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By applying the limit theorem analysis of structures it is possible to determine the limit line load of the systems that 
are exposed to the load which increases proportionally to the formation failure mechanism. In the case when the 
linear systems are subjected to repeated load, the limit theorem does not provide an adequate solution, so alongside 
were developed theorems of adaptation that have enabled the determination of the safe limit loads. This paper 
presents a method for determining the load that leads to failure of continuous beams on two fields using the limit 
theorem and the theorem of adaptation and the limit of the breaking load change and breaking load incremental 
depending on the length of the field of the beam. 
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Introduction 
HEN the structure is exposed to the load of the 
proportional nature that gradually increases, at some 

point it reaches a certain critical value, at which point it 
comes to plastic failure of the structure (ie, unlimited 
increase of deformation at constant load), after which a 
construction is no longer able to receive further increase of 
the load. This critical state is called the limit state of the 
construction, and load that causes it is the limit load. 
Determination of the bearing power of structures (limit 
load) is an important factor in designing structures. 

The limit analysis of structures is an alternative 
analytical method to determine the maximum load 
parameter or increasing load parameter, which a perfect 
elastic-plastic construction is able to bear . Compared to the 
incremental analysis (the step-by-step method), the 
efficiency of the limit analysis is achieved by observing the 
final state, state of failure, without paying attention to what 
was happening with the construction and load from the 
moment when one section of the structure was completely 
plasticized ( formation of the first plastic joint for solid 
beam) or one rod lattice was completely plasticized 
(formation of first plastic truss rod), until the failure. Limit 
analysis methods are based on the theorem of plastic failure 
of an ideal elasto-plastic body. These theorems are known 
as static (lower) and kinematic (upper) theorems of the 
marginal analysis of structures. 

It should be noted that in addition to the limit state of 
load there are other limit states, which may occur before the 

state of limit equilibrium and which can be restrictive to the 
transferring of an external load, such as limit states of 
usability, or even a marginal state of cracks in structures 
made of reinforced or pre-stressed concrete [8]. 

Although some ideas emerged in the 18th century, the 
marginal analysis is of more recent date. Its origins are 
linked to Kazincy (1914.), who calculated failure load of 
mutually squeezed beams and this result was confirmed 
experimentally. A similar concept was proposed by Kist 
(1917) and Grüning (1926). However, early work in this 
area largely relied on engineering intuition. Although the 
static theorem was first proposed by Kist (1917) as an 
intuitive axiom, it is considered that the basic theorems of 
the limit analysis were first presented by Gvosdev in 1936 
and released two years later at a local Russian conference, 
but they went unnoticed by Western authors until 1960. 
when translated and published by Haythornthwaite. In the 
meantime, a formal proof of this theorem for beams and 
frames is presented by Horne (1949) as well as Greenberg 
and Prager (1951). 

The application of the adaptation theory (shakedown 
theory), when assessing the safety of elastic-plastic 
structures exposed to variable and repeated load, is 
important and often indispensable. In this context, the 
"shakedown" is a term that was introduced by Prager, 
meaning that after the initial appearance of plastic 
deformation structures behave purely elastically during 
their further life. The contrary state that leads to the 
shakiness of the structure is called "nonadaptation" of the 
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construction. In this case construction collapses due to 
perceived failure of one or both types of failure, called 
alternating plasticity and incremental collapse. The first 
type of failure occurs due to recurrence of plastic 
deformation of the opposite sign (with no accumulation of 
plastic deformation), thus causing the phenomenon of low-
cycle fatigue. The second type of failure occurs due to the 
accumulation of plastic strain at each cycle of loading 
(progressive deformation), causing reduction in the 
durability of the construction. 

The analysis of adaptation (shakedown analysis) belongs 
to the class of "simplified" methods that avoid the necessity 
of monitoring the entire flow response of the structures on a 
given repeated load. In addition, it represents a significant 
generalization of the theorem of limit analysis. 

The most important tool to control the plastic behavior 
of structures is the application of static and kinematic 
theorems of adaptation (shakedown theorems) proposed by 
Melanie (1938) and Koitera (1960). These two theorems 
have been successfully applied in a large number of 
problems (Maier, 1969; Polizzoto 1982; König 1987; 
Kaliszky 1996; Weichert and Maier 2001). 

The aim of this paper is to present the use of static and 
kinematic theorems of the limit analysis of structures when 
exposed to the effects of the load that grows proportionally, 
and the application of the adaptation theorem in 
determining the safe load limit of continuous beams on two 
fields exposed to two parameter load. 

Basic settings of the limit analysis 
The calculation of structures by applying the theory of 

plasticity allows plastification of materials, that is to say, 
out of the boundaries of elastic behaviour. 

