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Further Results on Stability of Linear Discrete Time Delay Systems
Over the Finite Time Interval: A Quite New Approach
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Nebojsa Dimitrijevié"

This paper gives sufficient conditions for the practical and finite time stability of of a particular class of linear discrete

time delay systems. x(k+1)=A4(x(k)+4,x(k—1). When we consider the finite time stability concept, these new,

delay independent conditions are derived using an approach based on the Lyapunov — like functions. When the
practical and attractive practical stability are considered, the above mentioned approach is combined and supported
by a classical Lyapunov technique to guarantee atractivity properties of the system behavior.
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Introduction

HE problem of investigation of time delay systems has

been exploited over many years. Delay is very often
encountered in different technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes, long
transmission lines, etc. The existence of pure time delay,
regardless of whether it is present in the control or/and state,
may cause an undesirable system transient response, or
generally, even an instability. Consequently, the problem of
stability analysis of this class of systems has been one of the
main interest of many researchers. In general, the introduction
of time lag factors makes the analysis much more complicated.
In the existing stability criteria, mainly two ways of approach
have been adopted. Namely, one direction is to contrive the
stability condition which does not include information on the
delay, and the other is the method which takes it into account.
The former case is often called the delay—independent criteria
and generally provides nice algebraic conditions. Numerous
reports have been published on this matter, with particular
emphasis on the application of Lyapunov’s second method, or
on using the idea of matrix measure Lee, Diant (1981), Mori
(1985), Mori et al. (1981), Hmamed (1986), Lee et al. (1986).

Practical matters require that we concentrate not only on
the system stability (e.g. in the sense of Lyapunov), but also
on bounds of system trajectories.

A system could be stable but still completely useless
because it possesses undesirable transient performances.
Thus, it may be useful to consider the stability of such
systems with respect to certain subsets of the state-space
which are defined a priori in a given problem.

Besides that, it is of particular significance to consider
the behavior of dynamical systems only over a finite time
interval.

These boundedness properties of system responses, i.e.
the solution of system models, are very important from the
engineering point of view.

Due to this fact, numerous definitions of the so—called
technical and practical stability were introduced. Roughly
speaking, these definitions are essentially based on the
predefined boundaries for the perturbation of initial
conditions and allowable perturbation of the system
response. In engineering applications of control systems,
this fact becomes very important and sometimes crucial, for
the purpose of characterizing in advance, in a quantitative
manner, possible deviations of the system response.

Thus, the analysis of these particular boundedness
properties of solutions is an important step, which precedes
the design of control signals, when finite time or practical
stability control is concerned.

It should be noticed that up to nowadays, there were no
results concerning that problem of non—Lyapunov stability,
when the discrete time delay systems are considered.

Some of initial results have been published inthe paper of
Debeljkovi¢, Aleksendri¢ (2003), completely based on the
discrete fundamental matrix of a system to be considered. It is
well-known that computing the discrete fundamental matrix is
generally more difficult than to find the concrete solution of a
system of retarded difference equations.

We can admit that these results represented the first
extension of the concept of finite time and practical stability
to the class of the linear discrete time delayed system. In
order to understand better serious problems that cause
existing time delay in systems dynamics, but also in
forming corresponding criteria, some short recapitulation of
some results, derived for ordinary discrete time delayed
systems, is presented in the sequel.
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Linear discrete time systems

A specific concept of discrete time systems, practical
stability operating on the finite time interval, was
investigated by Hurt (1967) with a particular emphasis on
the possibilities of error arising in the numerical treatment
of results.

A finite time stability concept was, for the first time,
extended to discrete time systems by Michel and Wu
(1969).

Practical stability or “set stability”, throughout the
estimation system trajectory behavior on the finite time
interval was given by Heinen (1970, 1971). He was the the
first who gave necessary and sufficient conditions for this
concept of stability, using the Lyapunov approach based on
the “discrete Lyapunov functions” application.

Even more detailed analysis of these results considering
different aspects of discrete time systems practical stability
as well as the questions of their realization and
controllability was given by Weiss (1972). The same
problems were treated by Weiss and Lam (1973) who
extended them to the class of nonlinear complex discrete
systems.

Efficient sufficient conditions of finite time stability of
linear discrete time systems expressed through norms
and/or matrices were derived by Weiss and Lee (1971).

Lam and Weiss (1974) were the first to apply the so—
called concept of “final stability” to discrete time systems
whose motions are scrolled within the time varying sets in
the state space.

Some simple definitions connected to sets, representing
difference equations or at the same time discrete time
systems, were given by Shanholt (1974).

Only the sufficient conditions are given by the
established theorems. These results are based on the
Lyapunov stability and can be used, in a way, for a finite
time stability concept, for which reason they are mentioned
here.

