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This paper gives a detailed an overview of the work and the results of many authors in the area of Lyapunov stability 
of particular class of linear discrete time delay systems. In that sense the discrete Lyapunov equation for discrete 
implicit systems is of particular interest. 
The stability robustness problem has been also treated. 
This survey covers the period since 2002 up to nowadays and has strong intention to present the main concepts and 
contributions that have been derived during the mentioned period in the whole world, published in the respectable 
international journals or presented at workshops or prestigious conferences.  
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Introduction 
HE problem of investigation of time delay systems has 
been exploited over many years. 

Time delay is very often encountered in various 
technical systems, such as electric, pneumatic and hydraulic 
networks, chemical processes, long transmission lines, etc.  

The existence of pure time lag, regardless of whether it 
is present in the control or/and the state, may cause 
undesirable system transient response, or even instability. 
Consequently, the problem of a stability analysis for this 
class of systems has been one of the main interests for 
many researchers. In general, the introduction of time delay 
factors makes the analysis much more complicated.  

In the existing stability criteria, two ways of approach 
have been mainly adopted.  

Namely, one direction is to contrive the stability 
condition which does not include the information on the 
delay, and the other is the method which takes it into 
account. The former case is often called the delay - 
independent criteria and generally provides simple 
algebraic conditions.  

Numerous reports have been published on this matter, 
with particular emphasis on the application of Lyapunov’s 
second method or on using the concept of the matrix 
measure Lee, Diant (1981), Mori et al. (1981), Mori (1985), 
Hmamed (1986), Lee et al. (1986), Alastruey, De La Sen 
(1996). 

The results concerning Lyapunov stability, for non delay 
time systems, are well documented in a number of known 
references, thus for the sake of brevity are omitted here. 

In discussing the problem of investigation of linear 
discrete time delay systems and their Lyapunov stability it 
should be pointed out that there are not too many results 
dealing with this problem. 

Namely, Koepcke (1965), was the first who paid 
attention to this class of systems solving a synthesis 
problem for controling the systems governed by linear 
differential – difference equations. It has been shown, in the 
same paper, that such systems are equivalent to infinite 
dimensional difference equations whose matrix elements 
can be calculated readily by recursive formulas.  

Some results, concerning stability in the sense of 
Lyapunov, were also derived.  

The problem of finding an optimal control in linear 
discrete systems with time delays in both the state variables 
and control were studied in Chung (1967, 1969). 

The method of orthogonal projection was used to derive 
the equations for optimal estimating the state of a non 
stationary linear discrete system with multiple delays in 
Premier, Vacroux (1969). A Kalman - type filter with the 
necessary recursive error and cross error matrix equations 
were also derived. The linear – quadratic tracking problem 
was discussed, for the first time, in Pindyck (1972), for a 
discrete – time systems with the time delay incorporating in 
inputs. 

A more general discussion concerning different aspects 
of continuous and discrete time delay systems can be found 
in Janusevski (1978), with a particular attention to optimal 
control. 

Several sufficient conditions for the asymptotic stability 
of linear discrete – delay systems were presented in the 
paper of Mori et al. (1982). Since these conditions are 
independent of delay and possess simple forms, they 
provide useful tools for checking system stability at the first 
stage. 

The study of the stabilization problem for general 
decentralized large-scale linear continuous and discrete 
time delay systems using local feedback controllers were 
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presented by Lee, Radovic (1987). The local feedback 
controls were assumed to be memoryless. In that sense, the 
sufficient stabilization conditions were established.  

The problem of delays in interconnections, for the same 
class of systems, was studied later in Lee, Radovic (1988). 

The paper of Trinh, Aldeen (1995) presents some new 
sufficient conditions for robust and D-stability of discrete – 
delay perturbed systems. It has been shown that these 
results are less conservative than those reported in 
literature, particularly in Mori et. al (1982). 

Based on a derived algebraic inequality, a criterion to 
guarantee the robust stabilization and state estimation for 
perturbed discrete-time–delay large scale systems was 
proposed in Wang, Mau (1995). That criterion is 
independent of time delay and does not need the solution of 
the Lyapunov or Riccati equation. 

In the first part of this overview, the asymptotic stability 
of a particular class of discrete time delay systems is 
considered. Several sufficient conditions, in the form of 
time delayed independent criteria, are presented.  

The first group represents generalization of some 
previous results of Mori et. al  (1992) and Trinith et. al 
(1995) which are concerned with the cases with only one 
delay. 

Another group is dealing with a suitable decomposition 
of matrices, representing the main contribution of the paper, 
and it is at the same time less restrictive than other ones 
given in recent literature. 

Basic Notations 

+R  - All the non-negative real numbers 
nR  - The n-dimensional real space 
+Z  - Set of  non-negative integers 
n m×R  - The set of all real n m×  matrices 
n m×C  - The set of all complex n m×  matrices 
TF  - Transpose of matrix F 

det F  - Determinant of square matrix F 
( )Fλ  - Eigenvalue of square matrix F 

( )f  - Absolute value of ( )f ∈�  

{ }Fσ  - Spectrum of matrix F 

( )Fρ  - Spectral radius of matrix 
0F >  - Positive definite matrix 
0F ≥  - Positive semi definite matrix 

2F  - Euclidean matrix norm of F 

Notation and preliminaries 
Let ( )⋅x be any vector norm (e.g., ⋅ = 1, 2, ∞) and 

( )⋅  the matrix norm induced by this vector. Here, we use 

( )1/ 2

2 ˆ T=x x x  and ( ) ( )1/ 2 *
max2 A Aλ⋅ = . 

The upper indices * and T denote transpose conjugate 
and transpose, respectively. The absolute value of the 
matrix A is denoted by A , while ρ (A) and det A  mean the 
spectral radius and the determinant of the matrix A.  

M  denotes a class of real square matrices with non 
positive off-diagonal elements and positive principal 
minors. 

A linear, autonomous, multivariable discrete time-delay 
system can be represented by the difference equation 

 ( ) ( ) ( )0
1

1
N

j j
j

k A k A k h
=

+ = + −∑x x x , (1) 

where ( ) nk ∈x R , n n
jA ×∈R  and 0 1 20 ... Nh h h h= ≤ ≤ ≤ ≤  

are integers and represent the systems time delays. 
System (1) can be written in another way 

 ( ) ( )ˆ ˆ1 eqk A k+ =x x , (2) 

where: 

 ( ) ( ) ( ) ( )[ ] ( )1ˆ 1 ... NT n h
Nk k k k h × += − − ∈x x x x �  (3) 

0 1 1
ˆ ˆ ˆ ˆ...

