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Kinetic Impulses - Impacts On Rotating Rigid Rotor Bearings 

Katica Stevanović - Hedrih1) 

This paper is dedicated to the memory of Academician Valentin V. Rumyantsev (1921-2007) and contains a short 
review of his results in the area of stability of permanent rotations of a heavy rigid body, and the stability of rotation 
of a heavy rigid body with one fixed axis as well as the stability of gyroscopes. 
Using the vector of the rotor’s mass inertia moment, with respect to the rotation axis through the spherical bearing 
and the corresponding vector of the rotation rigid rotor mass deviational moment, the kinetic impulses- impacts to the 
rotor bearings are expressed. It is clearly visible that these two components are of opposite directions and that they 
constitute a deviational couple of kinetic impulses. The paper gives the graphical presentations of the rotator vector 
intensity as well as its angular velocity in a function of the angular coordinate 
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Introduction 
The year 2007 was dedicated to the 300th Anniversary 

of the birth of Leonard Euler (1707-1783), one of the 
leading scientists in the area of mathematics and mechanics 
of the 18th century. The Euler equations for a rigid body 
rotation about a fixed point are very important, and 

represent applicable results for future new developments in 
dynamics. Three differential equations of Euler 
representing the rigid body motions about a fixed point are 
one of the many important contributions to mechanics by 
Leonard Euler (see Fig. 1.a*). 

                      
a)                                                                                       b)                                                                                   c) 

Figure 1. a* Leonard Euler (1707-1783); b* Aleksandr Mikhailovich Lyapunov (1857 – 1918); c* Academician Valentin V. Rumyantsev (1921-2007) 

In contrast to Newton's geometry-related procedure in 
the Principia, Euler formulated mechanical laws 
preferentially in terms of differential calculus. Euler 
claimed that ''those laws of motion which a body observes 
when left to itself in continuing either rest or motion pertain 
properly to infinitely small bodies''. 

A scientific consideration of Leonard Euler and his 
variational principles of mechanics is the main content of 
[1] by Rumyantsev.  

The stability of permanent rotations of a heavy rigid 
body and the stability of rotation of a heavy rigid body with 
one fixed point in the case of Kovalevskaya were 

investigated and presented in [2, 3] by Rumyantsev (see 
Fig.1. c*). 

Lyapunov’s theory of stability opened a new page in the 
history of global science. In particular, a contribution which 
should be mentioned here is that he worked as the editor of 
two volumes of Euler's collected works. At that time he 
took part in the publication of Euler's selected works and 
was the editor of the 18th and 19th part of this miscellany 
(see Fig.1. b*).  

To understand the place and the role of Rumyantsev in 
the development and augmentation of Lyapunov’s scientific 
heritage, it is necessary to recall the development of the 
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theory of stability in the 20th century. After Chetaev's death 
in 1959 Rumyantsev headed the Moscow Chetaev School. 
For almost half a century this School had incontestable 
authority not only in the USSR but also far abroad. The 
author met Rumyantsev during his participation in the 
Yugoslav Congress of Theoretical and Applied Mechanics at 
1978 in Portorozh, and many times in Serbia during his visits 
to the Mathematical Institute SANU and also in the Shanghai 
during participation at the International Congress on 
Nonlinear Mechanics organized by academician Wei-Zang 
Chien, Rector of Shangai University.  Rumyantsev was a 
member of the Serbian Academy of Sciences and Arts. Also, 
Rumyantsev was a supervisor of the Serbian yang researcher 
Vujicic’s specialization in the area of Analytical Mechanics 
during his stay in Moscow. This collaboration was continued 
through exchange visits between these scientists during 
participation in scientific meetings.  

The series of References [4-13] by Rumyantsev are 
devoted to the stability of steady motions of a gyroscope as 
well as to the stability of the rotational motions of a solid 
body with a liquid cavity. In [5] stability and control, with 
respect to the part of the coordinates of the phase vector of 
dynamical systems, are presented.  

In [14] the non-linear dynamic response of a flexible 
rotor supported by ball bearings is studied by Sinou. The 
excitation is due to an unbalance inertia force. The non-
linear unbalance responses and the associated orbits of the 
bearing rotor were investigated. The main intent of the 
paper [15] by Saruhan was to formulate, demonstrate, and 
validate a practical means of implementing an evolutionary 
optimization technique into a rotor-bearing system. The 
optimum design of a flexible rotor supported on three-lobe 
bearings was studied for optimal performance considering 
system stability along with other design criteria such as 
fluid film thickness, power loss, film temperature, and film 
pressure. This was achieved by using a genetic algorithm 
and the method of feasible directions. The results of Zou, 
Hua and Chen presented in reference [16] are in relation to 
a rigid coupling and a flexible connection made up of 
elastic coupling units, and are widely applied to a rotor-
bearing system with a multi-branched shafting system. This 
paper proposes a modal synthesis method for the lateral 
vibration analysis of such a kind of rotor-bearing system. 
Cole, Keogh, Sahinkaya and Burrows in [17] considered a 
control system design for a rotor–magnetic bearing system 
that integrates a number of fault-tolerant control methods. 
The experimental results obtained from a flexible rotor 
system are used to demonstrate the effectiveness of the 
control implementations. 

The objective of reference [18], by Bouzidane and 
Thoma, was to study the dynamic behavior of a rotor 
supported by a new hydrostatic journal bearing, and fed 
with a negative electro-rheological fluid. The bearing 
consists of four hydrostatic bearing flat pads, fed by 
capillary restrictors. The discussion of the results includes 
some thoughts on future trends. Reference [19] by Cavalca, 
Cavalcante and Okabe presents a methodology for 
analyzing the influence of the foundation, or supporting 
structure, on rotor-bearing systems. The mathematical 
procedure applies a modal approach using the modal 
parameters of generalised mass, damping ratio and natural 
frequencies. The Finite Elements Method is used to model 
the rotor. The linear model of the foundation is obtained by 
FEM and a modal approach is applied to reduce the number 
of degrees of freedom of the foundation model. The modal 
parameters of the foundation are estimated using frequency 

response functions and their respective Fourier Transforms, 
obtained experimentally.  