In the area of elastic behavior of the structure, stresses 
and deformations are proportionally dependent. Increasing 
the load affecting the structure leads to a gradual increase in 
stress until a stress level in the most stressed fiber (or 
fibers, in the case of a symmetrical section) reaches a value 
of the yield stress. Further increase of load leads to 
plasticization of the cross section, in other words, it leads to 
the increase of the plasticity zone, which gradually expands 
in height and in length of the beam, until it comes to the 
plasticization of the entire cross section, and therefore the 
formation of a plastic joint [3]. 

It is known that, for statically determined beams, 
plasticization of one section of the structure (by forming a 
plastic joint in the area of the maximum bending moment) 
is followed by the loss of load bearing capacity and the 
transition of a beam into a mechanism. Unlike statically 
determined beams, with statically indeterminate beams, the 
formation of a plastic joint does not lead to the formation of 
a mechanism of failure. The bearing capacity of an n times 
statically indeterminate structure will be fully depleted 
when n+1 plastic joints are formed within the structure. 

For determining the limit loads, the following 
assumptions are introduced: 
- deformations are proportional to the deviation from the neu-

tral axis (Bernoulli hypothesis of straight sections is valid), 
- an idealized elasto-plastic dependency for materials ap-

plies for tension stress as well as pressure. 
- deformations are small, 
- section has the necessary ductility, 
- conditions of balance of the cross-section are met, of 

normal forces ΣX=0, as well as the bending moment 
ΣM=0. 

In order of the limit load of a structure to be determined 
by applying the theory of plasticity, first it is necessary to 
prove that an applicable limit state will be caused by 
formation of the mechanism of failure, in other words, it is 
necessary to eliminate the occurrence of any other limit 
states. It is necessary to exclude the occurrence of fatigue 
because of the effects of variable load, then the possibility 
of local instability prior to reaching full plasticization and 
exclude the appearance of any effects that would lead to 
failure of the structure before the formation of a sufficient 
number of plastic joints for its transition into the 
mechanism of failure. [7] 

In the theory of the limit analysis the following 
assumptions apply: 
- sections where the bending moment is less than the mo-

ment of plasticization of the cross-section, are in the elas-
tic range; 

- section in which full plastic moment of the cross section 
(Mp) happened is the perfect plastic joint; 

- turning of section, after reaching the plastic moment, 
grows without limit without further increasing the load, 

- body is made of elastic-perfect plastic material with infi-
nite surface flow. 
It can be said that one beam is in a state of limit balance 

when the bearing capability of the construction is fully 
exhausted, and in a sufficient number of sections the beam 
behaves completely plastically [8]. Based on this we can 
conclude that when it comes to forming a sufficient number 
of plastic joints, deformities are progressive, and the beam 
transforms into the failure mechanism. The moment that 
immediately precedes the formation of the mechanism of 
failure represents the moment of the limit balance of the 
system. 

Limit theorem analysis 
The basic theorem of the limit analysis can be applied to 

all types of static systems, be they statically determined or  
statically indeterminate. The basic theorems of the limit 
analysis are: 
- static theorem or the theorem on the lower edge of the 

limit loads and 
- kinematic theorem or the theorem about the upper limit 

of the ultimate load. 
The static theorem is based on the static equilibrium of 

an observed system. For a statically indeterminate system, 
one can assume a large distribution of bending moments 
that satisfy the equilibrium conditions, due to a given 
external load. Greenberg and Prager (1952) called this 
distribution statically admissible. If such a system satisfies 
the condition of plasticity, or in any section the bending 
moment did not exceed the appropriate value, it is said that 
it is secure. A necessary condition is that there must be at 
least one certain distribution of moments in the system, 
which is statically admissible. The static theorem states that 
this condition is sufficient to ensure the bearing capacity. 

The static theorem can be stated as follows: if there is 
any distribution of bending moment in a static system that 
is both safe and statically admissible due to load λP, then 
the value λ must be less or equal to the failure load factor 
λC, (λC>λ). The actual limit load (λCP≤Pp may be equal to 
or greater than a given one. 

Based on this theorem it can be concluded that due to the 
given load λP there is no distribution of bending moment 
that is both safe and statically admissible, then it is greater 
λ than the load factor at failure λC. We could also conclude 
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that a static system can really bear the limit load without 
breaking since the λC is the maximum load factor at which 
one cannot achieve a static equilibrium without forming 
plastic joints. 

The kinematic theorem refers to the possible mechanism 
of failure. The failure mechanism comprises a 
kinematically unstable system to which a beam is 
transformed by the joints installed in the beam sections 
where it is possible. [3]. 

In the case when the failure mechanism is known, the 
load factor at the failure λC, or the limit load (λCP) is 
determined by equating the work of external forces with the 
work absorbed in plastic joints. In case the mechanism of 
failure load corresponding to the limit load is not known in 
advance, the equation of work can be written for each 
assumed failure mechanism, where the values of (λP) will 
be obtained and which corresponds to the presumed 
mechanisms of failure. 