0 ... 0 0
0 ... 0 0
... ... ... ... ...
0 0 ... 0

N Nh h

n
eq n

n

A A A A
I

A I

I

−⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

( ) ( ) ( ) ( )[ ] ( )1ˆ 1 ... NT n h
Nk k k k h × += − − ∈x x x x �  (4) 

 ,       , j  0 1ˆ
0 ,         , j  0 1

j j
i

j

A i h , , ... , N
A i h , , ... , N

= =⎧= ⎨ ≠ =⎩
, 

 ∀i = 0, 1, … , hN . (5) 
So the necessary and sufficient conditions, for the 

asymptotic stability of (1), are: 

 ( )( )1det 0 , 1N eqn hzI A z× + − ≠ ≥ . (6) 

Lemma 1. For any Hermite matrix n nX ×∈C  and any 
complex vector { }0n∈v C  it can be written 

 ( ) ( )
*

min max*
XX Xλ λ≤ ≤v v

v v
, (7) 

so the lower and upper bound of this inequality can be 
reached if the eigenvector v  corresponds to the eigenvalue 

( )min Xλ , or ( )max Xλ , respectively. 

Lemma 2. For any square matrix n nX ×∈C  and any 
complex vector { }0n∈v C , the field of values of 

 
*

*
Xv v

v v
, (8) 

is always in the rectangle in the complex plane whose four 
vertices are given with: 

 ( ) ( )[ ],i kH j Kλ λ ,   i, k = “min”, “max”, (9) 

where: 

 ( )1
2

TH X X= + ,  ( ) 21 , 1ˆ2
TK X X jj= − = − . (10) 

The matrix function 

 
( ) ( )

( ) ( )

2 2
,

2 2

( ) max ( ) ( )ˆ i ki k
d X H X K X

H K

λ λ

ρ ρ

= +

= +
, (11) 

represents the longest distance in the complex plane 
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between the origin and four points defined by (9). 
Lemma 3. Matrix n nD ×∈R  belongs to M – class of 

matrices if and only if 

 ( )0n n
nC r C D rI Cρ×∃ ∈ ≥ ∃ ∈ > = −R R . (12) 

Lemma 4. Let: 

 ( ) 1( ) ˆ nG z zI A −= − , (13) 

then: 

 
0

( ) ( ) ˆh

k

G z z G k L
∞

−

=

≤ =∑ , 1z ≥ , (14) 

G(k) is the pulse-response sequence matrix of G(z) and 
G(0) = 0, Trinth et al. (1995). 

Lemma 5. For any ( )n n× square matrix X, the 
following statement is true 

 ( )( ) 1 det 0nX I Xρ < ⇒ − ≠ .  (15) 

Trinth et al. (1995). 
Lemma 6. For any square matrices n nX ×∈ �  and 

n nY ×∈ � , the following statement is true 

 ( ) ( ) ( )X Y X X Yρ ρ ρ≤ ⇒ ≤ ≤ . (16) 

Definition 1. Linear autonomous discrete time delay 
system (1) is asymptotically stable if and only if all its zeros 
of characteristic equation lie within the unit circle. 

Asymptotic stability - approach in the complex 
plane 1 

Theorem 1. System (1) is asymptotically stable if 

 
0

1
N

j
j

A
=

<∑ ,  (17) 

Debeljkovic et al.(2002.a, 2002.b, 2003.a, 2003.b), 
Stojanovic,  Debeljkovic  (2000, 2004.a, 2004.c, 2004.i). 

Note 1. It should be pointed out that the proof of 
Theorem  1 in papers Debeljkovic et al.(2002.a, 2002.b) is 
quite different from those exposed in Debeljkovic et 
al.(2003.a, 2003.b) and Stojanovic,  Debeljkovic  (2000, 
2004.a, 2004.c, 2004.i). 

Conclusion 1. If  N = 1, condition (17) is reduced to the 
condition given in Mori (1982). 

Theorem 2. System (1) is asymptotically stable if the 
following condition is satisfied 

 ( )
0

1
N

j
j

d A
=

<∑ , (18) 

where matrix function d(.) is given with (11), Stojanovic, 
Debeljkovic  (2000, 2004.a, 2004.c, 2004.i). 

Conclusion 2. If N = 1, from (18) follows the condition 
given in Mori (1982).  

Theorem 3. If matrix D, defined with: 

                                                           
1 Proofs are derived using the complex plane technique  

 
0

ˆ
N

n j
j

D I A
=

= −∑ , (19) 

 0

0

1

ˆ

N
j

ii ii
j

ik N
j

ik ik
j

d a

d
d a

=

=

⎧
= −⎪

⎪= ⎨
⎪ = −⎪
⎩

∑

∑
, (20) 

belongs to M – class of matrices, then system (1) is 
asymptotically stable, Stojanovic, Debeljkovic  (2000, 
2004.a, 2004.c, 2004.i). 

Conclusion 3. From the basic condition of Theorem 3, 
for  
N = 1, follows the condition given in Mori et. al (1982). 

Conclusion 4. If one uses the norm ( ) ( )⋅⋅ , ( ) 1,⋅ = ∞ , 

in Theorem 1, then 

 
(.) (.)

0 0

1
N N

j j
j j

A A
= =

> =∑ ∑    

 
( )0 0.

N N

j j
j j

A Aρ
= =

⎛ ⎞
⎜ ⎟≥ ≥
⎜ ⎟
⎝ ⎠

∑ ∑ . (21) 

If one defines: 

 
0

0
N

j
j

C A
=

= ≥∑ , (22) 

 ( )
0

1
N

j
j

r A Cρ ρ
=

⎛ ⎞
⎜ ⎟= > =
⎜ ⎟
⎝ ⎠
∑ , (23) 

 
0

N

n j
j

D I A
=

= −∑ , (24) 

then we can conclude from Lemma 3 that the matrix D 
belongs to the M – class of matrices.  

This shows that Theorem 1 implies Theorem 3 and the 
condition of Theorem 1 is more restrictive than the 
condition of Theorem 3 when ( ) ( ) 1⋅ = ⋅  or ( ) ∞

⋅ . 
Theorem 4. System (1) is asymptotically stable, if one of 

these two conditions is satisfied 

 ( )
0

1
N

j
j

Hρ
=

<∑ , (25) 

 
2

0

1
N

j
j

H
=

<∑ , (26) 

where the matrices Hj are defined with 

 2

T
j j

j
A A

H
+

= ,   j = 0, 1, … , N.  (27) 

Stojanovic, Debeljkovic  (2000, 2004.a, 2004.c, 2004.i). 
Conclusion 5. On the basis of elementary algebra, the 

following conditions are fulfilled 
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( ) ( ) ( )max ii
A H jK H jKρ ρ λ= + = +  

( ) ( )max i ii
H j Kλ λ≤ + ( ) ( )max maxi ii i

H j Kλ λ≤ +  

 ( ) ( )H Kρ ρ= + 2 2H K= + , (28) 

( ) 2 2
1
2

TH H A Aρ = = + ( )2 2
1
2

TA A≤ + 2A=  (29) 

From the Bendixsons inequality 

 ( ) ( ) ( )min maxReH A Hλ λ λ≤ ≤ , (30.a) 

 ( ) ( ) ( )min maxImK A Kλ λ λ≤ ≤ , (30.b) 

It follows 

 ( ) 2 2
H KAλ λ λ≤ + , (31) 

  ( ) ( ){ } ( ) ( )min maxmax , maxH ii
H H H Hλ λ λ λ ρ= = = , (32) 

  ( ) ( ){ } ( ) ( )min maxmax , maxK ii
K K K Kλ λ λ λ ρ= = = ,(33) 

and finally 

 ( ) ( ) ( ) ( ) ( )2 2max ˆii
A A H K d Aλ ρ ρ ρ= ≤ + = . (34) 

So from (29) and (34), it follows 

 ( ) ( )2H H d Aρ = ≤ , ( ) 2 2H H Aρ = ≤ . (35) 

Stojanovic, Debeljkovic  (2000, 2004.a, 2004.c, 2004.i). 
Conclusion 6. It is not difficult to prove, having in mind 

(35), that the following expressions are valid 

  ( ) ( )
0 0

1
N Nh h

j j
j j

H d Aρ
= =

≤ <∑ ∑ , 
0 02

1
N Nh h

j j
j j

H A
= =

≤ <∑ ∑ , (56) 

so the conditions given in Theorem 1 and Theorem 2 are 
more restrictive than those given in Theorem 4, Stojanovic, 
Debeljkovic  (2000, 2004.a, 2004.c, 2004.i). 