In Reference [20], by Ganesan, information on the 
stability of vibratory motions becomes essential for 
ensuring safer designs for rotor-bearing systems, and 
obtained main criteria of operational safety were presented. 
In particular, the influence of shaft and bearing parameters 
on the stability characteristics has to be quantified for 
design and diagnostic purposes. Such an analytical 
investigation is the objective of the present paper. The 
expressions for amplitude and phase modulation functions 
that we derived quantify the effects of slowly varying the 
rotational speed on the motion characteristics. Based on the 
modulation functions, the stability regions in the parameter 
space are determined. The effects of bearing and shaft 
asymmetries on the stability of the rotor are illustrated. 

A continuous model approach for cross-coupled bending 
vibrations of a rotor-bearing system with a transverse 
breathing crack was study by Chasalevris and 
Papadopoulos. Results of this model study was presented in 
their reference [21]. A local rubimpact fault diagnosis of 
rotor systems based on EMD was the research interest of 
Cheng, Yu, Tang and Yang, and the research results were 
presented in [22]. Numerical and experimental studies of a 
rotor–bearing–seal system were by Cheng, Meng and J Jing 
in [23]. 

From time to time it is useful to pay attention again to 
classical models of dynamics of mechanical systems and 
evaluate possibilities for new approaches to these classical 
results by using other than those methods usually used in 
the literature. 

An interest in the study of vector and tensor methods 
with applications in Dynamics, especially in Kinetics of 
rigid and solid body rotational motions and deformation 
displacements as a new qualitative approach to the 
optimization of the time for universe teaching process, grew 
exponentially over the last few years. The short time for 
fundamental knowledge transfer during one term (semester) 
courses, with a high level of apparent teaching results, in 
the requirement for the optimization of the time, are 
focused to the new basic high level scientific ideas (logic 
and philosophical) which are easy to understand for most of 
students for engineering applications. 

Also, we can conclude that the impact of different 
possibilities to establish the phenomenological analogy of 
different physical model dynamics expressed by vectors 
connected to the pole and the axis and the influence of such 
possibilities to applications allows professors, researchers 
and scientists to obtain lager views within their 
specialization fields. 

This is the reason for introducing mass moment vectors 
to the rotor dynamics, and for expressions of the impact 
dynamics of a rotating heavy body. 

A series of author’s various published research results in 
the area of vector methods, with applications in Classical  
Mechanics is presented in the monograph [24, 25], and in a 
series of papers, and published scientific congresses 
communications [26-49]. The definitions of mass moment 
vectors coupled to the pole and the axis introduced the 
foundation for this vector method. The principal vector is 

( )
0
n
rr

ℑ  of the body mass inertia moment at the point A O=  
for the axis oriented by the unit vector n

r
: 

[ ][ ]( ) , ,
def

n
A

V

n dmρ ρ= ∫∫∫
rr r rr

ℑ , and there is a corresponding ( )n
A

rr
D  
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vector of the rotational rigid body mass deviational moment 
of the rotation axis through the spherical bearing A  and for 
the rotation axis. 

Also, there are two vector rotators, pure kinematics 
vectors depending on angular velocity and angular 
acceleration of the rotational body. The vector rotators 
correspond to the rotation axis; one in the deviational plane 
through the axis, the other orthogonal to the deviational 
plane and both with intensity 2 4ω ω= +&R . In the listed 
papers, many applications of the discovered vector method 
are presented by using mass moment vectors for expressing 
 kinetic parameters of heavy rotors dynamics [48, 24- 26, 
30-32, 47, 55, 56 and 57] as well as of coupled multi step 
rotors dynamics [37, 38, 41, 43, 44, 50] and for gyro rotors 
dynamics [38]. 

In paper [31] the motion of a heavy body around a 
stationary axis, with turbulent damping, is investigated and 
kinetic pressures on bearings are expressed by mass 
moment vectors for the pole in the stationary bearing and 
for the axis of the body rotation. The motion equations of a 
variable mass object rotating around a fixed axis are 
expressed by a mass moment vector for the pole, and the 
axis and presented in [39]. Analogies between models of 
stress state, strain state and state of the body mass inertia 
moments are considered and presented in a series of 
references [54-57]. Some considerations of the derivatives 
of mass moment vectors for a dimensional coordinate 
system N, as well as in a real body system, are presented in 
[24, 25, 26, 27 ]. A trigger for coupled singularities, on an 
example of coupled rotors with deviational material 
particles, is presented in [40, 41, 42]. Nonlinear phenomena 
in rotor dynamics were investigated in the series of 
references [40-47]. These nonlinear phenomena include 
phase portraits and the homoclinic orbits visualization of 
nonlinear dynamics of multiple step reductor/multipliers; 
nonlinear dynamics of planetary reductors with 
turbulent damping; the nonlinear dynamics of a heavy 
material particle along a circle which rotates and optimal 
control; and homoclinic orbit layering in the coupled rotor 
nonlinear dynamics and the chaotic clock models. 

Basic introduction to the theory of impulse-impact 
dynamics 

Assumptions in the theory of impulse-impact dynamics 
As a beginning, we consider some basic definitions, 

notations and assumptions in the theory of impulse-impact 
between two bodies. We take into account that: 
1. time τ  is the time of the body contact during the im-

pulse-impact, and this time is very short; 
2. impulse-impact forces udF

v
are changeable and of very 

large intensity, with order as 1
τ

, and a very short pe-

riod time of action (excitation) in the time over τ . 
3. the rate of impulse (linear momentum) change and an-

gular momentum (kinetic moment) change of the bod-
ies in the impulse-impact duration are finite;  

4. the impulses of ’’sample forces’’ (no impact forces) 
are very small , and it is possible to neglect these im-
pulses.  

5. during the impulse-impact duration of duration τ the 
rigid bodies do not change positions in space. 

In 1668 the Royal Society in London invited scientists to 

submit their work in the area of dynamics of impacting 
bodies for a scientific competition. The competition was 
entered with two manuscripts of the solution of the problem 
of dynamics of impacting bodies by Wallis (1616-1703), 
Mechanica sive de mote-1688 and Huygens – De motu 
corporum ex percusione. By using their work and his own 
inventions, Isaak Newton generalized their ideas and 
founded the new theory of the impacts, introducing into 
rigid body dynamics the hypothesis of impulse-impact 
period of body deformation  as defined by the coefficient of 
restitution of bodies during the period of their impact. Also, 
it is necessary to point out the fact that in the works of 
Galileo Galilei we can find the first results in impact 
dynamics. Nowadays, there are many applications in the 
engineering systems theory for impact dynamics, especially 
those applied to  the construction of vibro-impact machines. 

