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This paper gives sufficient conditions for the practical and finite time stability of of a particular class of linear discrete 
time delay systems. ( ) ( ) ( )0 11 1k A k A k+ = + −x x x . When we consider the finite time stability concept, these new, 
delay independent conditions are derived using an approach based on the Lyapunov – like functions. When the 
practical and attractive practical stability are considered, the above mentioned approach is combined and supported 
by a classical Lyapunov technique to guarantee  atractivity  properties of the system behavior. 
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Introduction 
HE problem of investigation of time delay systems has 
been exploited over many years. Delay is very often 

encountered in different technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, long 
transmission lines, etc. The existence of pure time delay, 
regardless of whether it is present in the control or/and state, 
may cause an undesirable system transient response, or 
generally, even an instability. Consequently, the problem of 
stability analysis of this class of systems has been one of the 
main interest of many researchers. In general, the introduction 
of time lag factors makes the analysis much more complicated. 
In the existing stability criteria, mainly two ways of approach 
have been adopted. Namely, one direction is to contrive the 
stability condition which does not include information on the 
delay, and the other is the method which takes it into account. 
The former case is often called the delay–independent criteria 
and generally provides nice algebraic conditions. Numerous 
reports have been published on this matter, with particular 
emphasis on the application of Lyapunov’s second method, or 
on using the idea of matrix measure Lee, Diant (1981), Mori 
(1985), Mori et al. (1981), Hmamed (1986), Lee et al. (1986). 

Practical matters require that we concentrate not only on 
the system stability (e.g. in the sense of Lyapunov), but also 
on bounds of system trajectories. 

A system could be stable but still completely useless 
because it possesses undesirable transient performances. 
Thus, it may be useful to consider the stability of such 
systems with respect to certain subsets of the state-space 
which are defined a priori in a given problem. 

Besides that, it is of particular significance to consider 
the behavior of dynamical systems only over a finite time 
interval. 

 

These boundedness properties of system responses, i.e. 
the solution of system models, are very important from the 
engineering point of view.  

Due to this fact, numerous definitions of the so–called 
technical and practical stability were introduced. Roughly 
speaking, these definitions are essentially based on the 
predefined boundaries for the perturbation of initial 
conditions and allowable perturbation of the system 
response. In engineering applications of control systems, 
this fact becomes very important and sometimes crucial, for 
the purpose of characterizing in advance, in a quantitative 
manner, possible deviations of the system response. 

Thus, the analysis of these particular boundedness 
properties of solutions is an important step, which precedes 
the design of control signals, when finite time or practical 
stability control is concerned. 

It should be noticed that up to nowadays, there were no 
results concerning that problem of non–Lyapunov stability, 
when the discrete time delay systems are considered. 

Some of initial results have been published inthe paper of 
Debeljković, Aleksendrić (2003), completely based on the 
discrete fundamental matrix of a system to be considered. It is 
well-known that computing the discrete fundamental matrix is 
generally more difficult than to find the concrete solution of a 
system of retarded difference equations. 

We can admit that these results represented the first 
extension of the concept of finite time and practical stability 
to the class of the linear discrete time delayed system. In 
order to understand better serious problems that cause 
existing time delay in systems dynamics, but also in 
forming corresponding criteria, some short recapitulation of 
some results, derived for ordinary discrete time delayed 
systems, is presented in the sequel. 

T 



 DEBELJKOVIĆ,D. etc.: FURTHER RESULTS ON STABILITY OF LINEAR DISCRETE TIME DELAY SYSTEMS OVER THE FINITE TIME INTERVAL... 49 

Linear discrete time systems 
A specific concept of discrete time systems, practical 

stability operating on the finite time interval, was 
investigated by Hurt (1967) with a particular emphasis on 
the possibilities of error arising in the numerical treatment 
of results. 

A finite time stability concept was, for the first time, 
extended to discrete time systems by Michel and Wu 
(1969). 

Practical stability or “set stability”, throughout the 
estimation system trajectory behavior on the finite time 
interval was given by Heinen (1970, 1971). He was the the 
first who gave necessary and sufficient conditions for this 
concept of stability, using the Lyapunov approach based on 
the “discrete Lyapunov functions” application. 

Even more detailed analysis of these results considering 
different aspects of discrete time systems practical stability 
as well as the questions of their realization and 
controllability was given by Weiss (1972). The same 
problems were treated by Weiss and Lam (1973) who 
extended them to the class of nonlinear complex discrete 
systems. 

Efficient sufficient conditions of finite time stability of 
linear discrete time systems expressed through norms 
and/or matrices were derived by Weiss and Lee (1971). 

Lam and Weiss (1974) were the first to apply the so–
called concept of “final stability” to discrete time systems 
whose motions are scrolled within the time varying sets in 
the state space. 

Some simple definitions connected to sets, representing 
difference equations or at the same time discrete time 
systems, were given by Shanholt (1974). 

Only the sufficient conditions are given by the 
established theorems. These results are based on the 
Lyapunov stability and can be used, in a way, for a finite 
time stability concept, for which reason they are mentioned 
here. 

Grippo and Lampariello (1976) have generalized all; 
foregoing results and given the necessary and sufficient 
conditions of different concepts of finite time stability 
inspired by definitions of practical stability and instability, 
earlier introduced by Heinen (1970). 

The same authors applied the before–mentioned results 
in the analysis of “large–scale systems”, Grippo, 
Lampariello (1978). 

Practical stability with settling time was for the first time 
introduced by Debeljković (1979.a) in connection with the 
analysis of different classes of linear discrete time systems, 
general enough to include time invariant and time varying 
systems, systems operated in free or forced operating 
regimes, as well as the systems the dynamical behavior of 
which is expressed through the so–called “functional system 
matrix”. In the mentioned paper, the sufficient conditions of 
practical instability and a discrete version of a very well 
known Bellman–Gronwall lemma have also been derived. 