Theorem 5. System (1) is asymptotically stable, 
independent of delay, if the following conditions are 
satisfied: 

 ( )0 1Aρ < , (57.a) 

 
1

1
N

j
j

L Aρ
=

⎛ ⎞
⎜ ⎟ <
⎜ ⎟
⎝ ⎠
∑ , (57.b) 

where L is defined as in (14), and G(k) is obtained from 

 1
0( ) , 1, 2, ... , , (0) 0kG k A k G−= = ∞ = .  (58) 

Stojanovic, Debeljkovic  (2000, 2004.a, 2004.c, 2004.i). 
Conclusion 7. The fundamental matrix of system (1) 

without delay is: 

 ( ) 1
0( ) ( )nz zI A z G z z−Φ = − = ,  (59) 

so:  

 
1

1
0

( ) ( )

( ) ( 1) , (0) 0k

G z z z

G k k A G

−

−

= Φ ⇒

= Φ − = =
. (60) 

If 0A  is the discrete stable matrix, ( )0 1Aρ < , then 
infinite series: 

 
( )

0
0 1 0

1
0 0

0

( ) ( ) k

k k k

k
n

j

L G k G k A

A I A

∞ ∞ ∞

= = =
∞

−

=

= = =

≤ = −

∑ ∑ ∑

∑
, (61) 

is convergent, so one can find the matrix L by direct 
computation, Stojanovic, Debeljkovic (2000, 2004.a, 
2004.c, 2004.i). 

Conclusion 8. Conditions (57) are less restrictive than 
condition (17).  

The reason is in the fact that conditions (57) take into 
account the matrix time delay structure Aj, whereas 
condition (17) takes only the norm of matrices. 

Note 2. All conditions are in the form of only sufficient 
conditions and belong to so-called independent delay 
criteria.  

Asymptotic stability 

- Approach based on the results of tissir and hmamed 2 
We are in particular oncerned with a linear, autonomous, 

multivariable discrete time-delay system in the form: 

 0 1( 1) ( ) ( 1)k A k A k+ = + −x x x , (62) 

Equation (62) is referred to as homogenous or the 
unforced state equation, ( )kx  is the state vector, 0A  and 

1A  are the constant system matrices of appropriate 
dimensions.  

It is assumed that equation (62) satisfies the adequate 
smoothnees requirements so that its solution  exists and is 
unique and continuous with respect to k and the initial data 
and is bounded for all bounded values of its arguments. 

Theorem 6. System (62) is asymptotically stable if: 

 0 1 1A A+ < , (63) 

holds, Mori et al. (1982). 
Theorem 7. Then system (62) is asymptotically stable, 

independent of delay, if:  

 1
2

1
2

min

1

max 0
T

Q
A

Q A P

σ

σ

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠<

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (64) 

where P  is the solution of the discrete Lyapunov matrix 
equation: 

 ( )0 0 1 12 ,T TA PA P Q A PA− = − +  (65) 

where max ( )σ ⋅  and min ( )σ ⋅  are the maximum and minimum 
singular values of the matrix ( )⋅ , Debeljkovic et al.  
(2004.a, 2004.b, 2004.d, 2005.a). 

                                                           
2 Tissir, Hmamed  (1996). 
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Theorem 8. Suppose the matrix ( )1 1
TQ A PA−  is regular. 

Then system (62) is asymptotically stable, independent 
of delay, if:  

 
( )

1
2

1
2

min 1 1

1

max 0

T

T

Q A PA
A

Q A P

σ

σ

−

−

⎛ ⎞−⎜ ⎟
⎝ ⎠<

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (66) 

where P  is the solution of the discrete Lyapunov matrix 
equation: 

 0 0 2TA PA P Q− = −  (67) 

where max ( )σ ⋅  and min ( )σ ⋅  are the maximum and minimum 
singular values of the matrix ( )⋅ , Jacic et al. (2004), 
Debeljkovic et al.  (2004.c, 2004.d, 2005.a, 2005.b). 

Asymptotic stability 

- Lyapunov based approach 
A linear, autonomous, multivariable linear discrete time-

delay system can be represented by the difference equation: 

 

( ) ( ) { }
0

           ( 1) ( )

, , 1, ... , 0

N

j j
j

N N

k A k h

h hθ θ θ
=

+ = −

= ∈ − − + Δ

∑x x

x ψ

 (68) 

where: 
( ) nk ∈x R , n n

jA ×∈R , 0 1 20 ... Nh h h h= < < < <  - are 
integers and represent the systems time delays. 

Let ( )( ) : nV k →x R R , so that ( )( )V kx  is bounded 
for and for which ||x|| is also bounded. 

Lemma 7. For any two matrices of the same dimensions 
F  and G  and for some positive constant ε the following 
statement is true  

 ( ) ( ) ( ) ( )11 1T T TF G F G F F G Gε ε −+ + ≤ + + + , (69) 

Wang and Mau (1997). 
Theorem 9. Suppose that 0A  is not a null matrix. 

If for any given matrix 0TQ Q= >  there exists the 

matrix 0TP P= >  such that the following matrix equation 
is fulfilled  

 ( ) ( )1
min 0 0 min 1 11 1T TA PA A PA P Qε ε −+ + + − = − , (70) 

where  

 
1 2

min
0 2

A

A
ε = , (71) 

then system (68) is asymptotically stable, Stojanovic, 
Debeljkovic (2005.b). 

Corolarry 1.  If for any given matrix 0TQ Q= >  there 

exists the matrix 0TP P= >  being the solution of the 
following Lyapunov matrix equation 

 min
0 0

min1
TA PA P Qε

ε
− = −

+
, (72) 

where minε  is defined by (71) and if the following 
condition is satisfied 

 ( ) ( ) ( )
( ) ( )

min
max 0 max 1

max 0 max

Q P
A A

A P
λ

σ σ
σ λ

−
+ <  (73) 

then system (68) is asymptotically stable, Stojanovic, 
Debeljkovic (2005.b). 