Impact forces. Instanteneous impulse (linear momentum). 
Impulse-Impact. 

The differential of the impulse of a motion ( )dp t
r

 of the 
material particle is 

 ( ) ( ) ( )Fdp t F t dt dK t= =
r rr

 (1) 

where ( )K t
r

 is the impulse of force. After integration, we 
obtain the following expression for the impulse of the force: 

 ( ) ( ) ( ) ( ) ( ) ( ) 0

0

0 0
t

FK t p t p F t dt mv t mv mv mv= − = = − = −∫
r rr r r r r r

(2) 

The rate of change of the linear momentum of motion 
change ( )p tΔ

r
 for the duration of a finite time interval tΔ  

is equal to the impulse of the force ( )FK t
r

, when the force 

( )F t
r

 is applied to the material particle along its motion at 
the path and over time.  

The dimension of intensity of the impulse of force 
( )FK t

r
, when the force ( )F t

r
 is applied to the material 

particle is: 

 ( ) 1dim FK t MLT −=
r

 (3) 

where M  is a mass dimension with a unit [ ]kg , L  is a 

length dimension with a unit [ ]m  and T  is the dimension 

of time with a unit [ ]sec . We can conclude that the unit of 

the impulse of the force is 1kg msec−⎡ ⎤⎣ ⎦  or [ ]Nsec . 

We can conclude that the impulse of the force ( )FK t
r

 is 
a vector integral and that, in the general case, it is not in the 
same direction as the force ( )F t

r
. 

When the intensity of the force ( )F t
r

 is finite, then the 

impulse of the force ( )FK t
r

 for force action in a short time 
interval, when that time interval tends to equal zero, 

0 0t t t τΔ = − = → , tends to be zero, too.  
For the case that the rate of velocity change 

( ) ( )0 0v v t v t v vΔ = − = −
r r r r r

 is finite in a very short time 

interval 0 0t t t τΔ = − = →  , then the impulse ( )FK t
r

 of the 

force ( )F t
r

 must be of finite intensity, and the intensity of 
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the force ( )F t
r

 must be infinite in this short time interval of 
action.  

Forces ( )udF t
r

 with previously defined properties, 
whose actions appear in the short time interval, and with 
infinite intensity and the finite impulse ( )FudK t

r
, are named 

instantaneous impact forces with finite impulse.  
Now, we can define impact as an action on the body. 

Action as a result of the applied instantaneous impact 
forces udF

r
 with the finite impulse ( )FudK t

r
 during a short 

time interval 0 0t t t τΔ = − = →  is defined as  the impact.  
For the impulse ( )FK t

r
 of the instantaneous impact 

forces udF
r

, we can write the following expression 

 

( ) ( ) ( )

( ) ( )
9

0

0 0 0

0 0

Fud
t

ud

t

K t p t p t

mv t mv t F dt
τ

τ τ

τ
+

+ = + − =

= + − = ∫

r r r

rr r  (4) 

where ( )0v t τ+
r

 and ( )0v t
r

 are the velocities before and 
after impact.  

Mass moment vectors for the pole and the axis – a 
new vector view of classical mechanics 

Vectors of the body mass moments for the pole and the axis 
The monograph [24] and monograph paper [25] contain 

definitions of three kinetic vectors fixed to a certain point 
and an axis passing through the given space body point as a 
reference pole.  

The definitions of these vectors for the pole and the axis 
are: 

1. Vector ( )
0

n
rr

M of the body mass for the axis, oriented by 
the unit vector n

r
, through the point – pole O , in the 

form: 

 
( )
0 M

def
n

V

n dm n= =∫∫∫
rr r rM ,   dm dVσ= ; (5) 

2. Vector ( )
0
n
rr

S of the body mass static (linear) moment 
for the axis, oriented by the unit vector n

r
, through the 

point – pole O , in the form: 

 [ ]( )
0 ,

def
n

V

n dmρ= ∫∫∫
rr rr

S , dm dVσ= ; (6) 

3. Vector ( )
0
n
rr

J of he body mass inertia moment for the 
axis, oriented by the unit vector n

r
, through the point – 

pole O , in the form (see Fig.2.a* and b*): 

 [ ][ ]( )
0 , ,

def
n

V

n dmρ ρ= ∫∫∫
rr r rr

J  (7) 

where ρ
r

 is the position vector of the elementary body 
mass dm  with respect to the common pole O . For special 
cases, the details can be seen in [24-30]. In the previously 
cited references, the spherical and deviational parts of the 

inertia mass moment vector and the inertia tensor are 
analysed. Monograph [24] gives the knowledge about the 
change (rate) in time and the derivatives of the vectors of 
the body mass linear moment, the body mass inertia 
moment for the pole and a corresponding axis for different 
properties of the body, on the basis of the results of the 
author’s works [30, 39]. 

( ) [ ][ ]dmrnrJd n
O

rrrr r

,,=  

[ ][ ] ( )n
OO JddmrrLd
rrrrrr

ωω == ,,  
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nr  
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rrrr

,,
2

ω=  
OndJ  
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ODd
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c) 

Figure 2. a* Graphical presentation of the kinetic reactions to the rotor 
(rigid body) shaft bearings on the elementary mass particle dm  of the 
rotating rigid body  
b* A disc with  respect to the axis of the shaft in an eccentrically skewed 
position, and the graphical presentation of the vector of the disc mass 
inertia moment for the reference point and an oriented axis of the shaft and 
of the corresponding deviational plane. 
c* A graphical presentation of the theorem of material body mass inertia 
moment vectors for the two parallel axes through two reference points. 

The "supports" vectors of the body mass linear moments, 
as well as of the body mass inertia moments for the pole 
O , and the axis oriented by the unit vector n

r
 are 

introduced by definition and expression. Detailed 
information on this can be found in [25, 30]. The "support" 
vector ( )

0
n
rr

S  of the body mass linear moment, and the 

"support" vector ( )
0
n
r

R of the body mass inertia moment of 

the body point :N ON ρ
→

=
r

, for the pole at the point O , and 
for the axis oriented by the unit vector n

r
, are defined by 

the following expressions: 
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 [ ]
( )

( ) 0
0 ,

ndef
n nm

∂ ρ
∂

= =
r

r
r

r rrS
S , [ ][ ]

( )
( ) 0
0 , ,

ndef
n nm

∂
ρ ρ

∂
= =

r
r

r
r r rrJ
N  (8) 

The derivatives of these defined support vectors of the 
mass moment vectors for the pole and the axis are 
determined for different body properties, with respect to 
time. Detailed information on this can be found in [25,30]. 