Other papers, Debeljković (1979.b, 1980.a, 1980.b, 
1983) deal with the same problems and mostly represent the 
basic results of the PhD. dissertation, Debeljković (1979.a). 

For the particular class of discrete time systems with the 
functional system matrix, sufficient conditions have been 
derived in Debeljković (1993). 

System description 
Systems to be considered are governed by the vector 

difference equation: 

 ( ) ( ) ( )1k A k k+ =x x , (1) 

 ( ) ( )1k A k+ =x x , (2) 

 ( ) ( )( ) ( )1 ,k A k k k+ =x x x , (3) 

 ( ) ( )( ) ( )1k A k k+ =x x x , (4) 

 ( ) ( ) ( )1k A k k+ = +x x f , (5) 

where ( ) nk ∈x R  is the state vector and the vector function 

satisfies: : r
Nf R RK × → . 

It is assumed also that ( )f  satisfies the adequate 
smoothness requirements so that the solution of (2) exists 
and is unique and continuous with respect to k  and initial 
data and is bounded for all bounded values of its arguments. 

Let nR  denote the state space of the systems given by 
(1–5) and ( )⋅  Euclidean norm. 

The solutions of (1–5) are denoted by: 

( ) ( )0 0, ,k k k≡x x x . (6)

The discrete–time interval is denoted with NK , as a set 
of non–negative integers: 

{ }0 0:N Nk k k k k= ≤ ≤ +K . (7)

The quantity Nk  can be positive integer or the symbol 
+∞ , so that finite time stability and practical stability can 
be treated simultaneously. 

{ },  0,s s Nk k k∈  is the prespecified settling time. 
s
NK  denotes the discrete–time interval as follows: 

( ) ( ){ }0 0:s
s NNK k k k k k k= + < < + . (8)

The set difference is denoted by: \ s
N NK K . 

Let : n
NV × →R RK , so that ( ),V k x  is bounded for 

and for which x  is also bounded. 

Define the total difference of ( )( ),V k kx along the 
trajectory of the systems given by (1–5) with: 

 ( )( ) ( )( ) ( )( ), 1, 1 ,V k k V k k V k kΔ = + + −x x x . (9) 

For the time–invariant sets, it is assumed: ( )S  is a 
bounded, open set. 

The closure and the boundary of ( )S  are denoted by ( )S  

and \ s
N Nk∀ ∈K K , respectively, so; ( ) ( ) ( )\∂ =S S S . 

( )
cS  denotes the complement of ( )S . 

Let βS  be a given set of all allowable states of the 

system for \ s
N Nk∀ ∈K K  and γS  is a set of all allowable 

states of the system for Nk∀ ∈K , γ β⊂S S . 

Set αS , α β⊂S S  denotes set of all allowable initial 
states and εS  corresponding set of disturbances. 
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Sets αS , βS , γS  are connected and a priori known. 

( )λ  denotes the eigenvalues of the matrix ( ) . 

maxλ  is the maximum eigenvalue1. 

Definition of practical stability and practical instability 
Definition 1. The systems given by (1), (3), and (4) are 

practically stable with respect to { }0 , , ,Nk α βK S S , if and 
only if: 

 ( ) 2 2
0 0k α= <x x , (10) 

implies: 

 ( ) 2 , Nk k Kβ< ∀ ∈x . (11) 

Definition 2. A system, given by (2), is practically 
stable with respect to { }0 , , ,Nk α βK S S , if and only if: 

 ( )( )2
0 , , Nk k k Kα ε< ∧ ≤ ∀ ∈x f x , (12) 

implies: 

 ( ) 2 , Nk k Kβ< ∀ ∈x . (13) 

Definition 3. A system given by (1), is practically 
unstable with respect to ( ){ }2

0 , , , ,Nk α β ⋅K , α β< , if 

there is: 

 2 *
0 , Nk kα< = ∈x K , (14) 

so that the next condition is fulfilled: 

 ( ) 2* ,k β α β≥ <x . (15) 

Definition 4. A system given by (2), is practically 
unstable with respect to ( ){ }2

0 , , , , ,Nk α β ε ⋅K , α β< , if 

there is: 

 ( )( )2
0 , , Nk k kα ε< ∧ ≤ ∀ ∈x f x K , (16) 

so that the next condition is fulfilled: 

 ( ) 2* ,k β α β≥ <x . (17) 

Some previous results 
Theorem 1. A system, given by (1), is practically stable 

with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if the 

following conditions are satisfied: 

 ( )
0

0

1

max ,
j k k

N
j k

j kβλ α

= + −

=

≤ ∀ ∈∏ K , (18) 

Debeljković (2001). 
Theorem 2. A system, given by (2), is practically stable 

with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if the next 

conditions are fulfilled: 
                                                           
1 See Apendix A. 

 ( )0.5 10.5 *
max max ,kk

Nk kβλ ε λ
α

−+ ⋅ ⋅ ≤ ∀ ∈K , (19) 

Debeljković (2001). 
Theorem 3. A system, given by (1), is practically 

unstable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if 

there exists a real, positive number ] [,  0,δ δ α∈  and a 

time instant ( )* *
0,  : Nk k k k k K= ∃! > ∈  for which the next 

condition is fulfilled: 

 ( )
*

0

0

1
*

min ,
j k k

N
j k

j kβλ
α

= + −

=

> ∈∏ K , (20) 

Debeljković (2001). 
Theorem 4. A system given by (2), is practically 

unstable with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if 

there exists a real, positive number δ  and 0ε , such that: 
2

0δ α< <x  and ( )0 ,  Nk kε ε< < ∀ ∈f K  and a time 

instant ( )* *
0,  : Nk k k k k K= ∃! > ∈  such that the next 

condition is fulfilled: 