Corolarry 2. If for any given matrix 0TQ Q= >  there 

exists the matrix  0TP P= >  being the solution of the 
following matrix equation 

 ( )min 0 0 min1 TA PA P Qε ε+ − = − , (74) 

where minε is defined by (71), and if the following 
condition is satisfied, too  

 ( ) ( ) ( )
( ) ( )

min
max 0 max 1

max 0 max

Q
A A

A P
λ

σ σ
σ λ

+ < , (75) 

then system (68) is asymptotically stable, Stojanovic,  
Debeljkovic (2005.b). 

Theorem 10. If for any given matrix 0TQ Q= >  there 

exists the matrix 0TP P= >  such that the following matrix 
equation is fulfilled 

 0 0 1 12 2T TA PA A PA P Q+ − = − , (76) 

then system (68) is asymptotically stable, Stojanovic, 
Debeljkovic (2006.a). 

Corolarry 3. System (68) is asymptotically stable, 
independent of delay, if  

 ( ) ( )
1
2

min2
max 1

2
max

2

2

Q P
A

P

λ
σ

σ

−
<

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (77) 

where, for any given matrix 0TQ Q= >  there exists the 

matrix 0TP P= >  being the solution of  the following 
Lyapunov matrix equation 

 0 0
TA PA P Q− = − , (78) 

Stojanovic,  Debeljkovic (2006.a). 
Corolarry 4. System (68) is asymptotically stable, 

independent of delay, if  

 ( ) ( )
1
2

min2
max 1

2
max2

Q
A

P

λ
σ

σ
<

⎛ ⎞
⎜ ⎟
⎝ ⎠

, (79) 

where, for any given matrix 0TQ Q= >  there exists the 

matrix 0TP P= >  being the solution of  the following 
Lyapunov matrix equation 

 0 02 TA PA P Q− = − , (80) 

Stojanovic, Debeljkovic (2006.a). 
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Asymptotic and exponential stability of linear and 
nonlinear perturbed discrete delay systems 

Asymptotic stability of linear perturbed discrete delay 
systems – General approach 

The stability robustness analysis of perturbed discrete-
time systems has been well researched by many authors, 
Kolla (1989), Rachid (1989, 1990), Yaz (1989), Chou 
(1991), Niu (1992), Horng (1993), Lee (1992) and 
Yedavalli (1993).  

Jury (1974) and Bishop (1975) proposed several 
methods for testing the stability of discrete-delay systems 
with no parametric perturbations. While these methods are 
easy enough to be used for small delays, they become 
troublesome as the delay increases. This is due to the fact 
that, in their methods, the number of the system eigenvalues 
increases in proportion to n times the delay, n being the 
order of system. 

Mori et al. (1982) overcome this problem by proposing 
several delay-independent criteria for stability of such class 
of systems. These criteria are expressed in simple forms in 
terms of plant parameters. However, these sufficient 
conditions are conservative and can be applied to systems 
with no perturbations.  

Recently, robust stability problems for linear systems 
with time delay attracted considerable attention and have 
been widely studied. In these, papers Mohmoud, Al-
Muthairi (1994), Phoojaruenchanachai, Furuta (1992), 
Shen et al. (1991) and Xie, de Souza (1993) proposed the 
robust stability criteria independent of the size of the time-
delay. On the other hand, Niculescu et al. (1994) and Su, 
Huang (1992) developed the delay-dependent robust 
stability criteria using the solution of an algebraic Riccati 
equation or Lyapunov matrix equation in order to reduce 
conservativeness of the delay-independent results.  

Particularly, Li, de Souza (1997) proposed a delay-
dependent robust stability criteria  for an uncertain system 
with time-varying delay via LMIs  (linear matrix 
inequalities) and their results are less conservative than 
those of the others. 

In this section the asymptotic stability of linear 
perturbed time - delay systems with multiple delays is 
considered.  

Several new criteria, which are independent of delay, are 
presented.  

The first derived criterion is based on the analysis of the 
time-varying perturbation matrix of an equivalent system.   

The second suggested criterion is based on formal matrix 
decomposition to a real and an imaginary part, using the 
comparison principle, Mori et al. (1981).  

The criteria presented in Trinh and Aldeen (1995), have 
been generalized and used, here, as the third condition for 
stability.  

The last criterion was based on direct application of the 
suggested procedure to the characteristic polynomial of the 
comparison system. In that sense it should be noted that its 
expression is quite simple and suitable for practical usage.   

λi(⋅) denotes the eigenvalue of matrix (⋅) and Re λi(⋅) and 
Im λi(⋅) are real and imaginary parts, respectively. 

The absolute value of the matrix A is denoted by A , 
while ρ (A) denotes the spectral radius of matrix A.  

A is said to be a nonnegative matrix whenever each 
0ija ≥  and this is denoted by writing 0A ≥ .  

In general, A B≥  means that each ij ija b≥ . Similarly, A 

is positive matrix when each 0ija >  and this is denoted by 
writing 0A > . 

Let us consider a linear perturbed discrete time delay 
system with multiple delays: 

 ( ) ( ) ( ) ( )0
1

1 ( )
N

j j
j

k A k k A k k h
=

+ = + −∑x x x  (81) 

where 0 1 20    ... Nh h h h= < < < <  are integers, 
representing the system time delays.  

The time dependent perturbed matrices ( ) n n
jA k ×∈R , j 

= 0, 1, … , N are unknown, but the maximum deviations of 
their elements e.g. ( )max j j

il ilk
a k α≤  are known.  

In comparison with  Trinh, Aldeen (1995), where only 
the basic matrix ( )1A k  is time varying, here we make an 

assumption that all matrices ( )jA k , 0 1j≤ ≤ , possess this 
property.  

If we define the matrices Uj , j = 0, 1, … , N  in the 
following way: 

 
,

maxˆ j
j ili l

α α= , ˆ
j

j il
il

j
u α

α
= , 0 1j

ilu≤ ≤ , j
j ilU u⎡ ⎤= ⎣ ⎦ , (82) 

then: 

 ( )j j jA k Uα≤ ,     j = 0, … , N, k∀ . (83) 

Let Lemma 1 and Lemma 2 hold. 
Moreover, we have 
Lemma 7. For any square matrices n nA ×∈C  and 

n nB ×∈R  the following statement is true, Meyer (2001) 

 ( ) ( ) ( )A B A A Bρ ρ ρ≤ ⇒ ≤ ≤ . (84) 

Lemma 8. Linear time invariant discrete time delay 
system (81) is asymptotically stable if the following 
conditions are satisfied: 

 ( )0 1Aρ < , 
1

1
N

j
j

L Aρ
=

⎛ ⎞
⎜ ⎟ <
⎜ ⎟
⎝ ⎠
∑ , (85) 

 0
0 0

( ) k

k k

L G k A
∞ ∞

= =

= =∑ ∑ . (86) 

 Lemma 9. Linear time invariant discrete time delay 
system (81) is asymptotically stable if the following 
condition is satisfied: 

 ( ) ( )
0

11,  ,  02

N
T

j j j j
j

H H A A j Nρ
=

< = + ≤ ≤∑ . (87) 

 Lemma 10. Linear time invariant discrete time 
delay system (81) is asymptotically stable if the following 
condition is satisfied: 

 
0

1
N

j
j

A
=

<∑ . (88) 

Theorem 11. System (81) is asymptotically stable if 

 ( )ˆ 1eqAρ < , (89) 
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where:  

 

0 0 1 1 1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ...