Grippo and Lampariello (1976) have generalized all;
foregoing results and given the necessary and sufficient
conditions of different concepts of finite time stability
inspired by definitions of practical stability and instability,
earlier introduced by Heinen (1970).

The same authors applied the before—mentioned results
in the analysis of “large—scale systems”, Grippo,
Lampariello (1978).

Practical stability with settling time was for the first time
introduced by Debeljkovi¢ (1979.a) in connection with the
analysis of different classes of linear discrete time systems,
general enough to include time invariant and time varying
systems, systems operated in free or forced operating
regimes, as well as the systems the dynamical behavior of
which is expressed through the so—called “functional system
matrix”. In the mentioned paper, the sufficient conditions of
practical instability and a discrete version of a very well
known Bellman—Gronwall lemma have also been derived.

Other papers, Debeljkovi¢ (1979.b, 1980.a, 1980.b,
1983) deal with the same problems and mostly represent the
basic results of the PhD. dissertation, Debeljkovi¢ (1979.a).

For the particular class of discrete time systems with the
functional system matrix, sufficient conditions have been
derived in Debeljkovic (1993).

System description

Systems to be considered are governed by the vector
difference equation:

x(k+1)= A(K)x(k), M)

x(k+1)= Ax(k), )
x(k+1)= A(k,x(k))x(k), 3)
x(k+1) = A(x(k))x(k), @)
x(k+1)= Ax(k)+£(k), (5)

where x(k)eR" is the state vector and the vector function
satisfies: f: Ky xR" —R.

It is assumed also that f( ) satisfies the adequate

smoothness requirements so that the solution of (2) exists
and is unique and continuous with respect to £ and initial
data and is bounded for all bounded values of its arguments.

Let R" denote the state space of the systems given by
(1-5) and "()" Euclidean norm.
The solutions of (1-5) are denoted by:

x(k,ko,xo)=x(k). (6)

The discrete—time interval is denoted with K, as a set
of non—negative integers:

The quantity ky can be positive integer or the symbol
+00 , so that finite time stability and practical stability can
be treated simultaneously.

ks, ky €{0, ky} is the prespecified settling time.

K denotes the discrete—time interval as follows:
Kljz{k:(k0+ks)<k<(k0+kN)}. (®)

The set difference is denoted by: Ky \Ky .
Let V': KyxR" - R, so that V(k,x) is bounded for
and for which | x| is also bounded.
Define the total difference of ¥ (k,x(k))along the
trajectory of the systems given by (1-5) with:
AV (kx(K)) =V (k+1Lx(k+1)) =V (k.x(k)).  (9)

For the time-invariant sets, it is assumed: S0 is a
bounded, open set.

The closure and the boundary of S ) are denoted by §( )

and Vk € Ky \ Ky, , respectively, so; 0S(y=5)\S()-
\§'(c) denotes the complement of S .

Let S; be a given set of all allowable states of the
system for Vke Ky \Ky and S, is a set of all allowable
states of the system for Vk e Ky, S, € Sp.

Set S,, S, < Sp denotes set of all allowable initial

states and S, corresponding set of disturbances.
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Sets S,, Sz, S

, are connected and a priori known.

A( ) denotes the eigenvalues of the matrix ().

Amax is the maximum eigenvalue'.

Definition of practical stability and practical instability
Definition 1. The systems given by (1), (3), and (4) are
practically stable with respect to {ko,Ky,S,,Ss}, if and

only if:
[x (ko) =l <. (10)

implies:
Ix(k)[ <. VkeKy. (11)

Definition 2. A system, given by (2), is practically
stable with respect to {ky,Ky,S,,S} , if and only if:

Ixo|* < A|f(k.x(K))| < e, VheKy,  (12)
implies:
Ix(k)} < B, VkeKy. (13)

Definition 3. A system given by (1), is practically

unstable with respect to {kO,KN,a,ﬁ, ()‘2}, a<p, if
there is:
x| <@, k=k"eKy, (14)
so that the next condition is fulfilled:
(12
Hx(k N =8 a<p. (15)

Definition 4. A system given by (2), is practically
2 .
O }, a<p,if

unstable with respect to {kO,KN,a,ﬂ,g,

there is:
Ix|* < A| £ (k,x(K))|< &, VE €Ky, (16)
so that the next condition is fulfilled:

x(x")

‘>B a<p. (17)

Some previous results
Theorem 1. A system, given by (1), is practically stable

with respect to {kO,KN,a,,B, ()HZ}, a<p, if the

following conditions are satisfied:

Jj=ko+k-1
[T 2w )<l wkeky, a9
J=ko
Debeljkovié (2001).
Theorem 2. A system, given by (2), is practically stable
with respect to {ko,KN,a,ﬂ, ()Hz} , a<p, if the next

conditions are fulfilled:

' See Apendix A.