This expression (see Fig.2. c*)  

[ ] [ ][ ]1
1 1

( ) ( ) ( ) (0 )
0 0 0 00 0 0, , , , ,n n n

CM n n Mρ ρ ρ ρ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦⎣ ⎦
r r rr r r rr r r rr r

J J S  (9) 

is the vector form of the theorem for the relation of 
material body mass inertia moment vectors, ( )

0
n
rr

J  and 
1

( )
0
n
rr

J , 
for two parallel axes through two corresponding points, 
pole O  and pole 1O . We can see that all the members in 
the last expression have the same structure. These structures 
are: [ ][ ]0 , , Cn r Mρ

r r r , [ ][ ]0, ,Cr n Mρ
rr r  and [ ][ ]0 0, ,n Mρ ρ

r rr .  
In the case when the pole 1O  is the centre C  of the body 

mass, the vector Cr
r

 (the position vector of the mass centre 
with respect to the pole 1O ) is equal to zero, whereas the 
vector Oρ

r
 turns into Cρ

r
 so that the last expression (9) can 

be written in the following form: 

 [ ][ ]( ) ( )
0 , ,n n

C CC n Mρ ρ= +
r rr r r rr

J J  (10) 

This expression (10) represents the mathematical and 
vector form of the theorem of the rate change of the mass 
inertia moment vector for the pole and the axis, when the 
axis is translated from the pole at the mass centre C  to the 
arbitrary point, pole O .  

The Huygens-Steiner theorems (see Refs. [25] and [30]) 
for the body mass axial inertia moment, as well as for the 
mass deviational moments, emerged from this theorem (10) 
on the change of the vector ( )

0
n
rr

J  of the body mass inertia 
moment  at the point O  for the axis oriented by the unit 
vector n

r
 passing trough the mass center C  and when the 

axis is moved translate to the other point O .  

Linear and angular momentum of rigid body rotation 
The classical literature gives a very well known 

definition for the rigid body linear momentum (motion 
quantity) and angular momentum (motion quantity 
moment). We shall consider it by means of the body mass 
moment vectors. We are following the classical definition, 
so that we write the following expression for the linear 
momentum in the vector form: 

 [ ]( ) ( ), M n
N A A A

V V

v dm v dm vω ρ ω= = + = +∫∫∫ ∫∫∫
rrr r rr r r

K S .  (11) 

The expression (11) for the linear momentum 
r
K  of a 

rigid body, whose points have translational velocity Av
r

 of 
the reference point A , and relative velocity [ ]ρω

rr
,  due to 

the rotation around the axis oriented by the vector n
rr

ωω =  
through the point A , has two parts: 1. a translational  
component equal to the product of the translation velocity 

Av
r

 of the reference point A  and the body mass, this being 
the linear momentum due to the translatory motion with the 
velocity of the reference point A ; and the rotational 
component equal to the product of the magnitude ω  of the 

angular velocity n
rr

ωω =  and the vector )( A
nr
r
S  of the body 

mass linear moment at the reference point A , and for the 
axis oriented by the unit vector n

r
. 

The second kinetic vector connected to the reference 
point which plays an important part in the rigid body 
dynamics is the rigid body angular momentum for the given 
pole, 0

r
L . Following the classic definition according to [50], 

the rigid body angular momentum, in the vector form, is 
calculated by means of the following expression: 

 [ ] [ ][ ]0 , , ,N A A

V V

r v dm r v dmρ ω ρ= = + +∫∫∫ ∫∫∫
r r r rr r r r
L .(12) 

The angular momentum for the point A , AL
r

, is 
connected not only to the pole A  but to the axis oriented by 
the momentary angular velocity vector ω

r
, depending on 

the chosen reference point A  to which we connect the 
vectors ( )n

A

rr
S and ( )n

A

rr
J of the rigid body mass linear and 

inertia moments by connecting the body mass to the 
translatory velocity Av

r
 of the reference point A . Therefore, 

we write the following: 

 ( )( ) ( ) ( ), ,A n n
A A A An v nω ω⎡ ⎤= + −⎣ ⎦

r r
r

r r r rrr r
L S J D . (13) 

Fig.2 a* shows the rigid body with the fixed rotation axis 
through the fixed point A  around which it rotates with the 
angular velocity ω

r
 which changes in time so that the 

angular acceleration ω&
r

 appears. The kinetic energy is 
expressed as ( )( ) ( )22E , Jn n

k A Aω ω ω= =
r rrr

J . For this case of a 

rigid body rotation around a fixed axis, the linear 
momentum and angular momentum are given n the 
following forms: 

 [ ] ( ), n
C AMω ρ ω= =

rr rr r
K S , (14) 

( ) ( )( ) ( ) ( ) ( ), , ,n n n n
A A A A An n n nω ω ω ω⎡ ⎤⎡ ⎤= + = +⎣ ⎦⎣ ⎦

r r r rr r r r rr rr r r r
L J J J D .(15) 

Since the velocity v
r

 and the acceleration a
r

 of the body 
elementary mass at the point N  are: [ ]ρω

rrr
,=v and 

[ ] [ ][ ]ρωωρω
rrrr&rr

,,, +=a  (see [24] and [25]), then the main 

vector rjF
r

 of the inertia force of the overall rigid body 
rotating around the axis with the angular velocity ω

r
 is:  

 ( ) ( )
rjF ,n n

A A

V

a dm ω ω ω⎡ ⎤= − = − − ⎣ ⎦∫∫∫
r rr rr rr

&S S . (16) 

For the main reduction moment of the inertia forces of 
the overall rigid body rotating around the axis, and for the 
point A , we calculate the following: 

 ( ) ( )
Aj rj, F ,n n

A A

V

dρ ω ω ω⎡ ⎤⎡ ⎤= = − −⎣ ⎦ ⎣ ⎦∫∫∫
r rr r rrr r

&M J J , (17) 

The vector equations of the body rotation around the 
fixed axis thought a point A  can be obtained by using 
theorems of changing linear and angular momentum with 
respect to time. By differentiating expression (14) for the 
linear momentum and expression (15) for angular 
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momentum with respect to time, we obtain: 

 1. [ ] rrj
)()( FF,

rrrrr
&

r

rr =−=+= A
n

A
ndt

d
SS

K
ωωω ,  

 ( ) 1
)()(

11
2

1
)( rv

rrrrrr
&

r
r

rrr A
n

A
n

A
n u

dt
d

SRSRS
K

==+= ωω , (18) 

where 

 11 r
rr

RR = ,   42 ωω += &R . (19) 

The vector rotator 11 r
rr

RR =  for the rigid body rotation 
axis and the pole A , is orthogonal to the rotation axis with 
one component orthogonal to the deviational plane through 
the body rotation axis and other in the deviational plane (for 
detail see [24]). 