 ( )** 0,5 10,5 * *
min min ,

kk
Nk kδλ ε λ β

−
− > ∈K , (21) 

Debeljković (2001). 
Theorem 5. A system, given by (3), is practically stable 

with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there exists 

a real, positive number η  and if the next conditions are 
fulfilled2: 

 ( ) 1, , NA kβη κ −< ∀ ∈ ∀ ∈x x K , (22) 

 ,k
Nkβη

α
< ∀ ∈K , (23) 

Debeljković (2001). 
Theorem 6. A system, given by (4), is practical stable 

with respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there exists 

a real, scalar function ( )kξ , which is bounded for and if 
the following conditions are satisfied: 

 ( ) ( ) 1, , , NA k k kβξ κ −< ∀ ∈ ∀ ∈x x K , (24) 

 ( )
0

0

1

,
j k k

N
j k

j kβξ α

= + −

=

< ∀ ∈∏ K , (25) 

Debeljković (2001). 

Linear discrete time delay systems 
As far as we know, the only result, considering and 

investigating the problem of the non–Lyapunov analysis of 
linear discrete time delay systems, is one that has been 
mentioned in the introduction, e.g. Debeljković, Aleksendrić 
                                                           
2 See Apendix B. 
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(2003), where this problem has been considered for the first 
time. 

Investigating system stability throughout the discrete 
fundamental matrix is very cumbersome, so there is a need 
to find some more efficient expressions that should be 
based on calculation appropriate eigenvalues or a norm of 
appropriate systems matrices as it has been done in a 
continuous case. 

System description 
Consider a linear discrete system with state delay, 

described by: 

 ( ) ( ) ( )0 11 1k A k A k+ = + −x x x , (26.a) 

with the known vector valued function of initial conditions: 

 ( ) ( )0 0 0, 1 0k k k= − ≤ ≤x ψ , (26.b) 

where ( ) nk ∈x R  is a state vector and with the constant 
matrices 0A  and 1A  of appropriate dimensions. 

The time delay is constant and equals one. 
For some other purposes, the state delay equation can be 

represented in the following way: 

 ( ) ( ) ( )0
1

1
M

j j
j

k A k A k h
=

+ = + −∑x x x , (27.a) 

 ( ) ( ) { }, , 1, ... , 0h hϑ ϑ ϑ= ∈ − − +x ψ , (27.b) 

where ( ) nk ∈x R , n n
jA ×∈R , 1, 2j = , h – is an integer 

representing the system time delay and ( )⋅ψ is an apriori 
known vektor function of the initial conditions as well. 

Definition of practical stability and practical instability 
Definition 5. A system, given by (26), is attractive 

practically stable with respect to { }0 , , ,Nk α βK S S ,  
if and only if: 

 ( )
0 00 0

2 2
0 0T TA PA A PA

k α= <x x , (28) 

implies: 

 ( )
00

2 ,T NA PA
k kβ< ∀ ∈x K , (29) 

with a property that: 

 ( )
00

2lim 0TA PAk
k

→∞
→x . (30) 

Definition 6. A system, given by (26), is practically 
stable with respect to { }0 , , ,Nk α βK S S , if and only if: 

 2
0 α<x , (31) 

implies: 

 ( ) 2 , Nk kβ< ∀ ∈x K .  

Definition 7. A system, given by (26), is atractive 
practically unstable with respect to ( ){ }2

0 , , , ,Nk α β ⋅K , 

α β< , if for: 

 
00

2
0 TA PA

α<x , (33) 

there exists a moment: *
Nk k= ∈K , so that the next 

condition is fulfilled: 

 ( )
00

2*
TA PA

k β≥x , (34) 

with a property that: 

 ( )
00

2lim 0TA PAk
k

→∞
→x . (35) 

Definition 8. A system given by (2) is practically 
unstable with respect to ( ){ }2

0 , , , ,Nk α β ⋅K , α β< , if for: 

 2
0 α<x , (36) 

there exists a moment: *
Nk k= ∈K , such that the next 

condition is fulfilled: 

 ( ) 2*k β≥x , (37) 

for some *
Nk k= ∈K . 

Definition 9. The linear discrete time delay system, 
given by (27.a) is finite time stable with respect to 

( ){ }0, , , ,Nk kα β ⋅ , α β≤ , if and only if for every 

trajectory ( )kx  satisfying initial function, given by (26.b) 
such that: 

 ( ) , 0, 1, 2, ,k k Nα< = − − ⋅⋅⋅ −x , (38) 

implies: 

 ( ) 2 , Nk kβ< ∈x K , (39) 

Aleksendrić (2002), Aleksendrić, Debeljković (2002), 
Debeljković, Aleksendrić (2003). 

This Definition is analogous to that presented, for the 
first time, in Debeljković et al. (1997.a, 1997.b, 1997.c, 
1997.d) and Nenadic et al. (1997). 

Some previous results 
Theorem 7. The linear discrete time delay system, given 

by (27), is finite time stable with respect to 

( ){ }2, , , ,M Nα β ⋅ , α β< , ,α β +∈R , it is sufficient that: 

 ( )

1

1 , 0,1, ,
1

M

j
j

k k N
A

β
α

=

Φ < ⋅ ∀ = ⋅⋅⋅

+∑
, (40) 

Aleksendrić (2002), Aleksendrić, Debeljković (2002), 
Debeljković, Aleksendrić (2003). 

Proof. The solution of (27.a), with initial condition 
(27.b) can be expressed in terms of the fundamental matrix, 
as it is written below: 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

10 1
M

k k k A
k A N

= Φ + Φ − + ⋅⋅⋅
+Φ −

x x x
x

 (41) 
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Remark 1. The matrix measure is widely used when 
continuous time delay systems are investigated, Coppel 
(1965), Desoer, Vidysagar (1975). 