0 ... 0 0
ˆ 0 ... 0 0

... ... ... ...
0 0 ... 0

 ,   , j  0 1ˆˆ
0 ,        , j  0 1
                       0 .

N N N Nh h h h

n
eq n

n

j j j
i i

j

N

U U U U
I

A I

I

U i h , , ... , N
U i h , , ... , N

i h

α α α α

α
α

− −⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= =⎧= ⎨ ≠ =⎩
≤ ≤

O

 (90) 

Stojanovic, Debeljkovic (2004.d, 2004.i) 
Theorem 12. System (81) is asymptotically stable if one 

of the following conditions is satisfied 

 ( ) ( )
0

11, 2

N
T

j j j j j
j

H H U Uα ρ
=

< = +∑ ,  (91) 

 
0

1
N

j j
j

Uα
=

<∑ , (92) 

Stojanovic, Debeljkovic (2004.d, 2004.i) 
Theorem 13. System (81) is asymptotically stable if the 

following conditions are satisfied 

 ( )0 0 1Uα ρ < , 0
1

1
N

j j
j

L Uρ α
=

⎛ ⎞
⎜ ⎟ <
⎜ ⎟
⎝ ⎠
∑ , (93) 

 ( ) ( ) 1
0 0 0 0 0

0

k
n

k

L U I Uα α
∞

−

=

= = −∑ , (94) 

Stojanovic, Debeljkovic (2004.d, 2004.i) 
Theorem 14. If 

 
0

1
N

j j
j

Uρ α
=

⎛ ⎞
⎜ ⎟ <
⎜ ⎟
⎝ ⎠
∑ , (95) 

then (81) is asymptotically stable, Stojanovic, Debeljkovic 
(2004.d, 2004.i) 

Asymptotic stability of linear discrete delay 
systems with linear and nonlinear perturbations 
In the analysis of dynamic systems, we are often faced 

with parametric uncertainties originating from identification 
errors, variation of operating points, etc. Therefore, the 
problem of robust stability analysis and robust stabilization 
of systems with parameter uncertainties has been of 
considerable interest to researchers and a number of 
significant results concerning this issue have been reported 
in the current literature.  

It is well known that the location of all characteristic 
roots is an important indicator for the system dynamic 
performance of linear controlled systems. In practice, all 
characteristic roots cannot be assigned in fixed locations 
but can be only located inside some restricted regions due 
to the unavoidable parametric perturbations.  

One such specific region for discrete systems is a disk 
D(α, r) centered at (α, 0) with the radius r, where 

1rα + < . The assignment of all poles of a system in the 
specific disk D(α, r) is referred to as a D-pole placement 
problem. 

Recently, the D-stability problem which guarantees all 
characteristic roots of controlled systems to be located inside a 
specified disk in the complex plane has also become an 
attractive area of research for the mentioned systems. 

Due to computation of data, physical properties of 
system elements, and signal transmission, time delay exists 
inherently not only in the physical, engineering, and 
chemical systems but also in political and economic 
systems, etc.  Since the number of poles of the closed-loop 
system increases due to time delays, the introduction of a 
time-delay factor makes the D-pole placement problem 
much more complicated.  

The D-stability problem for discrete time-delay systems has 
been discussed in Lee et al. (1992), Su, Shyr (1994), Trinh, 
Aldeen (1995), Hsiao  (1998)  and for continuous in Le (1995).  

In this section, we consider linear discrete perturbed 
systems with multiple time delays.  

We present robust sufficient criteria for eigenvalues of 
the perturbed discrete time-delay system to be located in a 
specified disk.  

Both structured and unstructured perturbations are 
discussed. 

A linear, autonomous, multivariable discrete perturbed 
time-delay system can be represented by the difference 
equation 

 ( ) ( ) ( )
0

0 1

1

0

N

j j j
j

N

k A A k h

h h h
=

+ = + Δ −

= < < <

∑x x

L

, (96) 

with an associated function of the initial state 

 ( ) ( ) { }, , 1, ... , 0N Nh hθ θ θ= ∈ − − +x ψ  (97) 

where ( ) nk ∈x R  is the state vector, n n
jA ×∈R  is the 

constant matrix and pure system time delays are expressed 
by integers jh +∈Z . 

n n
jA ×Δ ∈R , 0 j N≤ ≤  are the matrices representing 

perturbations in the system. In this paper we observe 
unstructured and structured perturbations defined by 

 j jA a +Δ ≤ ∈R  (98) 

 j jA R +Δ ≤ ∈R  (99) 

respectively. 
In a case when the perturbations of system (96) do not 

exist, e.g. 0jAΔ = , the stability of the system under 
consideration can be stated by the following Theorem. 

Theorem 15. All the eigenvalues of the non-perturbed 
system (96) are inside the disc D(α, r) if the following 
condition is satisfied: 

 ( )
0

, min ,j
N

h
j

j

A r rδ δ δ α α−

=

< = − +∑ , (100) 

Stojanovic, Debeljkovic (2004.f) 
In the case of the non-structured perturbations of system 

(96) defined by (98), D(α, r) the stability of the system 
under consideration can be stated by the following 
Theorem. 

Theorem 16. All the eigenvalues of the perturbed 
systems (96) with perturbations (98) are inside the disc 
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( ),D rα  if the following condition is satisfied: 

( )
0 0

,  min ,j j
N N

h h
j j

j j

A a r rδ δ δ δ α α− −

= =

< − = − +∑ ∑  (101) 

Stojanovic, Debeljkovic (2004.f). 
In the case of the structured perturbations of system (96) 

defined by (99), ( ),D rα  the stability of the system under 
consideration can be stated by the following Theorem. 

Theorem 17. Assume that all the eigenvalues of the 
matrix A0 are inside the disk ( ),D rα .  

All the eigenvalues of the discrete-delay perturbed 
systems with perturbations are inside the disc ( ),D rα  if 
the following condition is satisfied 

 ( ), 0
1

,j
N

h
r j j

j

H R A R rαρ δ −

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ + <

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑   

 ( )  min ,r rδ α α= − +  (102) 

1
0 0

,
0

k
n n

r n
k

A I A IH Ir rα
α α∞ −

=

− −⎛ ⎞⎛ ⎞= = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑  

Stojanovic, Debeljkovic (2004.f). 

Exponential stability of linear discrete delay 
systems with nonlinear perturbations 

The problem of exponential stability testing becomes more 
complicated than that of a system without time delay and/or 
uncertainties. Grujic, Siljak (1974), Hmamed (1991.a, 1991.b), 
addressed the stability degree testing problem for continuous 
time-delay systems. By testing some stability conditions and 
repeating the computation, they can estimate the stability 
degree of  linear time-delay systems.  

However, up to now, the same problem has been seldom 
treated for discrete time-delay systems Hsien, Lee (1995). This 
is mainly due to the fact that such systems can be transformed 
into augmented systems without delay. This augmentation of 
the systems is, however, inappropriate for systems with 
unknown delays or systems with time-varying delays.  