Equation (18) for the changing linear momentum with 
respect to time is equal to the main resultant vector of the 
active and reactive forces and shows that the change of the 
linear momentum of motion is the vector normal to the 
rotation axis and has two components: one due to the 
angular velocity change, which is normal to the rotation 
axis and the deviational plane, and contains the body mass 
centre and the rotation axis, and the other component which 
depends on the angular velocity squared, which is normal to 
the rotation axis and lies in the plane formed by the rotation 
axis and the rigid body mass centre undergoing rotation. 

 2. ( ) ( )
Aj A,n nA

A A
d
dt ω ω ω⎡ ⎤= + = − =⎣ ⎦

r r
r

r r r rr
&L J J M M ,  

   ( ) ( ) ( ) ( ) ( ),n n n n nA
A A A A A

d J Jdt ω ω ω ω ω⎡ ⎤= + + = +⎣ ⎦
r r r r r

r
r r r rr r r& &&L D D D R ,(20) 

 r=
r r
R R , 2 4ω ω= +&R . (21) 

The vector rotator is r=
r r
R R , for the rigid body 

rotation axis and the pole A . This is rotating and also 
increasing by the angular velocity and by the angular 
acceleration, and, at the same, it causes the inertia force 
deviational moment to increase. The vector rotator 

r=
r r
R R  and the vector rotator 1r=

r r
R R are orthogonal to 

one another and rotate with the same velocity  

 
4 2

4 2
ω ωω ωγ ω ϑ ω

ω ω
+ −= + =

+
&& &&&

&
 (22) 

 This expression (20) immediately shows that:  
a) the first component depending on the angular accelera-

tion ω&
r

 is co-linear with the rotation axis;  
b) the second component, which also depends on the angu-

lar acceleration  intensity ω& , is normal to the rotation 
axis, and is in the direction of the deviational part of the 
vector )( A

nr
r
J of the rigid body mass inertia moment at the 

pole in the spherical (stationary, fixed) bearing A . For 
the rotation axis it is proportional to the magnitude of the 
angular  acceleration ω&

r
 and the vector )( A

nr
r
D of the rota-

tion rigid body mass deviational moment of the rotation 
axis at  the spherical bearing A . 

c)  the third component is proportional to the square of the 
angular velocity 2ω and to the magnitude of the vector 

)( A
nr
r
D  of the rotation rigid body mass deviation moment 
of the rotation axis at the spherical bearing A  and for 
the rotation axis. It is like a vector normal to the rotation 
axis and the vector )( A

nr
r
D  of the deviation mass load to 

the rotation axis, which means it is normal to the devia-
tion plane. 
For the case of a rigid body rotation around a fixed axis, 

under the action of active forces kF
r

, 1, 2,3,...,k N= , with 
the vector positions kρ

r
, 1,2,3,...,k N=  at the points of 

application on the rigid body, we can write the following 
two-vector equations of the rigid body’s dynamic 
equilibrium:  

 
( )( ) ( ) ( )2

1 1 1 1

1

n n n
A A A
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k A B
k

d u v rdt

F F F

ω ω
=

=

= + = = =

= + +∑

r r r
r r r r rr r r

&

r r r

K S R S RS
, (23) 

 
( ) ( ) ( ) ( ) ( )

k
1

,

, F , F

n n n n nA
A A A A A
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k B B
k

d J Jdt ω ω ω ω ω

ρ ρ
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=

⎡ ⎤= + + = + =⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑

r r r r r
r

r r r rr r r& &&

r rr r

L D D D R
.(24) 

where ANF
r

 and BF
r

 are the reaction of the rotating rigid 
body bearings and Br

r
 vector position bearing B  with 

relation to the hinged bearing A . 
These two-vector equations (23)-(24) are the kinetic 

equations of dynamic equilibrium for the rotation of the 
body around a stationary axis under the action of an active 
force system kF

r
 (for more information see [24] and [25]). 

For the examples of the applications of the previously 
introduced  mass moments vectors and the linear and  
angular momentum expressed by these vectors, see the 
following [26-45, 48-49]. 

The orthogonal part of the derivative of the rotating rigid 
body angular momentum, with respect to time, for a certain 
pole in the spherical bearing A  on the rotation axis, to the 
rotation axis is: 

 ( ) ( ) ( ),
d

n n nA
A A A

d
dt ω ω ω⎡ ⎤= + =⎣ ⎦

r r r
r

r r r rr
&L D D D R . (25) 

We can write the following relations: 

 
( )

rj

( ) ( )
.

n
A

dev nd
AA A

d
F dt

const
d
dt

= = =

r

r

r
rr

r r r

K
S

M L D
 (26) 

Kinetic pressures on shaft bearings excited by the body 
rotation 

For the kinetic reactions ( )AN kinF  and ( )B kinF
r

, of the rotor 

bearings  (or pressures - ( )AN kinF  and - ( )B kinF
r

 on the rotor 
bearings) it is possible to write the following simple 
expressions (for details see [24], [51-53]): 
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 ( )
( ) ( )

1 20 0
1n n

AN kin
B

F r=
r rr r r rr

-S R D R  (27) 

 ( )
( )

20
1 n

B kon
B

F r=
rr rr

D R  (28) 

where 2 ,n⎡ ⎤= ⎣ ⎦
r rr
R R . 