The nature of discrete time delay enables one to use this 
approach as well as Bellmans principle, so the problem 
must be attacked from the point of view which is based 
only on norms. 

So one can get: 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( )

( )

1

1

1
1

1

0 ( ) 1

0 ( )

1

M
M

j
j

M

j
M

i
i

k k k A
k A N

k A i

k A

k A

α α

α

=

=

=

= Φ +Φ − +
+ ⋅⋅⋅Φ −

⎛ ⎞
⎜ ⎟≤ Φ + ⋅ −
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟< Φ +
⎜ ⎟
⎝ ⎠

⎛ ⎞
≤ ⋅ Φ +⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑

∑

x x x
x

x x  (42) 

where the first condition of Definition 9 has been used. 
To obtain the final result, one has to use (40), so it can 

be written: 

 
( )

1

1

1
1

0, 1, 2, ,

N

jN
j

j
j

k A
A

k N

β
αα β

=

=

⎛ ⎞
⎜ ⎟< ⋅ + <
⎜ ⎟
⎝ ⎠+

∀ = ⋅⋅⋅

∑
∑

x
 (43) 

what has to be proved. Q.E.D. 

This result is analogous to that one, for the first time 
derived, in Debeljković et al. (1997.a) for continuous time 
delay systems. 

Main results: 
Practical and Finite Time Stability 
Theorem 8. A system given by (26), with 1det 0A ≠ ,  

is attractive practically stable with respect to 

( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if the following condition is 

satisfied: 

 ( )
1
2
max ,

k
Nkβλ

α
< ∀ ∈K , (44.a) 

where: 

 
( ) ( ) ( ){

( ) ( ) }
max 1 1

0 0

max :
1

T T

T T

k A PA k
k A PA k

λ =

=

x x
x x

, (44.b) 

and if there exists 0TP P= > , being a solution of: 

 0 02 TA PA P Q− = − , (44.c) 

where 0TQ Q= > , such that:  

 

1
2

1
2

min

1
2
max

2
2

Q
A

P

σ

σ

⎛ ⎞
⎜ ⎟
⎝ ⎠<
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (44.d) 

Proof. Let us use a functional, as a possible aggregation 
function, for the system to be considered: 

 ( )( ) ( ) ( ) ( ) ( )1 1T TV k k P k k Q k= + − −x x x x x , (45) 

with the matrices 0TP P= >  and 0TQ Q= > . 
Clearly, using the equation of motion of (26.a), we have: 

 ( )( ) ( )( ) ( )( )1V k V k V kΔ = + −x x x , (46) 

or: 

 

( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( )
( ) ( )

( )( ) ( )

0 0

0 1

1 1

1 1
1 1

2 1
1 1 .

T T

T T

T T

T T

T T

V k
k P k k P k

k Q k k Q k
k A PA Q P k

k A PA k
k Q A PA k

Δ =
= + + −
+ − − −
= + −

+ −
− − − −

x
x x x x

x x x x
x x

x x
x x

  

It has been shown, Debeljković et al. (2004), that if: 

 0 02 TA PA P Q− = − , (48) 

where 0TP P= >  and 0TQ Q= >  then for: 

 ( )( ) ( ) ( ) ( ) ( )1 1 ,T TV k k P k k Q k= + − −x x x x x  (49) 

the backward difference along the trajectories of the 
systems is: 

 

( )( ) ( )( ) ( )( )
( )( ) ( )
( )( ) ( )
( ) ( )
( ) ( )

0 0

1 1

0 1

1 0

1

1 1
1

1 ,

T T

T T

T T

T T

V k V k V k
k A PA P Q k
k A PA Q k
k A PA k
k A PA k

Δ = + −
= − +

+ − − −

+ −
+ −

x x x
x x
x x
x x
x x

 (50) 

or: 

 

( )( )
( ) ( ) ( )
( )( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

0 0

1 1

0 1

1 0

0 0

1 1

2
1 2 1

1
( 1)

1 1 ,

T T

T T

T T

T T

T T

T T

V k
k A PA P Q k
k A PA Q k
k A PA k
k A PA k
k A PA k
k A PA k

Δ =
= − +

+ − − −

+ −
+ −
−
− − −

x
x x
x x
x x
x x
x x
x x

 (51) 

and since we have to take into account (49), one can get: 

 
( )( )
( )( ) ( )
( ) ( )

1 1

0 1 0 1

1 2 1

1 ( ) ( 1) .

T T

T

V k
k A PA Q k

A k A k P A k A k

Δ =
= − − − −

− − − ⋅ − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

x
x x

x x x x

(52) 

Since the matrix 0TP P= > , it is more than obviuos 
that: 

 ( )( ) ( )( ) ( )1 11 2 1 .T TV k k A PA Q kΔ < − − −x x x  (53) 

If one equalize the rights sides of (47) and (53), it yields: 
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( )( ) ( )
( ) ( )

( )( ) ( )
( )( ) ( )

0 0

0 1

1 1

1 1

2 1
1
1 2 1 ,

T T

T T

T T

T T

k A PA P Q k
k A PA k

k Q A PA k
k A PA Q k

− +

+ −
− − −

< − − −

x x
x x

x x
x x

 (54) 

or: 

 

( )( )
( )( ) ( )
( ) ( )

( )( ) ( )

0 0

0 1

1 1

2 1
1 1 ,

T T

T T

T T

V k
k A PA Q P k

k A PA k
k A PA k

Δ =
= + −

+ −
< − −

x
x x

x x
x x

 (55) 

Using the very well-known inequality3, with a particular 
choice: 

 ( )1 1
1
2

TA PAΓ = , (56) 

it can be obtained: 

 

( )(
( )( ) ( )

( )( ) ( )

( )( ) ( )