%:ka+k'g*'ﬂ'r?{:)ﬁ(k_l)s\/§9 VkeKNo (19)

Debeljkovié (2001).
Theorem 3. A system, given by (1), is practically

OF} a<p. if

there exists a real, positive number &, 5€]0,a[ and a

unstable with respect to {kO,K N> B,

time instant k, k=k" :3 !(k* > ko) € Ky for which the next

condition is fulfilled:

j=ko+k"~1 B
[T #e()>2 & <ky. (20)
J=ko
Debeljkovié (2001).
Theorem 4. A system given by (2), is practically

unstable with respect to {ko,/( N> B,

OF}, a<p. if
there exists a real, positive number ¢ and &, such that:
o< HX0H2 <a and & <|[f(k)|<e, VkeKy and a time
instant k, k=4 :EI!(k* > ko) € Ky such that the next

condition is fulfilled:

Joas k ene N B K eky, o)

Debeljkovié (2001).
Theorem 5. A system, given by (3), is practically stable

with respect to {kO,KN,a,,B, ()Hz}, a < B, if there exists

a real, positive number 7 and if the next conditions are
fulfilled™:

|4(x)|<n, Vxeksz VkeKy., (22)

n* < \/g VkeKy, (23)

Debeljkovic (2001).
Theorem 6. A system, given by (4), is practical stable

with respect to {kO,KN,a,,B, ()HZ}, a < f3, if there exists

a real, scalar function &(k), which is bounded for and if
the following conditions are satisfied:

|A(k,x)| < &£ (k), Vxeky, VhkeKy,, 24
ko +k-1
11 §(j)<\/§, VkeKy, (25)
J=ko
Debeljkovié (2001).

Linear discrete time delay systems

As far as we know, the only result, considering and
investigating the problem of the non—Lyapunov analysis of
linear discrete time delay systems, is one that has been
mentioned in the introduction, e.g. Debeljkovi¢, Aleksendric¢

% See Apendix B.
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(2003), where this problem has been considered for the first
time.

Investigating system stability throughout the discrete
fundamental matrix is very cumbersome, so there is a need
to find some more efficient expressions that should be
based on calculation appropriate eigenvalues or a norm of
appropriate systems matrices as it has been done in a
continuous case.

System description

Consider a linear discrete system with state delay,
described by:

x(k+1)=Aox(k)+ 4, x(k-1), (26.2)

with the known vector valued function of initial conditions:

X(k()):\ll(ko), —lgk() SO, (26b)

where X(k) eR" is a state vector and with the constant

matrices A, and A; of appropriate dimensions.

The time delay is constant and equals one.
For some other purposes, the state delay equation can be
represented in the following way:

M
x(k+1)= dyx(k)+ > A x(k=h;),  (27.)
j=1
x(9)=y(9), de{-h—h+1,..,0}, (27b)

where x(k)eR", 4, eR™, j=1,2, h— is an integer
representing the system time delay and w(-)is an apriori

known vektor function of the initial conditions as well.

Definition of practical stability and practical instability
Definition 5. A system, given by (26), is attractive
practically stable with respect to {ky,Ky,S,,Ss},

if and only if:
2 2
[x ko)l =Ml <2 (28)
implies:
[x(k)%,, <B. VkeKy, (29)
AhPag
with a property that:
. 2
fim (0, =0 (30)

Definition 6. A system, given by (26), is practically
stable with respect to {k,Ky,S,,S} , if and only if:

Ixo|* <, (31)
implies:
Ix(K)[ < B, VkeKy.

Definition 7. A system, given by (26), is atractive

O}

practically unstable with respect to {ko,/( N>, P,

a< p,if for:

a, (33)

o,
4% P4y

there exists a moment: k=4k €K, so that the next
condition is fulfilled:

x()

with a property that:

2

2 p, (34)

AT P4g

lim Hx(k)ngPAo —0. (35)

k—o0

Definition 8. A system given by (2) is practically
()Hz} , a< B, if for:

unstable with respect to {ko,/( N>, B,

x| <, (36)

there exists a moment: k =k €K, such that the next
condition is fulfilled:

>p, 37)

for some k=k" eKy.

Definition 9. The linear discrete time delay system,
given by (27.a) is finite time stable with respect to

{a, B, ko, ky, ()H}, a<f, if and only if for every
trajectory x(k) satisfying initial function, given by (26.b)
such that:

Ix(k)|<a, k=0,-1,-2,-,—N, (38)
implies:
Ix(k)* < B, keKy, (39)

Aleksendric  (2002), Aleksendri¢, Debeljkovi¢ (2002),
Debeljkovi¢, Aleksendric¢ (2003).

This Definition is analogous to that presented, for the
first time, in Debeljkovic¢ et al. (1997.a, 1997.b, 1997.c,
1997.d) and Nenadic et al. (1997).