The kinematic theorem can be stated as follows: for a 
given static system, which is exposed to the external load 
λP, the value λ corresponding to any presumed mechanism 
of failure must be greater than or equal to the failure load 
factor λC, or λC≥λ. 

By combining the static and kinematic theorems a single 
theorem can be established. By applying both theorems we 
get the upper or lower limit of the area in which the load 
factor is at failure. The static theorem gives the value of 
force, or the load factor λC, for which the existing 
distribution of bending moments is both safe and statically 
admissible. From the kinematic theorem it is well known 
that there is no mechanism of failure for which the 
corresponding factor λ is less than λC. 

The theorem of singularity can be expressed as follows: 
for a given static system and load, if there is at least one 
safe and statically admissible bending moment distribution, 
in which the plastic moments occur in a sufficient number 
of cross sections, in order to establish a mechanism, the 
corresponding load factor of failure should be λC. 

Basic postulates of the adoption method 
In the adaptation method all assumptions that have been 

introduced in the method of the marginal analysis of 
structures are valid, where this method allows the analysis 
of structural behavior of the construction that is exposed to 
repeated stress. In the marginal structural analysis it is 
known that due to structural relief there are some residual 
deformations which cause the appearance of residual 
bending moments. The distribution of the residual bending 
moment in the structural elements is in equilibrium when it 
is relieved. The marginal analysis does not allow the 
introduction of residual bending moments occurring in the 
construction into the calculation, but it is possible by the 
adaption method. 

If the structure is made of materials in which the initial 
stress state is zero (mild material), the load applied to the 
construction leads to stress which is in some individual 
cross sections above the elastic limit, then the bending 
moment is between the moment of elastic strain My and the 
moment of full plasticity of the cross section Mp. As the 
structure is in the elastic-plastic area in the case of 
unloading, the moment-curvature relationship is linear until 
the change of bending moment of the cross section is 2My. 

 

Figure 1. Relation moment–curve in the adaptation theory 

In the diagram depending moment-curvature (Fig.1) 
shows that the size of the elastic moment of relief is 2My. 
This diagram of depending on the moment and curvature is 
valid in the theory of adaptation. Values of momentum of 
flow My and the momentum of plasticity Mp, have the same 
value as tensile and compressive. In addition, the yield 
bending moment, within which occur purely elastic 
behavior, remains 2My regardless of the previous load 
history.[3] 

Theorem of adaptation method 
Theorems of adaptations have a role to set the main 

conditions under which plastic flow in the construction  
finally stops, no matter how often and in what order the 
load is applied [5]. As in the marginal analysis of structures, 
in the methods of adaptation there are static and kinematic 
theorems on the basis of which it is possible to determine 
the safe limit load depending on the type of variable load. 

The bending moment of the observed cross section j is 
given by: 

 j j jM m M= + , (1) 

where the: 
- Mj – actual bending moment of the cross section, 
- Mj – elastic bending moment of the cross section and mj – 

residual bending moment of the cross section. 
Any distribution of residual bending moments, defined 

in this way, must be statically possible in the case when the 
structure is relieved, because the moments Mj and Mj must 
be balanced with the external load [4]. 

So we can say that the construction is adapted under the 
influence of variable repeated load, if at some point the 
condition (1) is met, and all subsequent load causes only 
elastic change of bending moments. Then it is possible to 
determine the size of the safe limit load, which, depending 
on the nature of repeated loads, can be: 
- incremental limit load, 
- alternating limit load. 

Under the terms of (1) the static theorem of adaptation 
can be expressed in the following form: if there is any 
distribution of residual bending moment in the construction 
mj and if the distribution is statically possible in case when 
the construction is not loaded, and thereby satisfied for 
each cross-section j, one of the following conditions are 
necessary to be met: 

 ( )max
jMj p j

m Mλ+ ≤ , (2) 
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 ( )min
jMj p j

m Mλ+ ≥ − , (3) 

 ( ) ( )max min 2j j e jM M Mλ − ≤ . (4) 

The value λ will be equal to or less than the safe limit 
load factor λS. 

A construction tends to adapt to the effect of variable 
repeated loads in the best possible way. So, if λ the size of 
λS, S is exceeded, there is unlimited plastic flow and in this 
case no distribution of residual moments is possible, which 
is a necessary condition for determining the safe load limit. 
Similarly, under the influence of the proportional load there 
will be structural failure when the load factor λ reaches a 
value of λC, above which a construction is not secure, and 
at the same time there is a possible distribution of the static 
bending moment. Depending on the calculated load factor λ 
it is possible, based on meeting some of equations (2) and 
(3), as well as an incremental criterion of plasticity and 
equation (3), as alternative terms of plasticity, to determine 
the safe limit load which depends on the type of variable 
repeated loads. 