0 0
1

0 1 1 1 1 0

1 1

1 1

1
2

1 1 12

1 1

T T

T T T

T T

T T

k A PA Q P

A PA A PA A PA k

k A PA k

k A PA k

−

+ − +

⎞+ ⎟
⎠

+ − −

< − −

x

x

x x

x x

 (57) 

or: 

 
( )( ) ( )

( )( ) ( )
0 0 0 0

1 1

2
1 1 1 .2

T T T

T T

k A PA Q P A PA k

k A PA k

+ − +

< − −

x x

x x
 (58) 

Since: 

 0 02 0TA PA Q P+ − = , (59) 

it is finally obtained: 

 ( ) ( ) ( )( ) ( )0 0 1 1
1 1 1 ,2

T T T Tk A PA k k A PA k< − −x x x x  (60) 

or: 

 
( ) ( )

( ) ( ) ( )
0 0

max 0 0
1 1 1 ,2

T T

T T

k A PA k

k A PA kλ

<

< − −

x x

x x
 (61) 

where: 

 ( )
( ) ( )

( )
( ) ( )

1 1

max 0 0

0 0

:
max 2 ,

1

T T

T

T T

k A PA k
A PA P Q

k A PA k
λ

⎧ ⎫
⎪ ⎪= − = −⎨ ⎬
⎪ ⎪=⎩ ⎭

x x

x x
 (62) 

Since this manipulation is indepenendent of k ,  
it can be written: 

 
( ) ( )

( ) ( ) ( )
0 0

max 0 0

1 1
1 ,2

T T

T T

k A PA k

k A PA kλ

+ + <

<

x x

x x
 (63) 

or: 
                                                           
3 ( ) ( ) ( ) ( ) ( ) ( )12 , 0T T Tt t t t t t−≤ Γ + Γ Γ >u v u u v v  

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 0

max 0 0

max 0 0

ln 1 1
1ln 2
1ln ln ,2

T T

T T

T T

k A PA k

k A PA k

k A PA k

λ

λ

+ + <

<

< +

x x

x x

x x

 (64) 

and: 

 
( ) ( )

( ) ( ) ( )

0 0
1
2

0 0 max

ln 1 1

ln ln ,

T T

T T

k A PA k

k A PA k λ

+ + −

− <

x x

x x
 (65) 

If we apply the summing 
0

0

1k k

j k

+ −

=
∑ on both sides of (65) 

for Nk∀ ∈K , one can obtain: 

 

( ) ( )

( ) ( ) ( )

( )

0

0
0

0
0

0

1

0 0

1 1
2

0 0 max

1 1
2
max

ln 1 1

ln ln

ln .

k k
T T

j k
k k

T T

j k
k k

j k

k A PA k

k A PA k λ

λ

+ −

=
+ −

=
+ −

=

+ + −

− ≤ ≤

≤

∑

∑

∏

x x

x x  (66) 

It can be shown: 

 

( ) ( )(
( ) ( ))

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )(
( ) ( )

( ) ( ))
( ) ( )
( ) ( )

0

0

1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

ln 1 1

ln
ln 1 1

ln 2 2

ln
ln

ln
ln 1 1

ln
ln

ln

k k
T

j k
T

T

T

T

T

T

T

T

T

T

j j

j j
k k

k k

k k k k
k k k k

k k
k k

k k k k
k k k k

k k

+ −

=

+ + −

− =

= + + +
+ + + +

+ +
+ + − 2+1 + − 2+1 +
+ + −1+1 + −1+1 −
− +

+ + + +
+ + + −1 + −1

= + + −
−

∑ x x

x x
x x

x x

x x
x x

x x
x x

x x
x x

x x

… … … …

…

 (67) 

so that, for (66), it seems to be: 

 

( ) ( )

( ) ( ) ( )

( )

0

0

0 0 0 0
1 1

2
0 0 0 0 max

1
2
max

ln

ln ln

ln , ,

T T

k k
T T

j k

k
N

k k A PA k k

k A PA k

k

λ

λ

+ −

=

+ + −

− <

< ∀ ∈

∏
x x

x x

K

 (68) 

as well as: 

 
( ) ( ) ( )

( ) ( ) ( )

0

0

1 1
2

0 0 0 0 max

1
2
max 0 0 0 0

ln ln

ln ln .

k k
T T

j k

k T T
N

k k A PA k k

k k A PA k

λ

λ

+ −

=

+ + ≤

≤ ∀ ∈ +

∏x x

x xK

 (69) 

Taking into account the fact that 
00

2
0 TA PA

α<x  and 

condition of Theorem 8, eq. (44), one can get: 
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( ) ( )

( ) ( ) ( )

( )

0 0 0 0
1
2
max 0 0 0 0

1
2
max

ln

ln ln

ln ln ln , .

T T

k T T

k
N

k k A PA k k

k A PA k

k

λ
βα λ α β
α

+ + <

< +

< ⋅ < ⋅ < ∀ ∈

x x

x x

K

 (70) 

Q.E.D. 

Remark 2. The assumption 1det 0A ≠  does not reduce 
the generality of this result, since this condition is not 
crucial when discrete time systems are considered. 

Remark 3. Lyapunov asymptotic stability and Finite 
time stability are independent concepts: a system that is 
Finite time stable may not be Lyapunov asymptotically 
stable; conversely, a Lyapunov asymptotically stable 
system could not be Finite time stable if, during the 
transients, its motion exceeds the prespecified bounds ( )β . 

Attractivity property is guaranteed by (44.c), e.g. by the 
Lyapunov equation and system motion within the 
prespecified boundaries is well provided by (44.a). 

Remark 4. For the numerical treatment of this problem, 
( )maxλ can be calculated in the following way: 

 ( ) { } ( )( )1
max max 1 1 0 0max ,T TA PA A PAλ λ

−
= =

x
 (71) 

Kalman, Bertram (1960.b). 
Remark 5. These results are in some sense analogous to 

those given in Amato et al. (2003), although the results 
presented there are derived for continuous time varying 
systems. 