The objective of this section is to investigate the 
exponential testing problem for linear discrete uncertain 
systems with time delay. Using the Lyapunov stability 
approach, a new criterion is established to ensure the 
exponential stability of the system under consideration.  

Some sufficient conditions, in the form of time de-
layed-dependent criteria, are obtained.  

A linear, autonomous, multivariable discrete perturbed 
time-delay system can be represented by the difference 
equation 

   ( ) ( ) ( ) ( )( )
0 0

0

1 , ,

, 0

N M

j j j j j
j j

k A A k h f x k h k

M N h
= =

+ = +Δ − + −

≤ =

∑ ∑x x
 (103) 

with an associated function of the initial state 

 
( ) ( )

{ }
,

, 1, ... , 0 , maxN N N ii
h h h h

θ θ

θ

=

∈ − − + =

x ψ
 (104) 

where ( ) nk ∈x R  is the state vector, n n
jA ×∈R  is the 

constant matrix and pure system time delays are expressed 
by integers +jh ∈Z .  

The vector ( ), : n n
jf ⋅ ⋅ ×R R Ra   is a nonlinear 

perturbation which satisfies the condition 

 ( )( ) ( ), ,j j j j jf x k h k b x k h b +− ≤ − ∈R  (105) 

Definition 2. System (103) is said to have a stability 
degree α  (or to be exponentially stable), with 1α > , if the 
state of system (103) can be written as 

 ( ) ( )kk kα−=x p  (106) 

and the system governing the state ( )kp  is globally 
asymptotically stable.  

In this case, the parameter α  is called the convergence 
rate. 

Lemma 11. The Thebyshev’s inequality  holds for any 
real vector iv  

 
1 1 1

Tm m m

i i
i i i

m
= = =

⎛ ⎞ ⎛ ⎞
≤⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ T

i iv v v v  (107) 

Mori et al. (1982). 
Lemma 12. For any two matrices W, X, Y and Z with the 

same dimension ( )m n× , if  

 W X Y Z= + + , (108) 

then for any positive square matrix 0TP P= >  of the 
dimension n and the positive constants ε1, ε2 and ε3 the 
following statement is true 

( ) ( )
( )

1 1
1 3 2 1

1
3 2

1 1
             1

T T T

T

W PW X PX Y PY
Z PZ

ε ε ε ε

ε ε

− −

−

≤ + + + + +

+ + +
. (109) 

Wang and Mau (1997). 
Theorem 18. System (103) is asymptotically stable if 

 ( )

1 1
2 2

2
0

1 0

1 1
N M

T
j j j

j j

A N A A M b
= =

⎛ ⎞
⎜ ⎟+ + + <
⎜ ⎟
⎝ ⎠

∑ ∑ , (110) 

Stojanovic, Debeljkovic (2006.b, 2006.d). 
Theorem 19. System (103) is exponentially stable if 

 

( )

( ) ( )

2 1
0

1

2 1 2

0

1 1

j

j

N
h T

j j
j

M
h

j
j

A N A A

M b

α α

α

+

=

+

=

+

+ + <

∑

∑
 (111) 

where α  is the stability degree, Stojanovic, Debeljkovic 
(2006.b, 2006.d). 
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Quadratic stability of uncertain linear discrete 
delay systems 

During the last decades, considerable attention has 
been devoted to the problem of the stability analysis and 
controller design for time-delay systems. Especially, in 
accordance with the advances of the robust control theory, a 
number of robust stability and stabilization methods have 
been proposed for uncertain time-delay systems. 

Less attention has been drawn to the corresponding 
results for discrete-time delay systems, see Verriest,  Ivanov 
(1995). This is mainly due to the fact that such systems can 
be transformed into augmented systems without delay. This 
augmentation of the systems is, however, inappropriate for 
systems with unknown delays or systems with time-varying 
delays.  

One of the most popular ways to deal with the robust 
stability analysis and robust stabilization is the one based 
on the concept of quadratic stability and quadratic 
stabilization.  

Quadratic stability means that there exists a certain 
Lyapunov function which guarantees the stability of the 
uncertain system. 

In Xu et al. (2001) the conditions for quadratic stability 
and stabilization for uncertain linear discrete-time systems 
with state delay are presented in terms of nonlinear matrix 
inequalities, which cannot be efficiency numerically solved.  

Here, in this section, we present a possibility to 
overcome this disadvantage by proposing new conditions of 
quadratic stability and stabilization in terms of linear matrix 
inequalities (LMI) that can be solved efficiently using 
recently developed convex optimization algorithms Boyd et 
al.  (1994). 

In this section we also present the quadratic stability 
analysis for uncertain linear discrete-time systems with 
state delay. The system under consideration involves time 
delay in the state and parameter uncertainties. The 
parameter uncertainties are assumed to be time - varying 
and norm - bounded.  

The necessary and sufficient conditions are presented in 
terms of linear matrix inequalities. 

Notations can be used from the previous sections. 
Consider the class of uncertain linear discrete-time 

systems with state delay 

  ( ) ( )( ) ( ) ( )( ) ( )0 0 1 11k A A k k A A k k h+ = + Δ + + Δ −x x x (112) 

where ( ) nk ∈x R  is the state and h is a positive integer.  

0A , and 1A  are known real constant matrices, ( )0A kΔ , 

and ( )1A kΔ  are the time-varying parameter uncertainties, 
and are assumed to be of the form 

 ( ) ( )( ) ( ) ( )0 1 0 1A k A k MF k N NΔ Δ =  (113) 

where M , 0N  and, 1N  are the constant matrices and 

( ) i jF k ×∈R  is the uncertain matrix satisfying 

 ( ) ( )TF k F k I≤  (114) 

The matrices ( )0A kΔ  and ( )1A kΔ  are said to be 
admissible if both (113) and (114) hold. 

Throughout this section, we shall use the following 
definitions of quadratic stability and quadratic 
stabilizability for the uncertain time-delay system (1)-(3). 

Definition 3. The uncertain discrete time-delay system 

(112-114) is said to be quadratically stable if there are 
matrices 0P > , 0Q > and a scalar 0ε >  such that, for all 
admissible uncertainties ( )0A kΔ  and ( )1A kΔ , satisfies 

  ( )( ) ( )( ) ( )( ) ( ) 2ˆ1V k V k V k kεΔ = + − ≤ −x x x x  (115) 

for all pairs ( )( ) 2ˆ , nk k ∈ ×x R R , where  

 ( ) ( ) ( )ˆ TT Tk k k h⎡ ⎤= −⎣ ⎦x x x  (116) 

 ( )( ) ( ) ( ) ( ) ( )
1k

T T

j k h

V k k P k j Q j
−

= −

= + ∑x x x x x  (117) 

Theorem 20. The uncertain discrete time-delay system 
(112-114) is quadratically stable if and only if there are 
matrices 0P >  and 0Q >  and a scalar 0δ >  such that the 
following LMI holds 

 

0 0

1 1

0 0
(*) 0

0(*) (*) 0
(*) (*) (*) 0
(*) (*) (*) (*)

T T

T T
Q P A P N

Q A P N
P PM

I
I

δ
δ

δ
δ

⎛ ⎞−
⎜ ⎟−⎜ ⎟

<−⎜ ⎟
⎜ ⎟−
⎜ ⎟−⎝ ⎠

 (118) 

Stojanovic, Debeljkovic (2008). 
Theorem 21. The uncertain discrete time-delay system 

(112-114) is quadratically stable if and only if there are 
matrices 0L >  and 0W >  and a scalar 0e >  such that the 
following LMI holds 

 

( )

( )

0 0

1 1

0
(*) 0
(*) (*) 0
(*) (*) (*)

T T

T T

T

W L L A L N
W L A L N

L eMM
eI

⎛ ⎞−
⎜ ⎟−⎜ ⎟ <
⎜ ⎟− +
⎜ ⎟

−⎝ ⎠

, (119) 

Stojanovic, Debeljkovic (2008). 