The static theorem of adaptation was first implemented 
by Bleich (1932), for the ram that is twice statically 
indeterminate. A generalization of his theorem was given 
by Melan (1936), and the application of Melanoma theorem 
for solving concrete problems was given by Symonds and 
Prager (1950) and Neal (1951). 

Application of the static theorem of adaptation is 
possible only if the distribution of residual bending 
moments is already known [6].  

Application of the static theorem is justified only in 
structures with a lower level of static indeterminability. As 
the application of kinematic theorem of adaptation is based 
on an assumed mechanism of failure, whose form is 
identical to the form of the failure mechanism in the 
marginal structural analysis, so it can be said that this 
procedure is simpler  for determining the safe load limit. 
However, it is evident that the corresponding equations do 
not contain the size of the residual bending moment.  

Assuming that the observed failure mechanism is known 
and matches the incremental failure mechanism, it is possible 
to observe rotations of formed plastic joints in a number of 
characteristic sections θ [6]. If θ is at any section positive θ+, 
then we can say that the total bending moment in this section 
seeks to achieve value +MP, and if the rotation of the formed 
plastic joint is negative θ -, the bending moment tends to 
reach the value -MP. Based on the introduced assumptions, 
equation (2) and (3) can be written as: 

 ( )max
j j p j

m M Mλ+ =    for   jθ
+ , (5) 

 ( )min
j j p j

m M Mλ+ = −    for   jθ
− . (6) 

If equations (5) and (6) are multiplied by the appropriate 
rotation of the formed plastic joint in the cross section j, as 
follows: 

 ( )j j j p jj
Mmax

jm Mθ λ θ θ++ = , (7) 

 ( )j j j p jj
Mmax

jm Mθ λ θ θ−− = . (8) 

By adding equations (7) and (8) for all the plastic joints 
that are formed on the observed failure mechanism we get: 

 ( )max max
j j j j j j p jjm M M Mθ λ θ θ θ+ −⎡ ⎤+ + =⎣ ⎦∑ ∑ ∑ ∑ . (9) 

As the m is the distribution of residual moments which 
are in balance when the structure is relieved, and the 
rotation, a θ of the cross-section in which a plastic joint is 
formed, the principle of the virtual work equation can be 
written in the following format: 0j jm θ =∑ . The basic 

equations of incremental failure can be written as: 

 ( )max max
j j j j p jjM M Mλ θ θ θ+ −⎡ ⎤+ =⎣ ⎦∑ ∑ ∑ . (10) 

On the basis of equation (10) the kinematic theorem of  
adaptation can be stated as follows: the parameter value λ 
corresponding to any assumed mechanism of failure 
(alternating λa or incremental λI), must be greater than or 
equal to the value of the parameter of a safe limit load λ S. 

The kinematic theorem of adaptation in this form is first set 
by Koiter (1956, 1960), although it can be said that he did so 
on the basis of work [9] of P. S. Symods and B. G. Neal, 
which was published on the first national congress of applied 
mechanics in Chicago, 1951. They started with the assumption 
that the work of all the remaining moments on the possible 
mechanism of failure is equal to zero. In this paper we present 
the method of calculating the incremental force of the failure 
by applying the methods of Symonds and Neal. 

The limit load of continuous beam in two fields 
Determination of the limit load of a continuous beam in 

two fields (Fig.2) will be conducted by applying the principle 
of virtual work by a gradual as well as direct method. A 
beam is once statically indeterminate, where you can see 
three characteristic sections (2, 3, 4) in which it is necessary 
to determine the bending moments. To determine the 
bending moment in the marked sections it is necessary to 
write three equations, including one compatibility equation 
which is obtained by applying the principle of virtual forces, 
while with the application of the principle of virtual 
displacements two equations of equilibrium are obtained. 

 

Figure 2. Continuous two–span beam loaded by concentrated forces in the 
middle of span 

 

Figure 3. (a) Failure mechanism of the first field, (b) Failure mechanism of 
the second field 
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By insertion of joints in characteristic sections failure 
mechanisms are formed leading to virtual displacement and 
virtual rotation of characteristic sections of the beam. The 
equations of balance are obtained by considering 
independent mechanisms of failure, where, in this case, two 
independent mechanisms of failure can be seen (Fig.3 (a) 
and Fig.3 (b)). 

Equations of balance can be presented in the following 
form: 

 ( ) ( )2 3 12 ,2
lM M Pθ θ θ+ − =  (11) 

 ( ) ( )3 4 2- 2 .2
lM M Pθ θ θ+ =  (12) 

As equations of balance of a static system do not depend 
on the characteristics of materials of which it is made, they 
must be satisfied regardless of whether the static system is 
in the elastic or plastic region. 

Compatibility equations are obtained by applying 
principles of virtual forces at the moment when the 
observed system is unloaded. As the system is unloaded, 
the distribution of the bending moment does not exist, so 
therefore it is assumed that along the  elements of the static 
system there is an arbitrary (virtual) distribution of bending 
moments (m) (Fig.4) which was first introduced by Heyman 
(1961.) [5, 6]. 