Some previous results
Theorem 7. The linear discrete time delay system, given
by (27), is finite time stable with respect to

{a,ﬂ,M,N, ()Hz} ,a< f, a,peR,,itis sufficient that:

o (k)< £ —L—
1+ |4
j=1

Aleksendri¢c  (2002), Aleksendri¢, Debeljkovi¢ (2002),
Debeljkovi¢, Aleksendric (2003).

,vk:(),l,""N’ (40)

Proof. The solution of (27.a), with initial condition
(27.b) can be expressed in terms of the fundamental matrix,
as it is written below:

x(k)=®(k)x(0)+ D (k) Ax(-1) + -

+ (k) Ay x(-N) “h)
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Remark 1. The matrix measure is widely used when
continuous time delay systems are investigated, Coppel
(1965), Desoer, Vidysagar (1975).

The nature of discrete time delay enables one to use this
approach as well as Bellmans principle, so the problem
must be attacked from the point of view which is based
only on norms.

So one can get:

Hx(k)Hsz) )X )+(D(k)A1x(—1)+
k) Ayx (-
S@k{x (0)] + ZHA [Ix(- ,)J (42)
ok [MZA |
sa-cb(k)[lg A,-J

where the first condition of Definition 9 has been used.
To obtain the final result, one has to use (40), so it can
be written:

|x(k)] <a-

Jj=1

1+ > |4; J <p
HA ( Z )

1+

L1\42 sz 1SS

Vk=0,1 - N
what has to be proved. Q.E.D.

This result is analogous to that one, for the first time
derived, in Debeljkovié et al. (1997.a) for continuous time
delay systems.

Main results:
Practical and Finite Time Stability
Theorem 8. A system given by (26), with det4, #0,

is attractive practically  stable with respect to
{kO,KN, Bl 2}, a < B, if the following condition is
satisfied:
lk ﬂ
A ( )<E’ VkeKy, (44.2)
where:
Amax () = max k) AT PAx(k
O=mnls DB
x" (k) Ag P4y x (k) =1}
and if there exists P = P” >0, being a solution of:
24pP4y-P=-0, (44.c)
where O = Q" >0, such that:
1
O min (Q
| 4, <2 (44.d)

Proof. Let us use a functional, as a possible aggregation
function, for the system to be considered:

V(x(k))=x" (k-1)Ox(k-1), (45)

with the matrices P=P" >0 and 0=0" >0.
Clearly, using the equation of motion of (26.a), we have:

AV (x(k)) =V (x(k+1))-V (x(k)), (46)

(k)Px(k)+x"

or:
AV (x(k))=
=x" (k+1)Px(k+1)-x" (k) Px(k)
x' (k)Ox(k)-x" (k-1)Ox(k-1)
=x" (k)(4§P4,+0-P)x(k)
+2x (k) AL PA, x (k—1)
—x" (k=1)(Q- 4] P4, )x(k-1) .
It has been shown, Debeljkovic et al. (2004), that if:
245P4,-P=-0, (48)

where P=P" >0 and Q0 =0Q" >0 then for:

V(x(k))=x"

the backward difference along the trajectories of the
systems is:

(k)Px(k)+x" (k-1)0x(k-1), (49)

)) =V (x(k+1)) =V (x(k))
k)( 45 P4 - P+Q)x(k)

(x k
=x" (k)
x" (k=1)(4f P4, - Q)x(k-1) (50)
(
(

X

x' (k) AGPA, x(k-1)
x' (k-1) 4] P4, x(k),

VI

or:
AV (x(k)) =
=x" (k)(245P4, - P+ Q) x(k)
X" (k—1)(24] P4, - Q)x(k-1)
x' (k) Ao PA, x(k-1) (51)
+x" (k—1)A4] PA, x(k)
—x" (k) A PAy x(k)
~x" (k=1) AT PA;x(k-1),
and since we have to take into account (49), one can get:
AV(x(k)):
=x" (k-1)(24] P4, - Q)x(k-1)- (52)
4o x(k)~ A x(k=1)] P[4y x(k)— 4, x(k~1)].