Linear LARGE SCALE discrete time delay 
systems 

Here, in this section, we examine the so-called delay–
dependent criteria based usually on advanced 
computational procedures. 

In the existing literature, the majority of stability 
conditions of linear discrete large scale time delay systems 
were obtained during the design process of a decentralized 
control system, in order to stabilize the system under 
consideration.  

To overcome the difficulties of centralized control 
methods, many researches have proposed as alternatives 
various decentralized control methods Sandel, et al. (1978). 

These methods involving simplification of model 
descriptions, effective procedures of testing the stability 
and/or hierachical optimization.  

Lee, Radovic (1987, 1988) studied the stabilization 
problem for time–delay large–scale systems with or without 
perturbations.  

The aim of many previous works was, among other 
things, to obtain only sufficient conditions of stabilization 
of large scale time delay systems. 

In contrast, the major contributions which will be 
presented in the sequel are necessary and sufficient 
conditions of the asymptotic stability of linear discrete 
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large scale time delay systems dependent of delay. 
The obtained conditions of stability are expressed in the 

form of the Lyapunov discrete matrix equation.  
At that, it was necessary first to solve the system of 

matrix equations using an appropriate matrix entering the 
expression of the mentioned Lyapunov equation.  

Starting from the fact that discrete large scale systems 
are finite-dimensional, the necessary and sufficient 
condition of stability were derived, independent of time 
delay, based on the equivalent matrix of a given large scale 
system. 

Consider inear discrete–time large scale autonomous 
systems composed of N interconnected Si.  

Each subsystem Si  is  described as 

 ( ) ( ) ( )
1

S : 1
N

i i i i ij j ij
j

k A k A k h
=

+ = + −∑x x x , (120.a) 

with an associated function of the initial state 

 ( ) ( )
{ }, 1  ,  ,  0 , 1i i

i i

m mh h i N
θ θ

θ
=

∈ − − + ≤ ≤
x ψ

K
,  (120.b) 

( ) in
i k ∈x R  is the state vector, i in n

iA ×∈R  denotes the 

system matrix and i jn n
ijA ×∈R  represents the 

interconnection matrix between the i-th and the j-th 
subsystems.  

The constant delay hij is a positive integer and 
maxim jij

h h= . 

Let ( )( ) : nV k →x R R  so that ( )( )V kx  is bounded for 

and for which ( )kx  is also bounded. 

 Let us observe system (120) consisting of two subsystems, 
2N = . 

Theorem 22. Given the following system of matrix 
equations 

 11
 1 11 11A h Q A= , (121.a) 

 21
 1 21 21A h Q S A= , (121.b) 

 12
 1 12 12A h S Q A= ,  (121.c) 

 22
 1 22 22A h S Q SA= , (121.d) 

  1  2A AS S= , (122.a) 

  1 2A i i i iA Q Q= + + , 21 ≤≤ i , (122.b) 

where A1, A2, A11, A12, A21 and A22 are the matrices of 
system (120) for N=2, in  being the subsystems orders with 

the matrices 1 2n nS ×∈C  and i in n
jiQ ×∈C . 

Then: 
(i) There is a solution for the system of matrix equations 

(121–122) upon the matrix 1 1
 1

n n×∈A C . 
(ii) The eigenvalues of the matrix 1A  belong to a set of 

roots of the characteristic equation of system (120) for 
2N = , Stojanovic, Debeljkovic (2004.b, 2004.e, 

2005.d, 2007). 
Theorem 23. Given the following system of matrix 

equations 

 22
2 22 22A h Q A= ,  12

 2 12 12A h Q SA= , (123.a) 

 21
2 21 21A h S Q A= ,  11

 2 11 11A h S Q SA= , (123.b) 

 2  1A AS S= , (123.c) 

 2 1A i i i iA Q Q= + + , 21 ≤≤ i  (123.d) 

 where  A1, A2, A11, A12, A21 and A22 are the matrices of 
system (120) for 2N = , in  being the subsystems orders 

with matrices 2 1n nS ×∈C  and i in n
jiQ ×∈C , Stojanovic, 

Debeljkovic ( 2004.b, 2004.e, 2005.d, 2007). 
Then: 

(i) There is a solution of the system of matrix equations 
(123) upon 2 2

 2A n n×∈C . 
(ii) The eigenvalues of the matrix 2A  belong to a set of 

roots of the characteristic equation of system (120) for 
2N = . 

Corollary 5. If system (120) is asymptotically stable, 
then the matrices 1A  and 2A , defined by (121–122) and  

 
222 2 2

122
2

1
2  2 2  2 22

 2 12

A A A
A 0

m m m

m

h h h h

h h
n

A A
SA

+ −

−
− −

− =
 (124) 

 
111 1 1

211
2 1

1
2  2 1  2 11

 2 21

A A A
A 0

m mm

m

h h hh

h h
n n

S SA SA
A

−+

−
×

− −
− =

 (125) 

 2 2
 2

n n×∈A C  and 2 1n nS ×∈R , (126) 

respectively, are discrete stable, Stojanovic, Debeljkovic 
(2004.b, 2004.e, 2005.d, 2007). 

Theorem 24. System (120), for 2N = , is 
asymptotically stable if and only if for a given matrix 

* 0R R= >  there exists a matrix * 0P P= >  as a solution 
of the following discrete Lyapunov matrix equation 

 *
 1  1A AP P R− = − . (127) 

where the matrix 1 1
 1

n n×∈A C  is defined by the system of 
matrix equations (121–122), Stojanovic, Debeljkovic 
(2004.b, 2004.e, 2005.d, 2007). 

Theorem 25. System (120), for 2N = , is 
asymptotically stable if and only if for a given matrix 

* 0R R= >  there exists a matrix * 0P P= >  as a solution 
of the following discrete Lyapunov matrix  equation 

 *
 2  2A AP P R− = − . (128) 

where the matrix 2A  is defined by the system of matrix 
equations (125 - 126) Stojanovic, Debeljkovic (2004.b, 
2004.e, 2005.d, 2007). 

Linear LARGE SCALE discrete time delay 
interval systems 

Interval systems, with Soh (1991) or without Ozturk 
(1988) delays, have been extensively studied in recent 
years. This is due not only to theoretical interests but also to 
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a powerful tool for the robust system analysis and practical 
control design Li, Souza (1997). 