 

Figure 4. Assumed distribution of bending moments of the continuous 
beam on two fields. 

A number of independent distributions of residual 
bending moments (Fig.4) equals the number of static 
indeterminacy of a static system. The assumed distribution 
of bending moments must satisfy equations (13) and (14) 
which are written by applying the principle of virtual 
displacement at the moment when the system is unloaded, 
and  for the possible independent failure mechanisms: 

 2 32 0,m m− =  (13) 

 3 42 0m m− + =  (14) 

Under the influence of the load that affects the static 
system it leads to bending moment and rotation of cross 
sections whose distribution is given in the last two rows of 
Table 1. Applying the principles of virtual forces a 
compatibility equation is obtained, as follows: 

 ( )2 3 4 2 3 4
12EI3 5 3 2 0M M M l θ θ θ+ + + + + = . (15) 

Table 1. Continuous beam bending moments on two fields 

virtual distribution 
Cross section 1 2 3 4 5 
m i 0 0,5 1,0 0,5 0 

actual distribution 
EIκ=M 0 M2 M3 M4 05 

θ 0 θ2 θ3 θ4 0 

Equilibrium equations (11) and (12), as well as 
compatibility equations (15), make the system of equations 
(16) by which it is possible to determine the bending 
moments in the characteristic sections: 

2 2

3 3

4 4

22 1 0 0 0 0
120 1 2 0 0 0 23 5 3 1 2 1 0

P l
M P lEIM lM

α
θ βθ
θ

Δ⎡ ⎤
⎢ ⎥− Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− Δ + Δ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

(16) 

With the system of equations (16) it is possible to 
determine gradually the value of the load after the 
formation of each plastic joint, until development of a 
failure mechanism, simultaneously determining the 
rotations of the sections in which the plastic joints formed. 
In order to obtain the limit load in an one-parameter form, 
in the system of equations (16) forces P1 and P2 shall be 
substituted by force P. 

 

Figure 5. Elastic bending moment distribution in a function of load 

Solving equation system (16) provided that the rotation 
of the characteristic cross-sections (θ2, θ3, θ4) is equal to 
zero, we get the bending moment of the section when the 
beam is in the elastic range (Fig.5). By equating the highest 
values of the bending moment (section 3) and cross-
sectional moment of plasticity, we get the size of the load 
that leads to the formation of the first plastic joint: 

 ( ) ( )3 1
323 .32 3

p
p

M
M Pl M P

l
α β

α β
= + = ⇒ =

+
 (17) 

After the formation of a plastic joint in section 3, the 
beam becomes statically determined, and the distribution of 
bending moments is shown in Fig.6. 

 

Figure 6. Distribution of bending moment after the formation of the first 
plastic joint 

Further increasing the load, the bending moment of the 
section 3 is equal to the moment of plasticity of the 
intersection, where there is a rotation of the section. 
Substituting conditions (18) in the system of equations (16) 
we obtain the distribution of bending moments in the 
function of load growth after the formation of the first 
plastic joint (Fig.7).  

 3 p 3 3

2 4

M , 0, 0,
0.

M M θ
θ θ
= Δ = Δ >

Δ = Δ =
 (18) 

1 2 4 5

3 

pM  

( )
( )
13 3

6
pM α β
α β

−
+

 
( )
( )
13 3

6
pM β α
α β

−
+

 

1 2 4 5

3 

( )3 P
32

α β+l  

( )P 13 3
64

α β−
l  ( )P 13 3

64
β α−

l  

1 
2 4 

5

1,0 

0,5 

3 

0,5 
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Figure 7. Distribution of the bending moment in the function of growth 
after the formation of the first plastic joint 

Increase of the load that leads to the formation of other 
plastic joints in section 2 is obtained by superimposing the 
values of bending moments (Fig.6 and Fig.7) and: 

 

( )
( )

( )
( )

1

1

13 3
0,25

6
18 14

,
3

p
p

p

M
P l M

M
P

l

α β
α

α β
β α

α α β

−
− − Δ = − ⇒

+
−

Δ =
+

 (19) 

while the increase stress that leads to the formation of a 
plastic joint section 4 is: 

 

( )
( )

( )
( )

1

1

13 3
0,25

6
18 14

,
3

p
p

p

M
P l M

M
P

l

β α
β

α β
α β

α α β

−
− − Δ = − ⇒

+
−

Δ =
+

 (20) 

a rotation of the section in which the first plastic joint is 
formed is: 

 ( )2
1

3 32
Pl

EI
α β

θ
Δ +

Δ = − . (21) 

Load that leads to the formation of plastic joints of 
sections 3 and 2, and thus the formation mechanism of the 
partial failure of the first field (α≥β) is: 