Since the matrix P =P’ >0, it is more than obviuos
that:
AV (x(k))< x" (k=1)(24] P4, - 0)x(k~1). (53)

If one equalize the rights sides of (47) and (53), it yields:
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x" (k)(45P4y — P+Q)x(k)
+2x" (k) AGPA, x(k -1)

—x" (k=1)(Q- 4] P4,)x(k) 4
<x" (k=1)(24] P4, - 0)x(k-1),

AV (x(k))=

=x" (k)(4§P4y+Q-P)x(k) 55

+2x" (k) Ao P4, x(k—1)
X (k=1)(4{ P4, )x(k-1),

Using the very well-known inequality’, with a particular
choice:

%(ATPA ), (56)

it can be obtained:
x" (k)(A4GP4y+ Q- P+

+ AL PA, ((%

Sx! (k=1)(4] P4;)x(k-1) (57)

-1
AITPAI)) A{PAo)x(k)

X" (k—1)(4{ P4, )x(k-1)

or:
xT(k)(zATPAO+Q—P+A€PAo)x(k)
< Ex " (k=1)( A4 P4, )x(k-1). ©9)
Since:
245PAy+0-P=0, (59)
it is finally obtained:
X" (k) A5 PAg x (k) < 337 (k=1)( AT PA ) x (k -1), (60)
or:
x' (k)AL PAyx (k) <
l( ) Ao PAy x (k) < ) 61)
<3 o ()X (k=1) A5 Py x(k 1),
where:
x' (k) Al PAlx(k)
A () =max{(245P4y—P)=-0, (62)

x" (k) Ao P4y x(k)=1

Since this manipulation is indepenendent of £,
it can be written:

+1) A Py x(k+1) <
i ) Ao PAg x(k+1) < )

2w ()X (k) A5 PA x (),

or:

20" (1) v(t) <

u' (T u()+v ())Tv(r), T >0

Inx" (k+1) 4G PA, x(k+1) <
< h%zmx( )x (k) AL P4y x (k) (64)

<1n%zmax( )+Inx (k) A5 PAyx(k),

and:
Inx” (k+1) 4G PAo x(k+1)-

—Inx" (k) A{PA 1 (©
0 0X(k)<ll’l/lmax( ),

ko+k-1
If we apply the summing Z on both sides of (65)
J=ko
for Vk € K, one can obtain:

ko+k-1
D Inx” (k+1) A5 PAy x (k+1)-

J=ko
ko+k—1 .

Z A2 ()< (66)

J=ko

—Inx" (k) 4§ P4, x (k) <
kork-l |
<In H 220 ().
J=ko
It can be shown:

ko+k—1
D (inx" (j+1)x(j+1)-
J=ko
—Inx" (J )X(j))
=Inx" (ko +1)x(ko +1)+
+Inx" (ko +2)x (ko +2)+
vt et
+Inx" (ko +k=2+1)x(ko +hk—2+1)+ (67)
+Inx" (kg +k—1+1)x(ko +k—1+1)—
—(Inx" (ko) x (ko) +
+Inx" (ko +1)x (ko +1)+
+..+Inx" (ko +k—1)x(ky +k-1))
=Inx" (ko +k)x(ko +k)-
—Inx" (ko)x(ko)

so that, for (66), it seems to be:

lnXT (ko +k)A€PAO X(ko +k)_

ko+k—1 1
—Inx" (ko) A5 PAox (ko) <In | | %3 () (68)
Jj=ko
_1
<z (), VkeKy,
as well as:
kotkol
Inx" (ko +k) 45 PAy x (ko +k) <In H 22 ()
=k (69)

k

<nAdh ()

Vk e Ky+Inx" (ko) 4G PAy x(ko).

Taking into account the fact that onerpA <a and
o0PA0

condition of Theorem 8, eq. (44), one can get:
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Inx" (ko + k) Ag PAox (ko +k) <
<225 () +Inx” (ko) 45 PAox (ko ) (70)
<lna-/€§éx( )<lna~§<ln,8, VkeKy.

Q.E.D.

Remark 2. The assumption det 4; # 0 does not reduce

the generality of this result, since this condition is not
crucial when discrete time systems are considered.

Remark 3. Lyapunov asymptotic stability and Finite
time stability are independent concepts: a system that is
Finite time stable may not be Lyapunov asymptotically
stable; conversely, a Lyapunov asymptotically stable
system could not be Finite time stable if, during the
transients, its motion exceeds the prespecified bounds () .

Attractivity property is guaranteed by (44.c), e.g. by the
Lyapunov equation and system motion within the
prespecified boundaries is well provided by (44.a).

Remark 4. For the numerical treatment of this problem,
Amax () can be calculated in the following way:

T ()= max{ }:Amax(AITPAI(AgPAO )‘) (71)

X

Kalman, Bertram (1960.b).

Remark 5. These results are in some sense analogous to
those given in Amato et al. (2003), although the results
presented there are derived for continuous time varying
systems.

Now we proceed to develop delay independent criteria,
for finite time stability of a system under consideration, not
to be necessarily asymptotic stable, e.g. so we reduce the
previous demand that the basic system matrix 4, should be
a discrete stable matrix.