From the previous expression for kinetic reactions, 

( )AN kinF  and ( )B kinF
r

, of the rotor bearings (or pressures -

( )AN kinF  and - ( )B kinF
r

 on the rotor bearings)  in the rotor 
bearings, it is clearly visible that there are two parallel and 
opposite direction components 

( ) ( )
20 0

1 ,n n

B
nr
⎡ ⎤± = ⎣ ⎦

r rr r r rr
D R D R  of the distance Br  which 

constitute a deviational couple of kinetic reaction ( )AN kinF  

and ( )B kinF
r

 of the rotor bearings  (or pressures - ( )AN kinF  

and - ( )B kinF
r

 on the rotor bearings) and with the intensity 
( )n
A

rr r
D R , but in the vector form ( )

0
n
rr r

D R . 

Kinematics vector rotators 
From expressions (27) and (28), we can conclude that 

the kinetic reactions, ( )AN kinF  and ( )B kinF
r

, of the rotor 

bearings (or pressures - ( )AN kinF  and - ( )B kinF
r

 on the rotor 
bearings) and their action to the rotor shaft bearings are 
proportional to the intensity of the vector rotator. Also, we 
can see  that kinetic reactions  are larger for larger values of 
angular velocities and angular accelerations of the shaft 
rotation. It is possible to conclude that greater than kinetic 
reactions (or pressures) on the rotor shaft bearings which 
have low angular velocities appear for the case of the larger 
 deviation mass distribution properties of the rotor. 

Then, it is easy to analyze the intensity of the vector 
rotator using  expression (21). Also using expression (22), 
we can analyze the angular velocity and the angular 
acceleration of the vector rotator, and also angular velocity 
and angular acceleration of the direction of the kinetic 
reaction of the shaft bearing (or pressures on the shaft 
bearings) for different angular velocities of the rotor.  

For that reason, and for the first example, see Fig.3 for 
the rigid body rotation about a fixed axis with a constant 
angular acceleration 0 constω ω= =& & , and the angular 

velocity 0 0tω ω ω= +& , and with the angle of rotation 
20

02 t tωφ ω= +
&

, the expression for the relative angular 

velocity of the Rotator’s rotation about the axis of the rotor 
shaft is in the form: 

 ( )
( )

2
0 0 0

4 2
0 0 0

2 t
t
ω ω ω

ϑ
ω ω ω

+
= −

+ +

& &&
& &

. (29) 

The final form of the expression for the relative angular 
acceleration of the vector rotator for the case of the rigid 
body rotation with a constant angular acceleration is given 
by:  

 ( )
( )

( )

( )

43 23 4 5
0 0 0 00 0

2 24 2 4 2
0 0 0 0

2 3 26 2 t

t

ω ω ω ωω ω ω
ϑ

ω ω ω ω ω

⎡ ⎤+ −− ⎣ ⎦= =
⎡ ⎤+ + +⎣ ⎦

& & && &
&&

& & &
 (30) 

In Fig.3. a graphical representation of the angular 
velocity 0 0tω ω ω= − +&  of a rigid rotor rotation for the case 
where the angular acceleration of the rigid rotor is constant, 
is presented, as well as  the corresponding graphs of the 
relative angle ( )tϑ , the angular velocity ( )tϑ& , and the 

angular acceleration ( )tϑ&&  of the rotator vector 
r
R  rotation 

about the rotor shaft axis, and the corresponding intensity 
R  of this vector rotator. 
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Figure 3. Graphical representation of the angular velocity 0 0tω ω ω= − +&  
of a rigid rotor, for the case that the angular acceleration of the rigid rotor 
is constant, and the corresponding graphs of the relative angle ( )tϑ , 

angular velocity ( )tϑ& , and angular acceleration ( )tϑ&&  of the rotator vector 
r

R rotation about the rotor shaft axis, and the corresponding intensity 
R of this vector rotator. 
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Figure 4. Graphical representation of the angular velocity 20
0 02 t tωω ω ω= + +

&&
&  of the rigid rotor, for the case where the angular acceleration second kind 

(jerk) of the rigid rotor rotation is constant, and corresponding graphs of the relative angle ( )tϑ , angular velocity ( )tϑ& and angular acceleration ( )tϑ&&  of the 

rotator vector 
r

R rotation about the rotor shaft axis and the corresponding intensity R of this vector rotator.  a* , b* and c* for different initial conditions. 
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For the second example, see Fig.4, we take into 
consideration that the rigid body rotation about a fixed axis 
with a constant angular acceleration second order (jerk), 

0 constω ω= =&& &&  and the angular acceleration is 

0 0tω ω ω= +& && & , the angular velocity is 20
0 02 t tωω ω ω= + +

&&
&  

and the angle of rotor rotation is 3 20 0
06 2t t tω ωφ ω= + +

&&& &
.  

Fig.4. gives a graphical representation of the angular 

velocity 20
0 02 t tωω ω ω= + +

&&
&  of the rigid rotor rotation for 

the case when the angular acceleration second kind (jerk) of 
the rigid rotor rotation is constant as well as the 
corresponding graphs of the relative angle ( )tϑ , the 

angular velocity ( )tϑ& , the angular acceleration ( )tϑ&&  of the 

rotator vector 
r
R rotation about the rotor shaft axis, and the 

corresponding intensity R of this vector rotator a*, b* and 
c* for different initial conditions. 

Kinetic impulses - impacts on shaft bearings 
excited by impact forces due to the rigid body 

rotation  
Now, let us consider a rigid body with two bearings, one 

stationary hinged at the point A  at the pole O ( A O≡ ), 
and the other one cylindrical at the point B , with the 
possibility to rotate about the axis through the points A  
and B , oriented by unit vector nv . It is loaded by the 
instantaneous impulse-impact forces udF

r
 with the finite 

impulse ( )FudK t
r

 during the short time interval 

0 0t t t τΔ = − = → , and also by the active forces F
r

 and 
G
r

, with finite intensity and with zero impulse. Then we 
have the case when the rigid body is under an impact (see 
Fig.5). 
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Figure 5. a* Graphical presentation of the impact reactions to the rotor (rigid body) shaft bearings on the elementary mass particle dm  of the rotating rigid 
body b*  Center of impact of the rigid body rotating around the fixed axis 

Taking into account that the previous rigid body is in a 
dynamical state with the angular velocity ω  and the 
angular acceleration ω&  (type rotation about a fixed axis 
oriented by the unit vector nv ), then using the 
considerations of the previous paragraph, on the basis of the 
expressions for the derivatives of the linear momentum (23) 
and angular momentum (24), we can write two vector 
equations in differential forms (for the elementary change – 
differential rate of the impulse of motion in time as well as 
for the elementary change - differential rate of the moment 
of impulse of the motion) with respect to time: 