 ( )
( )
( )2 1 1

32 18 14
3 3

p pM M
P P P

l l
β α

α β α α β
−

= + Δ = +
+ +

, (22) 

while the load which leads to the formation of the plastic 
hinge section 3 and 4 and the partial failure mechanism 
(α≤β) is: 

 ( )
( )
( )2 1 1

32 18 14
3 3

p pM M
P P P

l l
α β

α β α α β
−

= + Δ = +
+ +

. (23) 

Based on expressions (22) and (23) it is possible to 
display a marginal change of the breaking load in one-
parameter form, depending on the change in the length of 
field of the beam (Fig.8). On the diagram, it can be 
concluded that increasing the length of the field gives a 
decrease of force that leads to the formation mechanism of 
failure. So, if α β≥  it comes to the formation of partial 
mechanism of failure of the first field, and when β α≥  
when it comes to the formation of a partial failure 
mechanism of the second field of the beam, in the case 
when α= β leads to the formation of the mechanism of 
failure in both fields simultaneously. 

The principle of virtual work can be applied to determine 
the ultimate load of the line system by the direct method. 
The equation of virtual work is set to the previously 
presumed mechanism of failure. In this case, the equation 
of virtual work of all external forces is performed, with the 
work absorbed in sections where plastic joints are assumed. 
The limit load is the least of all limit loads obtained on the 
presumed mechanisms of failure. 

 

Figure 8. Change of the threshold breaking force depending on the change 
of α i β 

For the observed beam (Fig.2), three mechanisms of 
failure, two independent (Fig.9.a. and 9.b.) and a combined 
(Fig.9.c) one, can be formed. 

 

Figure 9. (a) The mechanism of failure of the first field, (b) The 
mechanism of failure of the second field, (c) Combined failure mechanism 
in both fields 

Using the equation of virtual work for each of the 
possible mechanisms of failure marginal failure forces are 
obtained given by equations (15), (16) and (17): 

 ( ) 12 2p p
lM M P αθ θ θ+ = ,  

 1
6 pM

P lα= , (24) 

 ( ) 22 2p p
lM M P βθ θ θ+ = ,  
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6 pM

P lβ= , (25) 

1 2(2 ) ( ) ( ) (2 ) 2 2p p p p
llM M M M P P βαθ θ θ θ θ θ+ + + = + , 

 ( )1 212 pM l P Pα β= + . (26) 

For each of the failure mechanisms one limit breaking 
force was obtained, the one of which that is the lowest is at 
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the same time the force that will lead to the formation of the 
mechanism of failure. The size of limit loads obtained by 
the direct method is equal to the threshold breaking force, 
which is obtained using the gradual method. 

When the structure is simultaneously acted on by two 
independent loading systems of an arbitrary ratio, the 
analysis of limit loads can be made based on the interactive 
diagrams. Equations 24, 25 and 26, obtained by the direct 
proceedings principle of virtual work, .are used for the 
construction of the interaction diagram. The interconnection 
of failure mechanism and the relationship between loads is 
best observed in the interaction diagram. 

With the interactive diagram (Fig.10) it can be 
concluded that the ratio of the load defined on the basis of 
the segment AB leads to the formation of the mechanism of 
failure in the second field when the ratio of the load is 

1 2 1P P ≤ , while for the segment bc the ratio of the load is 

1 2 1P P ≥  and it leads to failure mechanism in the first field. 

 
Figure 10. Interaction diagram 

For any ratio of the load within the area 0abc0 the 
construction is safe to the occurrence of the failure 
mechanism. If the load ratio is such that it is defined by one 
of the segments, it leads to the formation of the mechanism 
of failure defined by that segment.  

The limit load of continuous beams in two fields 
exposed to repeated stress 

Application of the theorem of adaptation will be shown 
on the example of a continuous beam in two fields (Fig.11) 
for which in the earlier part of the work the limit breaking 
force  is determined using  static and kinematic theorems in 
the case when the load increases proportionally until the 
load limits. 

 
Figure 11. Continuous two–span beam loaded by concentrated forces in 
the middle of the span 

If we apply the force P1 to the continuous beam in the 
first field, and then the force P2 in the second field, the 
distribution of elastic bending moments is as shown in 
Fig.12. As the beam system is once statically indeterminate 
there is only one possible distribution of the residual 
bending moment (Fig.13). 