Theorem 9. Suppose the matrix (1 —A] 4, ) >0.
A system, given by (26), is finite time stable with respect
to {kO,KN,a,,b’, ()Hz} , a < f, if the following condition

is satisfied:

A ()< g VkeKy, (72.2)

where:

A ()= A (46 (1= AT A4y) Ao+ BI)  (72.b)

Proof. Now we consider again a system given by (26).
Define:

V(x(k))=x"(k)x(k)+x" (k-1)x(k-1), (73)
as a tentative Lyapunov-like function for the system,

given (26).
Then, the AV (x(k)) along the trajectory is obtained as:

AV (x(k) =V (x(k+1)) -7 (x(k))
=x" (k+1)x(k+1)—-x" (k—1)x(k-1)
=x" (k) A§ Ao x (k)

+2x" (k) Ag A, x(k-1)

+x" (k=1) 4] 4, x(k-1)

—x" (k-1)x(k-1)

(74)

From (74), one can get:

X (k+1)x(k+1)=x" (k) A§ 4, x(k)

+2x" (k) Ag A x(k=1)+x" (k1) 4] 4, x(k-1). ()

Using the very well known inequality *, with a particular
choice:

[=(1-4{4,)>0, (76)
I being the identity matrix, it can be obtained:
X' (k+1)x(k+1)<x" (k) 4§ Ao x(k)
ox! (k) Ay (1- 47 4,) " AT x(k) (77)
+x" (k=1)x(k-1),

and the fact that it is more than obvious, that one can adopt
(=0l <glx (], wx(0)es,, a9
it is clear that (77) reduces to:
X (k+1)x(k+1)<
< xT(k)Ag((I—AlAlT)_l +ﬂI)A0x(k) (79)
< Amax (Ao, 41, B)X" (k)x(k),
where:

Ao (Ags Ay, B) = Ao (A5 (1= A7) Ay + BT), - (80)

with obvious property, that gives the natural sence
to this problem:

ﬂ'max (AosAlaﬂ) = ﬂ‘max (Ag ([_AIAIT)_I AO +ﬂ[) 2 Oa (81)
when:
(1-4,47)>0. (82)

Folloving the procedure from the previous section, it can
be written:

Inx" (k+1)x(k+1)—Inx" (k)x(k) <InApa () (83)

ko+k—1
If we apply the summing Z on both sides of (82)
J=ko
for Vk € Ky, one can obtain:
Inx" (ko +k)x (ko +k)
ko+k-1
<In H A ()< A% () (84)
J=ko

+Inx" (ko)x(ky), VkeKy.

Taking into account the fact that |x,||°<a and
condition of Theorem 9, eq. (72.a), one can get:

o’ (f)v(t—-7)<u” ()T u(t)+ v (t-7)Tv(t-7), T>0
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Inx" (ko +k)x(ko+k)<
<In Ak, (AO,A,,ﬂ)+1nxT (ko )x(ko)
<Ina- A (Ao, 4))
<1na~§<lnﬂ, VkeKy.
Q.E.D.
Remark 6. In the case when A4, is the null matrix, the

result given by (85) reduces to the one given in Debeljkovi¢
(2001), developed for ordinary discrete time systems.

Remark 7. Different final sufficient conditions can be
derived with particular choices of the matrix I" in (76).

Theorem 10. Suppose the matrix (I—A{Al) >0.
A system, given by (26), is practically unstable with

respect to {kO,KN,a,ﬂ, ()Hz}, a< f, if there exists a

real, positive number &, §€]0,a[ and a time instant
k, k=k :3!(k* >k0)eKN for which the next condition is
fulfilled:

P
min > 57

K eKy. (86)
Proof. Let:
V(x(k))=x"(k)x(k)+x" (k-1)x(k-1).  (87)

Then following the identical procedure as in the previous
Theorem, one can get:

Inx" (k+1)x(k+1)—Inx" (k)x(k)>In A, (), (88)

where:

s (Ags A ) = Ao (45 (1= A7) A+ T 89)

ko+k—1
If we apply the summing on both sides of (87)
J=ko
for Vk € K, one can obtain:
ko+k-1
T >
Inx" (ko +k)x(ko +K) =10 [ T Zmas () 00)

J=ko

2In A )+ Inx" (ko)x(ko), VkeKy.

It is clear that for any X, follows: & < x| <& and for

some k" € Ky and taking into account the basic condition
of Theorem 10, (86), one can get:

Inx" (ko + k") x (ko + &)
> In Ay (Ao, 41, B)+Inx (ko) x (ko)

. A o1
> 103 Anas (Aos 41, B)> Ing->1n g,

forsome k" e K.

Q.E.D.

Conclussion

The concept of practical (finite time) stability is of
particular importance in engineering since it expresses
realistically the strong demands which are imposed on
dynamical behavior of real automatic control systems.

Definitions and theorems were established and proved
for a few classes of autonomous time—discrete and discrete
time delay systems, which guarantee attractive practical and
only practical stability within the prespecified time—
invariant sets in state space.