 ( ) ( )
1

n
AN An BA

ud

dp t dt F dt F dt F dt

F dt Gdt Fdt

= = + + +

+ + +

rr r r r rr
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 (31) 
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rr r rr rr
J D R

(32) 

After the integration of the previous vector equations in 
a differential form for the short time interval 

0 0t t t τΔ = − = → , the duration of the impact under the 
instantaneous impulses-impact forces udF

r
 with the finite 

impulse ( )FudK t
r

, we obtain the following two vector 

expressions: 
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and after taking into account the active forces F
r

 and G
r

, 
with finite intensity and zero impulse, as well as 
assumptions of the theory of impact dynamics listed from 
paragraph II.1*, we can write the following two vector 
equations (of the impulses of impact dynamics state 
equilibrium) of the rotating rigid body in the following 
form: 
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wher 2
0u wω ω= + =

r rr r
&R RR  as well aso 

2
1 1 1 01u wω ω= + =
r rr r

&R RR , and also: 
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t t
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dt u w dtω ω⎡ ⎤= +⎣ ⎦∫ ∫
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&R    

and  
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dt u w dtω ω⎡ ⎤= +⎣ ⎦∫ ∫
r r r

&R  (37) 

First, applying scalar multiplication of both previous 
equations (35) and (36) by the unit vector nr  , and second, 
the applying vector multiplication with respect to the right 
hand side of both the previous equations (35) and (36) by 
unit vector n

r
, the four equations are obtained. Obtained 

system of the four obtained equations contain two in the 
scalar form and two in the vector form. The obtained 
equations are in the function along the unknown reactive 
impulses ANFK

r
, AnFK
r

 and BFK
r

 of the impact forces to the 
rotate body bearings. We can obtain the following 
expressions of reactive impulses-impact forces on the 
rotating body bearings ANFK

r
 and AnFK

r
 as well as BFK

r
 in 

the following forms: 
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K dt r K nr r

τ+
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rr rr r r
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 ( ),An udF FK n K n= −
r rr r

 (40) 

for the time duration of the interval 0 0t t t τΔ = − = →  and 
the difference equation of the impulse rotation of the rigid 
body in the impact state in the form:  

 ( ) ( )( ) ( )0 0 , , , ud
n

P Fn n r Kω ω ⎡ ⎤− = ⎣ ⎦
rr rr r

J  (41) 

From the expressions for the reactive impulses of the 
impulse-impact forces to the rotating body bearings ANFK

r
 

and BFK
r

, we can separate the two parts depending on the 
kinetic parameters of the rigid body dynamics in the 

following forms: 
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20
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t
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K dtr= − ∫
rr rr

D R  (42) 
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K dt Kr= = −∫
rr rr r
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They are parallel in the direction ∫
t

t

dt
0

2R
r

, of the same 

intensity and in the opposite direction. These two 
deviational components of the impulse of the impact forces 
on the rotating body bearings generate a deviational couple 

with the intensity ( )
( )

0

0,A B

t
ndev

K F F
t

dt= ∫
r

r r
r r

M D R . This couple 

depends only on the rigid body mass distribution around the 
axis of rotation, and the angular velocity and the angular 
acceleration during the time interval 0 0t t t τΔ = − = →  , in 
accordance with difference equation (38). 

This is the deviational couple impact on the rotating 
body bearings, and in engineering practice with a very 
dangerous effect, which can destroy the shaft bearings.  

Also, from the expressions for reactive impulses – 
reactive impact forces of the rotating body bearings ANFK

r
 

and 
BFK

r
,(or kinetic impacts - ANFK

r
 and - AnFK

r
 on the 

rotating body bearings),   we can separate two parts 
depending on the kinetic parameters of the rigid body 
dynamics and on the impact force in the following form: 
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 (44) 

There are two parallel components, of the same intensity 
and in the opposite direction. These two deviational 
components of the reactive impulses of impact forces on the 
rotate body bearings also build a deviational couple with 
the intensity  

 ( )
( )

0

20, ,1
, ,udA B

t
ndev

P FK F F
t

dt r K n⎡ ⎤⎡ ⎤= − ⎣ ⎦⎣ ⎦∫
r

r r
r r r r

M D R  (45) 

Centre of impulse-impact of the rigid body 
rotating around a fixed axis 

Let’s consider the problem of finding the position of the 
point uC  of the application of the instantaneous impulse-
impact forces udF

r
 with the finite impulse ( )FudK t

r
 under 

which an impact on the rigid body rotation, reactive impact 
impulses on the bearing ANFK

r
 and AnFK

r
 as well as BFK

r
 

are all equal to zero. This point uC  is the centre of the 
impulse-impact of the rotating rigid body around a fixed 
axis. Let us denote the vector position of the centre of 
impact uC , with u u u uC C C Cr u w nξ η ζ= + +

r r rv , where uCξ , 
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uCη and uCζ  are their coordinates in a moving coordinate 
system with the basic unit vectors uv , w

r
 and n

r
. 
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rr rr r

J  (49) 

From the previous condition or equation (46), we can 
conclude that the reactive impulse ( )FudK t

r
 of 

instantaneous impact forces udF
r

 must be orthogonal to the 
rotation axis, and must lie in the plane orthogonal to the 
rotation axis, udFK n⊥

r r
. Then we obtain:  

 ( ) ( ) ( ), ,Fud Fud FudK t K t u K t wwξ η= +
r r r

  (50) 

and 

 ( ), 0FudK tζ =  (50*) 

From two first equations (47) and (48) it is possible to 
eliminate ( )FudK t

r
 by taking into account that udFK n⊥

r r
, 

and also equation (49), and to obtain an expression for the 
uCr

r
-vector position of the centre of impact. From equation 

(49),  we obtain: 
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Also we can take into account that: 
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As we know that cos sinu i jφ φ= +
r rr

 and 

sin cosv i jφ φ= − +
r rr

 for the general case it is necessary to 

find the following integrals: 
0
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t
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∫
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0
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1

t
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dt
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∫
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R , but 

then by obtaining the vector position 
u u u uC C C Cr u w nξ η ζ= + +

r r rv  of the centre of impact it is 
possible to eliminate these integrals.  

