,1
zE z e=  

Lemma (Gronwall Inequality).  
Suppose that ( )g t  and ( )tϕ  are continuous in 

[ ] ( )0 1, , 0, 0t t g t λ≥ ≥  and 0r ≥  are two constants. If  

 ( ) ( )[ ]
0

( )
t

t g s s r dsϕ λ ϕ≤ + +∫  (A3) 

then 

     ( )( ) ( )[ ]1 0 0 1

0

( ) exp ,
t

t r t t g s ds t t tϕ λ
⎛ ⎞
⎜ ⎟≤ + − ≤ ≤
⎜ ⎟
⎝ ⎠
∫  (A4) 

Theorem A ([28] Generalized Gronwall inequality)  
Suppose ( ), ( )x t a t  are nonnegative and local integrable on 
0 t T≤ < , some T ≤ +∞ , and ( )g t  is a nonnegative, 
nondecreasing continuous function defined on 
0 , ( )t T g t M const≤ < ≤ = , 0α >  with 

 ( ) 1

0

( ) ( ) ( ) ( )
t

x t a t g t t s x s dsα−≤ + −∫  (A5) 

on this interval. Then 

( )( )
( ) ( ) 1

10

( )
( ) ( ) ( ) ,

0

nt
n

n

g t
x t a t t s a s ds

n

t T

∞
α−

=

⎡ ⎤Γ α
⎢ ⎥≤ + −

Γ α⎢ ⎥
⎣ ⎦

≤ <

∑∫ (A6) 

Corollary 2.1 of (Theorem A) [28] Under the hypothesis 
of  Theorem 2.2, let ( )a t  be a nondecreasing function on 

( )0,T . Then holds: 

 ( ) ( )( )( ) ( )x t a t E g t tαα α≤ Γ  (A7) 
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Stabilnost i stabilizacija sistema necelobrojnog reda sa kašnjenjem 

U ovom radu predstavljeni su neki osnovni rezultati koji se odnose na kriterijume stabilnosti sistema necelobrojnog 
reda sa kašnjenjem kao i za sisteme necelobrojnog reda bez kašnjenja.Takođe, dobijeni su i predstavljeni  dovoljni 
uslovi za konačnom vremenskom stabilnost i stabilizacija za (ne)linearne (ne)homogene kao i za perturbovane sisteme 
necelobrojnog reda sa vremenskim kašnjenjem. Nekoliko kriterijuma stabilnosti za ovu klasu sistema necelobrojnog 
reda je predloženo korišćenjem nedavno dobijene generalizovane Gronval nejednakosti, kao i "klasične" Belman-
Gronval nejednakosti. Neki zaključci koji se odnose na stabilnost sistema necelobrojnog reda su slični onima koji se 
odnose na klasične sisteme celobrojnog reda. Na kraju, numerički primer je dat u cilju ilustracije značaja 
predloženog postupka. 

Ključne reči: nelinearni sistem, stabilnost sistema, stabilizacija sistema, sistem sa kašnjenjem, vremensko kašnjenje, 
perturbacija, sistem necelobrojnog reda. 

Устойчивость и стабилизация систем частичного временного 
порядка с запаздыванием 

Настоящая работа представляет некоторые основные результаты, касающиеся критериев стабильности 
системы дробного порядка с запаздыванием и системы дробного порядка без запаздывания. Также были 
получены и представлены достаточные условия для финальной устойчивости времени и для стабилизации 
(не)линейных (не)однородных, а также для возмущённых систем дробного порядка с запаздыванием. 
Некоторые критерии устойчивости для данного класса систем дробного порядка предложены для 
пользования путём первый раз, концепция привлекательной и практической устойчивости. 
Вышеупомянутый подход, в значительной степени ясно опирается на классическую технику Ляпунова, для 
того, чтобы гарантировать глобальные свойства привлекательности движения системы. 

Kly~evwe slova: Линейные системы, дискретные системы, устойчивость системы, системные задержки, 
системы на конечном временном интервале, устойчивость не-Ляпунова. 

Stabilité et stabilisation des systèmes de l’ordre fractionnel à délai  
Dans ce papier on a présenté les résultats basiques qui se rapportent aux critères de la stabilité chez les systèmes de 
l’ordre fractionnel à délai ou sans délai. On a obtenu et présenté également les conditions suffisantes pour la stabilité 
temporelle finie et la stabilisation pour les systèmes non linéaires et non homogènes ainsi que pour les systèmes 
perturbés de l’ordre fractionnel à délai temporel. Pour cette classe de systèmes on a proposé quelques critères de 
stabilité par utilisation de la récente inégalité généralisée de Gronwall ainsi que par l’inégalité « classique » de 
Bellman-Gronwall. Certaines conclusions relatives à la stabilité du système de l’ordre non fractionnel sont similaires 
à celles qui se rapportent aux systèmes classiques de l’ordre fractionnel. A la fin de ce travail on a donné l’exemple 
numérique pour illustrer l’importance du procédé proposé.  

Mots clés: système non linéaire, stabilité de système, stabilisation de système, système à délai, délai temporel, 
perturbation, système de l’ordre fractionnel. 

 
 
 