Moreover, based on classical definitions, some new
theorems were derived for the so-called finite time stability
as well as the corresponding results concerning instability
problems.

The developed results represent sufficient conditions for
this type of non—Lyapunov stability. A discrete version of a
very well-known Bellman—Gronwall Lemma was also
mentioned and can be used for practical proofs in concept
of practical instability of forced linear discrete—time
systems.

APENDIX A
Notation

closed interval

[ open interval
and

or

exclusive or
maps

follows

if and only if
for every

exist

exist at least one
do not exist
with property

so that

so that

belongs

do not belong
set, sequence
union of sets
intersection of sets
subset

set difference
set symmetric difference
equivalent sets
open set

<gyl<<>oT

] W ow
o=

——

n!B>"N>o>C™—am —v

boundary of set S

S}
Cm(n

closure of set S
complement of set S

g @
95

interior of set S
empty or null set
upon definition

Q

finite backward difference
particular meaning, symbol
dot

multiplication

summation

product

RN

=Rk
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()] norm

grad gradient

det determinant

exp eksponent

inf infinum

max maksimum

min minimum

sup supremum

R all real numbers

R, all the non—negative real numbers
R” n dimensional real vector space
degree  degree of polynomial

det( )  determinant of matrix ( )
diag{ } diagonal matrix { }

Ind( ) index of matrix ( )

rang( ) rank of matrix ( )
tr( ) trace of matrix ()

£{}  Laplace transform

Q. E.D. end of the proof

APENDIX B

Some necessary mathematics
Define the total difference of ¥ (k,x(k))along the

trajectory of the systems given by (1-3), Michel, Wu
(1969):

AV (k,x(k)) =
—V(k+1x(k+1) V(k,x
:( x(k ) -Ax (k)

V(k,x(

+V (k+1,x(k))-

(k))

(B.1)

k),

where:
VV(k,x(k))
V(xl (k+1), ...(k+1))—V(x1 (k), (k+1))
x (k+1)—x (k)

V(xy (k+1),...(k+1))=V (x5 (), ..
x (k+1)—x, (k)

(k+1)) B2)

V(e o (k+1)s (k1)) =V (s x, (K)o (K+1))
x, (k+1)—x, (k)

In (B.1) “ - ” denotes the dot product of two vectors and:
Ax(k)=x(k+1)-x(k), (B.3)

is the finite difference.

Definition B.1 Function ¥ (k,x(k)) is said to possess
the property I' if the vector VV(k,x(k)) is unique
regardless of the particular path taken when going from one

specific point to another in state space R", Michel, Wu
(1969).

Next, let:
AV (k,x(k))=AV; (k,x(k))+
+(VV (k,x(K))) £ (k,x(k)) ®4
where:
AV; (k,x(k))EAV(k,x(k))fz0 (B.5)

with the function f(k,x(k)) in the linear combination

presented in (3).
Besides that, we use the following notation:

Vi (k)= max V(k,x(k))

(k)<

Vi (k)= V(k.x(k))

Hx \<a

Vit (k)= max V(k,x(k))

as|x(k)|<p
Ve (k)= min V(kx(k
2 (k)= oin ¥ (k.x(k))
(B.6)
Vi (k) = v (kx(k
M ( ) Q<HX H<(a+P) ( X( ))
ylaseha (p) = i V(k,x(k
k)= min |V (kx ()
yela=r) (k) = v (k,x(k
W)= e (e (®)
v (k)= min ¥V (kx(k
()= o iV (X ()
Vf(,)(k):m%xV(k,x(k))
xeS()
Voy(k)= min V(k,x(k
o (k)= min V(k.x(k)
Vi (k) = Jnax V(k,x(k))
Vi (k) = min ¥ (k. x(k))
) _ B.7
VM(-)(k)—X(ng,’;”V(k’x(k)) (B.7)
0 _
Vuty (k) = min, V" (k. x())
Var(y (k)= max V¥ (k,x(k))
o x(k)eS(‘:)
Vaiy (k)= min ¥ (k,x(k))
- x(k)eS(‘:)
Instead of general sets, let the sets be defined as:
See ={x(k)eR": | x(k)|< ¢} (B.8)
5,(5 = {x(k) eR": | x(k)|< f} (B.9)
0S.: = See\See ={x(k) e R" | x (k)| = £} (B.10)

The consequences are as follows:



DEBELJKOVIC,D. etc.: FURTHER RESULTS ON STABILITY OF LINEAR DISCRETE TIME DELAY SYSTEMS OVER THE FINITE TIME INTERVAL... 57

g (k)= max V(k.x(k))

Viag (k)= max V (k.x(k))
(B.11)

Vite (k)= max V (kx(k))

Vie (k) = max ¥ (k.x())

Vg (k) = min V (k.x(k))

Vae (k) = mlunéV(k x(k))
(B.12)

Vi (k)= | m1Hn éV(k x(k))

Ve (k)= min V(k,x(k))
B Ix(6)]>¢
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Dalji rezultati u proucavanju stabilnosti linearnih diskretnih sistema
sa Cistim vremenskim kaSnjenjem na kona¢nom vremenskom
intervalu: Sasvim drugaciji prilaz

U ovom radu su izvedeni dovoljni uslovi prakti¢ne stabilnosti i stabilnosti na konacnom vremenskom intervalu

posebne klase linearnih diskretnih sistema sa &istim vremenskim ka$njenjem tipa x(k+1)= A4,x(k)+ 4,;x(k—1).