In this section, based on the results given in Lee, Hsien  
(1997), the new sufficient conditions of asymptotic stability 
of large-scale time-delay interval systems are presented 
using the Gersgorin theorem.  

We consider a linear composite system defined by two 
interconnected subsystems S1 and S2 with delays 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1 1 11 1 11 12 2 12

2

2 2 2 22 2 22 21 1 21

:

1 ,

:

1

S

k A k A k h A k h

S

k A k A k h A k h

+ = + − + −

+ = + − + −

x x x x

x x x x

(129) 

where ( ) in
i k ∈x R  represent the state of the subsystem Si, 

i in n
iA ×∈R  and i jn n

ijA ×∈R , 1 2i≤ ≤ , 1 2j≤ ≤  are the 
interval matrices and 0ijh > , which may not be an integer, 
denote the delays in the interconnections. 

It is assumed that the elements k
ija⎡ ⎤⎣ ⎦  and rs

ija⎡ ⎤⎣ ⎦  of the 

matrices kA  and rsA , have the following properties 

 
, ,

1 2, 1 2, 1 2

k rsk k rs rs
ij ij ij ijij ija a a a a a

k r s

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤
 (130) 

where k
ija , k

ija , rs
ija  and rs

ija  are know constants. 

Lemma 13. (Gersgorin theorem) If [ ] n n
ijM m ×= ∈R , 

then every eigenvalue λ  of the matrix M satisfies at least 
one of the conditions  

 
1

| | | | , 1
n

ii ij
j
j i

m m i nλ
=
≠

− ≤ ≤ ≤∑  (131) 

Lemma 24. (Gersgorin theorem) If [ ] n n
ijM m ×= ∈R , 

then every eigenvalueλ of the matrix M satisfies at least 
one of the conditions 

 
1

| | | | , 1
n

ii ji
j
j i

m m i nλ
=
≠

− ≤ ≤ ≤∑  (132) 

Define 

 { }
[ ] , 1 2, ,

     max | |, | | , ,

k kk k n n k k
ij ii ii

kk k
ij ijij

G g k g a
g a a i j

×= ∈ ≤ ≤ =

= ≠

R
 (133) 

 { }
[ ] , 1 2, 1 2,
          max | |, | | ,

r srs rs n n
ij

rsrs rs
ij ijij

G g r s
g a a

×= ∈ ≤ ≤ ≤ ≤

=

R
 (134) 

 { }
   E [ ] , 1 2,

      max | |, | | ,

k kk k n n
ij

kk k
ij ijij

e k
e a a

×= ∈ ≤ ≤

=

R
 (135) 

Theorem 26.  If the following conditions hold 

 { }min , 1r cR R < , (136) 

 { } { }1 2 1 2max , , max ,r r r c c cR R R R R R= = , (137) 

 ( )
1 2

1

1 1 11 12
1

1 1
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j j

R e g g
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= =

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ , (138) 

 ( )
2 1

2

2 2 22 21
1

1 1

max
n n

r ij ij iji n
j j

R e g g
≤ ≤

= =

⎧ ⎫⎪ ⎪= + +⎨ ⎬
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1 1 11 21
1

1 1
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 ( )
2 1

2

2 2 22 12
1

1 1

max
n n

c ji ji jii n
j j

R e g g
≤ ≤

= =

⎧ ⎫⎪ ⎪= + +⎨ ⎬
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∑ ∑  (141) 

then system (129) is asymptotically stable, Stojanovic, 
Debeljkovic (2005.a). 

Conclusion 
Different contributions, in the area of Lyapunov 

stability, to linear discrete time delay systems have been 
presented. This matter includes a particular class of a 
before-mentioned class of systems as well large scale 
systems of the same type. Some of the results derived have 
been successfully extended to the robustness stability 
consideration. 
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Stabilnost linearnih diskretnih sistema sa čistim vremenskim 
kašnjenjem u smislu Ljapunova: Pregled radova 

Ovaj rad daje detaljan pregled doprinosa mnogih autora na polju proučavanja stabilnosti u smislu Ljapunova za 
posebne klase linearnih diskretnih sistema sa kašnjenjem. U tom smislu diskretna Ljapunovljeva jednačina je od 
posebnog interesa. 
U radu je, takođe, razmtaran i problem robusnosti stabilnosti. 
Ovaj pregled pokriva period posle 2002. godine sve do današnjih dana i ima snažnu nameru da predstavi osnovne 
koncepte i doprinose koji su se pojavili tokom pomenutih godina u celom svetu a koji su obavljeni u respektabilnim 
međunarodnim časopisima ili saopšteni na tematskim konferencijama ili prestižnim (renomiranim) konferencijama 
internacionalnog značaja. 

Ključne reči: linearni sistem, diskretni sistem, stabilnost sistema, sistem sa kašnjenjem, stabilnost Ljapunova, 
asimptotska stabilnost. 

Ustoj~ivostx linejnwh neprerwvnwh  sistem so ~istwm 
vremennwm zapazdwvaniem v значении Ляпунова:  

Obzor rezulxtatov 

Nasto}|a} rabota daët podrobnwj obzor вклада mnogih avtorov v oblasti issledovani} ustoj~ivosti  в 
значении Ляпунова для osobogo klassa linejnwh neprerwvnwh  sistem so ~istwm vremennwm 
zapazdwvaniem. В этом значении особый интерес представляет уравнение Ляпунова. 
В настоящей работе тоже рассматривана и проблема живучести устойчивости. 
$tot obzor rezulxtatov ohvatwvayt period posle 2005-ogo goda do sih por i u nego vwrazitelxnoe 
namerenie predstavitx osnovnwe koncepcii  i vkladw  v &toj oblasti sozdanwe v celom mire v upom}nutom 
periode i opublikovannwe v peredovwh me`dunarodnwh `urnalah ili pokazanw iли predstavlenw на 
тематических konferenci}h или na vwday|ihs} me`dunarodnwh konferenci}h. 

Kly~evwe slova: Лinejna} sistema, нeprerwvna} sistema, ustoj~ivostx sistemw, sistema so 
zapazdwvaniem, ustoj~ivostx Л}punova,  асимптотическая ustoj~ivostx. 

Stabilité des systèmes linéaires discrets à délai temporel pur au sens 
de Lyapunov: Tableaux des résultats 

Ce papier donne un tableau détaillé des contributions de nombreux auteurs dans le domaine des études sur la stabilité 
dans le sens de Lyapunov pour les classes des systèmes linéaires discrets à délai. Dans ce sens l’équation discrète de 
Lyapunov est de particulier intérêt. On a également considéré ici le problème de la robustesse de la stabilité. Le 
tableau présenté dans ce papier comprend la période après l’an 2002 jusqu’à nos jours et a pour but de présenter les 
concepts basiques et les contributions qui ont apparu au cours de la période citée dans le monde entier et qui sont 
publiés dans les revues internationales réputées ou présentés lors des conférences de prestige et d’importance 
internationale. 

Mots clés: système linéaire, système discret, stabilité du système, système à délai, stabilité de Lyapunov, stabilité 
asymptotique. 

 