For the simplest expressions in the calculation, without 
loss of generality, we can take into account that the centre 
C  of the rotating rigid body mass in the form of a thin 

rigid plate lies in a plane defined by ,n u
r r

, and that is 
0=Cη , and for the vector position C C Cr u nξ ζ= +

r rv . Then, 
we obtain: 
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The coordinates of the vector position 
u u u uC C C Cr u w nξ η ζ= + +

r r rv  of the centre of body’s  impact 
are: 

0uCη = ,  
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On the basis of the obtained expressions (55)-(56), we 
can conclude that the vector position u u uC C Cr w nη ζ= +

r r r
 of 

the centre of body’s impact of the rotating rigid plate is in 
the same plane as the centre C  of the rotating rigid body 
mass – plane plate, and that the instantaneous impulse- 
impact forces udF

r
 with the finite impulse ( )FudK t

r
 are 

orthogonal to the rotating rigid plate and the axis of 
rotation. 

Concluding remarks 
The paper presents a new approach to the classical 

knowledge in dynamics for a rotating rigid body, as well as 
for the dynamics of impact on a rotating rigid body around 
a fixed axis by using mass moment vectors and vector 
rotators coupled for the pole and the axis thought this pole 
in a fixed-hinged shaft bearing. By using mass moment 
vectors, simpler and shorter expressions for the kinetic 
parameters of the rotating rigid body are obtained as well as 
kinetic pressures. Kinetic impacts on the rotor shaft 
bearings have much simpler forms than the scalar 
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expressions published in numerous university books and 
monographs. The expressions of the deviational couple 
caused by pair of the  kinetic pressures and the deviational 
impact couple of the kinetic impacts on the rotor shaft 
bearings are simply visible through “one short look”.  

This new view on classical mechanics of rotors can be a 
new approach in the university teaching process for the 
simplest transfer of classical knowledge of a rotating rigid 
body, and with very visible kinetic parameter properties, 
without additional explanation, or only with a short 
explanation, especially when speaking about the deviational 
phenomena of rotating body dynamics and coupled rotors.  

This view on vectors can be connected with the view on 
vectors of the theory of elasticity (see [21l 43, 44, 45, 46-
50]) by using an analogy between models of the stress state 
 and strain state in the theory of elasticity and the vector 
model of the mass moment state around an arbitrary pole 
(and transfer knowledge from one area of science to other). 
The knowledge about the main stress and strain directions 
and main stresses and main strains (see [55], [56] and [58]) 
as well as about the corresponding expressions is possible 
on an analogy for applying expressions for the main inertia 
directions and main mass inertia moments. Also by using 
knowledge of the extreme values of shear stresses in planes 
with an angle of 45 degrees to the main stress direction in 
an analogy shows that the directions of the mass inertia 
moment asymmetry are with an angle of 45 degrees to the 
main mass inertia directions, and that the corresponding 
axial mass inertia moments are equal to the middle of the 
sum of the two corresponding main axial mass inertia 
moments. For the corresponding pair of these axis 
deviational components of the mass inertia moment for the 
pole, and for the axis in the direction of the mass inertia 
asymmetry, it is found  to be equal to half of the difference 
between two corresponding main mass axial inertia 
moments.  
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Kinetički impulsi – udari na ležišta rotora 
Rad je posvećen sećanju na akademika Valentina V. Rumyantseva (1921-2007) i sadrži kratak prikaz njegovih 
rezultati o stabilnosti permanentnih rotacija teških tela, kao i o stabilnosti rotacija teških krutih tela sa fiksiranim 
osama, a takodje i o stabilnosti žiroskopa. 
Koristeći vektor momenta inercije mase rotora za osu rotacije kroz sferno ležište i odgovarajući devijacioni vektor 
momenta mase rotora,  izrazi za kinetičke impulse - udari na ležišta rotora su određeni. Iz dobijenih izraza je lako 
videti da su dve devijacione komponente kinetičkih impulsa na ležišta suprotnog smera i da obrazuju jedan 
devijacioni udarni spreg. Prikazana je serija grafika intenziteta vektora rotatora, kao i odgovarajućih ugaonih 
brzina, kojima se rotatori obrću, u funkciji ugaone koordinate. 

Ključne reči: vektorska analiza, vektorski račun, udarno opterećenje, udarni impuls, moment inercije,rotor. 

Кинетические импульсы - удары на подшипники ротора 
Эта работа посвящена памяти академика Валентина В. Румянцева (1921-2007 гг) и содержит короткий обзор  
его результатов о устойчивости неизменных  вращений твёрдых тел, а в том числе и о устойчивости 
вращений твёрдых жёстких тел с неподвижными осями, а также и о устойчивости гироскопов.  
Пользуясь вектором момента инерции массы ротора в роли оси вращения  через сферический подшипник и 
соответствующий вектор отклонения момента массы ротора, определены выражения для кинетических 
импульсов – удары на  подшипники ротора. Из полученных выражений легко заметить, что пара составных 
частей отклонения кинетических импульсов удары на противоположные подшипники и что образуют одну 
ударную смычку отклонения. Здесь графически показана серия интенсивности вектора вращающего 
устройства, а в том числе и соответствующих угловых скоростей, которыми вращаются вращающие 
устройства в роли и функции угловых координат. 

Ключевые слова: векторный анализ, векторный счёт, ударная нагрузка,  ударный импульс, момент инерции, 
ротор. 

Les impulses cinétiques – impacts sur le palier du rotor 
Ce travail est dédié à la mémoire de l’académicien Valentin V.Rumyantsev (1921-2007) et comprend un court tableau 
des ses résultats dans le domaine de la stabilité des rotations permanentes des corps lourds, la stabilité des rotations 
des corps lourds rigides aux axes fixes et la stabilité des gyroscopes. En utilisant le vecteur du moment inertiel de la 
masse du rotor pour l’axe de la rotation à travers le palier sphérique et le vecteur de déviation correspondant du 
moment de la masse du rotor les impulses cinétiques – impacts sur les paliers de rotor sont déterminés. Il est facile de 
constater, à partir des expressions obtenues, que les deux composantes de déviations des impulses cinétiques sur les 
palier ont le sens opposé et qu’ils forment un couple impact de déviation. On a présenté une série de graphiques 
d’intensité du vecteur de rotor ainsi que les vitesses d’angle correspondantes dont les rotors tournent en fonction de la 
coordonnée de l’angle. 

Mots clés: analyse vectorielle, calcul vectoriel, charge d’impact, impact d’impulse, moment d’inertie, rotor. 

 
 