Kada je bio razmatran koncept stabilnosti na kona¢nom vremenskom intervalu ovi novi uslovi, koji ne uzimaju u
obzir iznos Cisto vremenskog kasnjenja, bili su izvedeni koriS¢enjem prilaza koji po¢iva na kori§éenju tzv. kvazi

Ljapunovljevih funkcija.

Kada se pak razmatrala prakti¢na stabilnost i atraktivna prakti¢na stabilnost prethodno pomenuti prilaz bio je
kombinovan sa klasicnom ljapunovskom tehnikom, a sve sa ciljem da se garantuju osobine privla¢nja kretanja

razmatranog sistema.

Kljucne reci: linearni sistem, disketni sistem, sistem sa kaSnjenjem, sisem na kona¢nom vremenskom intervalu,
stabilnost sistema, neljapunovska stabilnost, asimptotska stabilnost.

JlanbHeillne pe3yJbTaThl B HccjaeqoBanun ystoj~ivostu
1 inejnwh neprerwvnwh sistem so ~istwm vremennwm
zapazdwvaniem na kone~nom vremennom intervale:
CoBceM MHOM MMOIXO0/

B nasto} | eii rabote BoiBeaenn! ynosiersopurenbubie yeaosusi prakti~eskoii ustoj~ivostu u ustoj~ivostu na
kone~nom vremennom intervale osobogo klassa linejnwh neprerwvnwh sistem so ~istwm vremennwm

zapazdwvaniem tuma x(k+1)=Ax(k)+4x(k-1).

Koraa 6bu1 paccmaTpuBan yepHoBuk Ustoj~ivostu na kone~nom vremennom intervale, stu HoBbIe ycioBus,
KOTOpbIe He YYHTBHIBAIOT pa3mep SO ~IStwm vremennwm zapazdwvaniem, GbuIH BbIBeIeHbI ¢ HCIOJb30BAaHHEM
moaxoaa 000CHOBAHHOI'0 HA UCIOJIb30BAHUH TAK HA3BIBAEMbIX JIOKHBIX JIAIIYHOBBIX q)yHKHHﬁ.

A xorma 6bl1a paccmarpuBana prakti~eska} ustoj~ivostx m npusiekareiasHas prakti~eska} ustoj~ivostx,
NpeIBAPUTEIBHO YIOMSHYTBHINH MOAX0J ObLI KOMOMHHPOBAH ¢ KJIACCUYECKOI JISINYHOBOW TEXHHUKOH , a BCE ITO ¢
1eJIbI0 TAPAHTHH 0CO0EHHOCTell NMPUTATHBAHNS ABIKEHUs] PACCMaTPHBAEMOIl CHCTEMBI.

Kly~evwe slova: ninejna} sistema, neprerwvna} sistema, sistema so zapazdwvaniem, cucrema na kone~nom
vremennom intervale, ustoj~ivostx sistemw, nel}punovas ustoj~ivosts, acumnrornueckas UStoj~ivostx.
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Nouveaux résultats dans les recherches sur la stabilité des systémes
linéaires discrets a délai temporel pur chez I’intervalle temporelle
finie: une approche toute différente

Ce papier donne les conditions suffisantes de la stabilité pratique ainsi que la stabilité pour ’intervalle temporelle
finie de clase particuliére des systémes linéaires discrets a délai temporel pur du type x(k+1)=Ax(k)+ 4 x(k-1).

Quand on a considéré le concept de la stabilité pour I’intervalle temporelle finie, ces nouvelles conditions, qui ne
prennent pas en considération la totalité du délai temporel pur, ont été réalisées via I’approche basée sur ’emploi des
quasi équations de Lyapunov. Lorsqu’on a considéré la stabilité pratique et la stabilité pratique attractive, déja citées,
I’approche était combinée avec la technique classique de Lyapunov, dans le but de garantir les caractéristiques
attrayantes du comportement du systéme observé.

Mots clés: systéme linéaire, systéme discret, systéme a délai, syst¢tme sur D’intervalle temporelle finie, stabilité du
systéme, stabilité de non Lyapunov, stabilité asymptotique.