Now we proceed to develop delay independent criteria, 
for finite time stability of a system under consideration, not 
to be necessarily asymptotic stable, e.g. so we reduce the 
previous demand that the basic system matrix 0A  should be 
a discrete stable matrix. 

Theorem 9. Suppose the matrix ( )1 1 0TI A A− > . 
A system, given by (26), is finite time stable with respect 

to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if the following condition 

is satisfied: 

 ( )max ,k
Nkβλ

α
< ∀ ∈K , (72.a) 

where: 

 ( ) ( )( )max max 0 1 1 0
T TA I A A A Iλ λ β= − +  (72.b) 

Proof. Now we consider again a system given by (26). 
Define: 

 ( )( ) ( ) ( ) ( ) ( )1 1 ,T TV k k k k k= + − −x x x x x  (73) 

as a tentative Lyapunov–like function for the system,  
given (26).  

Then, the ( )( )V kΔ x  along the trajectory is obtained as: 

 

( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0

0 1

1 1

1
1 1 1 1

2 1
1 1
1 1

T T

T T

T T

T T

T

V k V k V k
k k k k
k A A k
k A A k

k A A k
k k

Δ = + −
= + + − − −
=
+ −
+ − −
− − −

x x x
x x x x
x x
x x

x x
x x

 (74) 

From (74), one can get: 

     ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

0 1 1 1

1 1
2 1 1 1 .

T T T

T T T T
k k k A A k

k A A k k A A k
+ + =

+ − + − −
x x x x

x x x x
 (75) 

Using the very well known inequality 4, with a particular 
choice: 

 ( )1 1 0TI A AΓ = − > , (76) 

I  being the identity matrix, it can be obtained: 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0 0
1

1 1 1 1

1 1

1 1 ,

T T T

T T T

T

k k k A A k

k A I A A A k
k k

−

+ + ≤

+ −

+ − −

x x x x

x x
x x

 (77) 

and the fact that it is more than obvious, that one can adopt 

 ( ) ( ) ( )2 2
1 ,k k k ββ− < ∀ ∈x x x S , (78) 

it is clear that (77) reduces to: 

 
( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )

1
0 1 1 0

max 0 1

1 1

, , ,

T

T T T

T

k k

k A I A A I A k

A A k k

β

λ β

−

+ + <

< − +

<

x x

x x

x x

 (79) 

where: 

   ( ) ( )( )1
max 0 1 max 0 1 1 0, , ,T TA A A I A A A Iλ β λ β

−
= − +  (80) 

with obvious property, that gives the natural sence  
to this problem: 

( ) ( )( )1
max 0 1 max 0 1 1 0, , 0,T TA A A I A A A Iλ β λ β

−
= − + ≥  (81) 

when: 

 ( )1 1 0TI A A− ≥ . (82) 

Folloving the procedure from the previous section, it can 
be written: 

 ( ) ( ) ( ) ( ) ( )maxln 1 1 ln lnT Tk k k k λ+ + − <x x x x  (83) 

If we apply the summing 
0

0

1k k

j k

+ −

=
∑ on both sides of (82) 

for Nk∀ ∈K , one can obtain: 

 

( ) ( )

( ) ( )

( ) ( )

0

0

0 0
1

max max

0 0

ln

ln ln

ln , .

T

k k
k

j k
T

N

k k k k

k k k

λ λ
+ −

=

+ +

≤ ≤

+ ∀ ∈

∏
x x

x x K

 (84) 

Taking into account the fact that 2
0 α<x  and 

condition of Theorem 9, eq. (72.a), one can get: 

                                                           
4 ( ) ( ) ( ) ( ) ( ) ( )12 , 0T T Tt t t t t tτ τ τ−− ≤ Γ + − Γ − Γ >u v u u v v  
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( ) ( )
( ) ( ) ( )

( )

0 0

max 0 1 0 0

max 0 1

ln
ln , , ln
ln ,

ln ln , .

T

k T

k

N

k k k k
A A k k

A A

k

λ β
α λ

βα β
α

+ + <
< +
< ⋅

< ⋅ < ∀ ∈

x x
x x

K

 

Q.E.D. 

Remark 6. In the case when 1A is the null matrix, the 
result given by (85) reduces to the one given in Debeljković 
(2001), developed for ordinary discrete time systems. 

Remark 7. Different final sufficient conditions can be 
derived with particular choices of the matrix Γ  in (76). 

Theorem 10. Suppose the matrix ( )1 1 0TI A A− > . 
A system, given by (26), is practically unstable with 

respect to ( ){ }2
0 , , , ,Nk α β ⋅K , α β< , if there exists a 

real, positive number ] [,  0,δ δ α∈  and a time instant 

( )* *
0,  : Nk k k k k= ∃! > ∈K  for which the next condition is 

fulfilled: 

 *
min ,k

Nkβλ
δ

∗
> ∈K . (86) 

Proof. Let: 

 ( )( ) ( ) ( ) ( ) ( )1 1 .T TV k k k k k= + − −x x x x x  (87) 

Then following the identical procedure as in the previous 
Theorem, one can get: 

 ( ) ( ) ( ) ( ) ( )minln 1 1 ln lnT Tk k k k λ+ + − >x x x x , (88) 

where: 

 ( ) ( )( )1
max 0 1 max 0 1 1 0, , T TA A A I A A A Iλ β λ β

−
= − +  (89) 

If we apply the summing 
0

0

1k k

j k

+ −

=
∑ on both sides of (87) 

for Nk∀ ∈K , one can obtain: 

 
( ) ( ) ( )

( ) ( ) ( )

0

0

1

0 0 max

max 0 0

ln ln

ln ln , .

k k
T

j k
k T

N

k k k k

k k k

λ

λ

+ −

=

+ + ≥

≥ + ∀ ∈

∏x x

x x K

 (90) 

It is clear that for any 0x  follows: 2
0δ α< <x  and for 

some Nk∗ ∈K  and taking into account the basic condition 
of Theorem 10, (86), one can get: 

 

( ) ( )
( ) ( ) ( )

( )

0 0

max 0 1 0 0

max 0 1

ln

ln , , ln

ln , , ln ln ,

for some .