 

Figure 12. Elastic bending moment of the continuous two–span beam 

 

Figure 13. Possible distribution of the retained bending moment 

Let the load acting on the continuous slab have values  
located in the following range: 

1 1 2 20 , 0 .P P P P≤ ≤ ≤ ≤  

Applying the static theorem of adaptation on the basis of 
equations (2) and (3), as well as the incremental criterion of 
plasticity and equation (4) as an alternative condition of 
plasticity in the first field of beam, it is possible to write the 
following system of equations for section 2: 

 ( )
( )

1 5 8
32 p

P l
m M

α α β
α β

+
− ≤

+
, (27.1) 

 ( )
2

23
32 p

P l m Mβ
α β

+ ≤
+

, (27.2) 
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2
1 25 8 3 2
32 32 e

P l P l M
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for section 3, over intermediate support: 
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 0 2 pm M+ ≤ , (28.2) 
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while for the cross section 4, the following equations can be 
written  

 ( )
( )

2 8 5
32 p

P l
m M

β α β
α β

+
− ≤

+
, (29.1) 

 ( )
2

13
32 p

P l m Mα
α β

+ ≤
+

, (29.2) 

 ( )
( ) ( )

2
2 18 5 3 2
32 32 e

P l P l M
β α β α

α β α β
+ ⎛ ⎞− − ≤⎜ ⎟+ +⎝ ⎠

. (29.3) 

Solving the system of equations (27.1) and (28.1) and 
equations (28.1) and (29.1), we get the size of the 
incremental limit forces that lead to the formation of the 
mechanism of failure, as well as the size of the 
corresponding residual bending moments in the two-
parameter form. Applicable marginal load only depends on 
the relationship coefficients α i β. Thus,  if α β≥ , the 
failure mechanism forms in the first field, the size of the 
incremental force of failure and the residual moment are: 

 ( ) ( )2
1 2

48
8 3 pM

P P l
α β

α α β β
+

+ + = , (30.1) 

 ( )
( )

2
1 28 6

96
P l P l

m
α β α β

α β
− −

=
+

, (30.2) 

while in the case when β α≥ , the failure mechanism is 
formed in another field, so the incremental breaking force 
and the residual  moment are: 

 ( ) ( )2
2 1

48
8 3 pM

P P l
α β

β α β α
+

+ + = , (31.1) 

 ( )
( )

2
2 18 6

96
P l P l

m
β α β α

α β
− −

=
+

. (31.2) 

By solving equations (27.3) (28.3) and (29.3) we get the 
failure forces on the basis of conditions of alternative 
plasticity for the section in the first field, based on equation 
(27.3): 

 ( ) ( )2
1 25 8 3 64 eP l P l Mα α β β α β+ + = + , (32.1) 

for the section over support: 

 ( )2 2
1 23 3 32 eP l P l Mα β α β+ = + , (33.1) 

and for section 4 in the second field: 

 ( ) ( )2
2 18 5 3 64 eP l P l Mβ α β α α β+ + = + , (34.1) 

The size of the limit of the threshold breaking force 
under alternative conditions of failure depends on the  
cross-sectional shape coefficient. In this example, we will 
adopt that the coefficient of the section of a rectangular 
shape is 1.50oblα = . 

 

Figure 14. Interaction diagram 

When two independent load systems P1 i P2 in an 
arbitrary relation simultaneously operate on the beam, the 
analysis of critical load can be made based on the 
interactive diagrams in which mutual interconnectivity of 
failure mechanism is observed as well as the relationship 
between loads. Fig.14 shows the interaction diagram in the 
case where the fields are the same length, 1α β= = ,one 
may observe that the area 0abc0 is the limit area which is 
defined on the basis of incremental failure conditions. 

If the load is in the range 1 20 , 0P P P P≤ ≤ ≤ ≤ , we get 
the marginal load in an one-parameter form, which depends 
on the parameters α and β that define the field length of 
continuous beams. 

The following incremental values of the breaking force 
and the residual bending moment are obtained for the 
observed cross-section 2 based on the equation (27.1) and 
(28.1): 
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,(35) 

while for section 4, based on equations (28.1) and (29.1), 
we get the incremental breaking force and the residual 
bending moment: 
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β αβ α
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.(36) 

On the basis of expressions (35) and (36), the diagrams 
were constructed (Fig.15 and Fig.16) with the introduced 
incremental changes of the breaking load and the residual 
bending moment when there is 0≤α≤10 and 0≤β≤10. In the 
diagrams, it is possible to observe the changes of the 
incremental failure force and residual bending moments, 
depending on the length of the field beam and the reliable 
mechanism of the failure of beams. 
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Figure 15. Incremental changes of the breaking force, depending on the α 
and  β 

 

Figure 16. Change of residual bending moment depending on the α  and β 

An alternative breaking force in an one-parameter form 
for section 2 is: 

 ( )
64
5 3

eMP
l α β

=
+

, (37) 

for section 3 over support: 

 ( )
( )2 2

32
3

eM
P

l
α β

α β
+

=
+

, (38) 

for section 4: 

 ( )
64
3 5

eMP
l α β

=
+

. (39) 

The application of the kinematic theorem of adaptation to 
determine the incremental limit load will be displayed using 
the Symonds and Neals method presented in paper [9]. 