T

k T

k

N

k k k k

A A k k

A A

k

λ β
βδ λ β δ βδ

∗

∗

∗ ∗

∗

+ +

> +

> ⋅ > ⋅ >

∈

x x

x x

K

 (91) 

Q.E.D. 

Conclussion 
The concept of practical (finite time) stability is of 

particular importance in engineering since it expresses 
realistically the strong demands which are imposed on 
dynamical behavior of real automatic control systems. 

Definitions and theorems were established and proved 
for a few classes of autonomous time–discrete and discrete 
time delay systems, which guarantee attractive practical and 
only practical stability within the prespecified time–
invariant sets in state space.  

Moreover, based on classical definitions, some new 
theorems were derived for the so-called finite time stability 
as well as the corresponding results concerning instability 
problems. 

The developed results represent sufficient conditions for 
this type of non–Lyapunov stability. A discrete version of a 
very well-known Bellman–Gronwall Lemma was also 
mentioned and can be used for practical proofs in concept 
of practical instability of forced linear discrete–time 
systems. 

APENDIX A 
Notation 

[   ] closed interval 
]   [ open interval 
∧ and 
∨ or 
∨ exclusive or 
→ maps 
⇒ follows 
⇔ if and only if 
∀ for every 
∃ exist 
∃! exist at least one 
¬∃ do not exist 
: with property 
∋ so that 
|  so that 
∈ belongs 
∉ do not belong 
{  } set, sequence 
∪ union of sets 
∩ intersection of sets 
⊂ subset 
\ set difference 
Δ set symmetric difference 
~ equivalent sets 
S  open set 
∂S  boundary of set S  
S  closure of set S  

cS  complement of set S  
intS  interior of set S  
∅ empty or null set 

 upon definition 
Δ  finite backward difference 
∇  particular meaning, symbol 
⋅  dot 
×  multiplication 
Σ  summation 
Π  product 
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( )⋅  norm 
grad gradient 
det determinant 
exp eksponent 
inf infinum 
max maksimum 
min minimum 
sup supremum 
R  all real numbers 

+R  all the non–negative real numbers 
nR  n  dimensional real vector space 

degree  degree of polynomial 
( )det  determinant of matrix ( )  

{ }diag  diagonal matrix { }  

( )Ind  index of matrix ( )  

( )rang  rank of matrix ( )  

( )tr  trace of matrix ( )  

{ }L  Laplace transform 
Q. E. D.  end of the proof 

APENDIX B 

Some necessary mathematics 
Define the total difference of ( )( ),V k kx along the 

trajectory of the systems given by (1–3), Michel, Wu 
(1969): 

 

( )( )
( )( ) ( )( )
( )( )( ) ( )
( )( ) ( )( )

,
1, 1 ,
,

1, , ,

T

V k k
V k k V k k

V k k k
V k k V k k

Δ =
= + + −

= ∇ ⋅Δ
+ + −

x
x x
x x
x x

 (B.1) 

where: 

    

( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )

1 1

1 1

2 2

2 2

,
1 , 1 , 1

1

1 , 1 , 1
1

, 1 , 1 , , 1
1

n n

n n

V k k
V x k k V x k k

x k x k

V x k k V x k k
x k x k

V x k k V x k k
x k x k

∇ =
+ + − +⎛ ⎞

⎜ ⎟+ −⎜ ⎟
⎜ ⎟
⎜ ⎟⋅ + + − ⋅ +
⎜ ⎟+ −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+ + − +⎜ ⎟
⎜ ⎟+ −⎝ ⎠

x
… …

… …

"""""""
#

… …

 (B.2) 

In (B.1) “ ⋅ ” denotes the dot product of two vectors and: 

 ( ) ( ) ( )1k k kΔ = + −x x x , (B.3) 

is the finite difference. 
Definition B.1 Function ( )( ),V k kx  is said to possess 

the property Γ  if the vector ( )( ),V k k∇ x  is unique 
regardless of the particular path taken when going from one 
specific point to another in state space nR , Michel, Wu 
(1969). 
 

Next, let: 

 
( )( ) ( )( )

( )( )( ) ( )( )
, ,

, ,T
V k k V k k

V k k k k
Δ = Δ +

+ ∇ ⋅
fx x

x f x
 (B.4) 

where: 

 ( )( ) ( )( ) 0, ,V k k V k k
≡

Δ ≡ Δf fx x  (B.5) 

with the function ( )( ),k kf x  in the linear combination 
presented in (3). 

Besides that, we use the following notation: 

 

( )
( )

( )( )

( )
( )

( )( )

( )
( )

( )( )

( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )( )

,

( )

,

( )

,

,

max ,

min ,

max ,

min ,

max ,

min ,

max , ( )

min ,

M
k

m
k

M k

m k

M k

m k

M k

m
k

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

α

α

α
α

βα

α β

βα
α β

α ρ α

α α ρ

α ρ α

α α ρ

α α ρ

α ρ α

α α ρ

α ρ α

<

<

≤ <

≤ <

+

≤ < +

+

≤ < +

−

− ≤ <

−

− ≤ <

=

=

=

=

=

=

=

=

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

 (B.6) 

 

( ) ( ) ( )( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )

( )

( )

( )

( )

( )

( )

( )

( )

max ,

min ,

max ,

min ,

max ,

min ,

max ,

min ,

c

c

M S

m
k S

M k S

m k S

M k S

m k S

M
k S

m
k S

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

V k V k k

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅

⋅
∈

⋅
∈

⋅
∈

⋅ ∈

∂
⋅ ∈∂

∂
⋅ ∈∂

⋅
∈

⋅
∈

=

=

=

=

=

=

=

=

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

 (B.7) 

Instead of general sets, let the sets be defined as: 

 ( ) ( ){ }:nk kκ ξ ξ= ∈ <x xRS  (B.8) 

 ( ) ( ){ }:nk kκ ξ ξ= ∈ ≤x xRS  (B.9) 

 ( ) ( ){ }\ :nk kκ ξ κ ξ κ ξ ξ∂ = = ∈ =x xRS S S  (B.10) 

The consequences are as follows: 
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( )
( )

( )( )

( )
( )

( )( )

( )
( )

( )( )

( )
( )

( )( )

max ,

max ,

max ,

max ,

M
k

M k

M
k

M
k

V k V k k

V k V k k

V k V k k

V k V k k

ξ
ξ

ξ ξ

ξ
ξ

ξ
ξ

<

≤

∂

=

>

=

=

=

=

x

x

x

x

x

x

x

x

 (B.11) 

 

( )
( )

( )( )

( )
( )

( )( )

( )
( )

( )( )

( )
( )

( )( )

min ,

min ,

min ,

min ,

m k

m
k

m k

m
k

V k V k k

V k V k k

V k V k k

V k V k k

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

<

≤

∂

=

>

=

=

=

=

x

x

x

x

x

x

x

x

 (B.12) 
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Dalji rezultati u proučavanju stabilnosti linearnih diskretnih sistema 
sa čistim vremenskim kašnjenjem na konačnom vremenskom 

intervalu: Sasvim drugačiji prilaz 

U ovom radu su izvedeni dovoljni uslovi praktične stabilnosti i stabilnosti na konačnom vremenskom intervalu 
posebne klase linearnih diskretnih sistema sa čistim vremenskim kašnjenjem tipa ( ) ( ) ( )0 11 1k A k A k+ = + −x x x .  
Kada je bio razmatran koncept stabilnosti na konačnom vremenskom intervalu ovi novi uslovi, koji ne uzimaju u 
obzir iznos čisto vremenskog kašnjenja, bili su izvedeni korišćenjem prilaza koji počiva na korišćenju tzv. kvazi 
Ljapunovljevih funkcija.  
Kada se pak razmatrala praktična stabilnost i atraktivna praktična stabilnost prethodno pomenuti prilaz bio je 
kombinovan sa klasičnom ljapunovskom tehnikom, a sve sa ciljem da se garantuju osobine privlačnja kretanja 
razmatranog sistema.  

Ključne reči: linearni sistem, disketni sistem, sistem sa kašnjenjem, sisem na konačnom vremenskom intervalu, 
stabilnost sistema, neljapunovska stabilnost, asimptotska stabilnost. 

Дальнейшие результаты в исследовании уstoj~ivostи 
linejnwh neprerwvnwh  sistem so ~istwm vremennwm 

zapazdwvaniem na kone~nom vremennom intervale:  
Совсем иной подход 

В нasto}|ей rabotе выведены удовлетворительные условия  prakti~eskой ustoj~ivostи и ustoj~ivostи na 
kone~nom vremennom intervale osobogo klassa linejnwh neprerwvnwh sistem so ~istwm vremennwm 

zapazdwvaniem типа ( ) ( ) ( )0 11 1k A k A k+ = + −x x x . 

Когда был рассматриван черновик  ustoj~ivostи na kone~nom vremennom intervale, эти новые условия, 
которые не учитывают размер so ~istwm vremennwm zapazdwvaniem, были выведены с использованием 
подхода обоснованного на использовании так называемых ложных ляпуновых функций. 
А когда была рассматривана prakti~eska} ustoj~ivostx и  привлекательная prakti~eska} ustoj~ivostx, 
предварительно упомянутый  подход был комбинирован с  классической ляпуновой техникой , а всё это с 
целью гарантии особенностей притягивания движения рассматриваемой системы. 

Kly~evwe slova: лinejna} sistema, нeprerwvna} sistema, sistema so zapazdwvaniem, система na kone~nom 
vremennom intervale, ustoj~ivostx sistemw, nel}punovая ustoj~ivostь,  асимптотическая ustoj~ivostx. 



 DEBELJKOVIĆ,D. etc.: FURTHER RESULTS ON STABILITY OF LINEAR DISCRETE TIME DELAY SYSTEMS OVER THE FINITE TIME INTERVAL... 59 

 

Nouveaux résultats dans les recherches sur la stabilité des systèmes 
linéaires discrets à délai temporel pur chez l’intervalle temporelle 

finie: une approche toute différente  
Ce papier donne les conditions suffisantes de la stabilité pratique ainsi que la stabilité pour l’intervalle temporelle 
finie de clase particulière des systèmes linéaires discrets à délai temporel pur du type ( ) ( ) ( )0 11 1k A k A k+ = + −x x x . 
Quand on a considéré le concept de la stabilité pour l’intervalle temporelle finie, ces nouvelles conditions, qui ne 
prennent pas en considération la totalité du délai temporel pur, ont été réalisées via l’approche basée sur l’emploi des 
quasi équations de Lyapunov. Lorsqu’on a considéré la stabilité pratique et la stabilité pratique attractive, déjà citées, 
l’approche était combinée avec la technique classique de Lyapunov, dans le but de garantir les caractéristiques 
attrayantes du comportement du système observé.  

Mots clés: système linéaire, système discret, système à délai, système sur l’intervalle temporelle finie, stabilité du 
système, stabilité de non Lyapunov, stabilité asymptotique. 

 