 

Figure 17. Possible failure mechanism of the continuous two–span beam 

Based on the conditions that the residual bending 
moments on the possible mechanism of failure shown in 
Fig.17 (a) are in equilibrium, one can write the following 
equation: 

 ( ) ( )2 32 0m mθ θ+ − = , (40.1) 
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 (40.2) 

Solving equation (40.2), we get the incremental power 
failure in the two-parameter form: 

 ( ) ( )0 0 2
1 28 3 48 pP l P l Mα α β β α β+ + = + , (41.1) 

respectively: 
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. (41.2) 

Based on the mechanism of failure (Fig.17 (b)), it is 
possible to write the following equation: 

 ( ) ( )3 4 2 0m mθ θ− + = , (42.1) 
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By solving equation (42.2) we obtain: 

 ( ) ( )2
1 13 8 48 pP l P l Mα β β α α β+ + = + , (43.1) 

or: 
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For the mechanism of failure (Fig.17 (c)), it is possible 
to write the following equation: 

 ( ) ( ) ( )2 3 42 2 2 0m m mθ θ θ+ − + = , (44.1) 
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By solving the equation (44.2) we obtain the incremental 
force of failure: 

( ) ( ) ( )1 111 8 11 8 96 pP l P l Mα α β β β α α β+ + + = + , (45.1) 
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equal, so that leads to the conclusion that the obtained 
solution is unique thus satisfying the theorem of uniformity. 
For different sizes of the coefficients α and β different sizes 
of the limit and an incremental loading of failure are 
obtained, where the applicable forms of mechanisms of 
failure are different. 

Conclusion 
The paper firstly describes the use of static and 

kinematic theorems of the limit analysis of structures in 
determining the limit load for linear support. In both cases 
the limit state of the beam is observed. The application of 
these theorems is shown in the example of a continuous 
beam in two fields loaded with two-parameter or one-
parameter load. When the limit load is defined as a two-
parameter load, dependency of load and the possible failure 
mechanism is shown in the diagram of interaction, whereas 
in the case when the limit load is defined as an one-
parameter load, its changes which depend on the length of 
the beam field are presented. The basic advantage of the 
marginal analysis method based on limit theorems is 
reflected in the simplicity and a very rapid determination of 
ultimate load. 

The analysis of the behavior of a linear support subjected 
to variable load whose intensity is in the pre-defined range 
is presented for the continuous beam in two fields. The 
beam is loaded in the middle of the field by concentrated 
forces. Failure load was determined using static and 
kinematic theorems of adaptation, as one-parameter and 
two-parameter load. As the load is always in the same 
direction, it is possible to determine only incremental load 
failure.  

On the basis of marginal changes of the breaking force 
(Fig.8) and the incremental force of failure (Fig.15) in an 

one-parameter form, it can be concluded that the use of the 
methods of adaptation is justified for certain related 
coefficients and a continuous beam, while in some cases the 
load may be marginally determined by the application of 
the limit theorems since the difference between the limit 
force and the incremental force of failure is very small. 
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Primena teorema granične analize i teorema adaptacije za 
određivanje opterećenja loma kontinualnog nosača 

Primenom teorema granične analize konstrukcija moguće je odrediti granično opterećenje linijskih sistema izloženih 
opterećenju koje proporcionalno raste sve do formiranja mehanizma loma. U slučaju kada su linijski sistemi izloženi 
ponovljenom opterećenju granične teoreme ne daju adekvatna rešenja, tako su se paralelno sa njima razvijale i 
teoreme adaptacije koje su omogućile određivanje sigurnog graničnog opterećenja. U ovom radu je prikazan 
postupak određivanja opterećenja koje dovodi do loma kontinualnog nosača na dva polja primenom graničnih 
teorema i teorema adaptacije kao i promena granične sile loma i inkrementalne sile loma u zavisnosti od dužine polja 
nosača. 

Ključne reči: mehanika loma, mehanizam loma, kontinualni nosač, savijanje  nosača, moment savijanja, kritična sila, 
adaptivna metoda. 

 

Application de la théorème de l’analyse marginale et la théorème 
d’adaptation pour la détermination de la charge de fracture de la 

poutrelle continue 
En appliquant la théorème de l’analyse limite de la construction il est possible de déterminer la charge limite des 
systèmes linéaires exposés à la charge qui augmente proportionnellement jusqu’à la formation du mécanisme de 
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fracture. Dans le cas où les systèmes linéaires exposés à la charge répétée de la théorème limite ne donnent pas les 
solutions adéquates on a développé parallèlement les théorèmes d’adaptation    qui ont permis la détermination de la 
charge critique sure. Dans ce travail on a présenté le procédé pour la détermination de la charge qui cause la fracture 
de la poutrelle continue à deux champs par l’application des théorèmes de limite et théorèmes d’adaptation ainsi que 
les changements de la force limite de fracture et la force d’incrément de fracture dépendant de la longueur du champ 
de porteur. 

Mots clés: mécanique de fracture, poutrelle continue, déformation de poutrelle, moment de déformation, force 
critique, méthode adaptable. 

 

 
 


