32

Scientific Technical Review, 2010,V0l.60,No.2,pp.32-43

UDK: 66.045.1:512.2:517.9
COSATI: 20-13, 12-01

Comparative Analysis of Different Methods in Mathematical

Modelling of the Recuperative Heat Exchangers

Dalibor Stevié !

The heat exchangers are frequently used as constructive elements in various plants and their dynamics is very
important. Heat exchangers are used in military aircraft of all sizes, flying different missions, in many different
aircraft systems Their operation is usually controlled by manipulating inlet fluid temperatures or mass flow rates. On
the basis of the accepted and critically clarified assumptions, a linearized mathematical model of the cross-flow heat
exchanger has been derived, taking into account the wall dynamics. The model is based on the fundamental law of
energy conservation, covers all heat accumulation storages in the process, and leads to the set of partial differential
equations (PDE), the solution of which is not possible in a closed form. In order to overcome the solution difficulties,
this paper analyses different methods for modeling the heat exchanger: the approach based on the Laplace transform,
the approximation of partial differential equations based on the finite difference method, the method of physical
discretization and the transport approach. Specifying the input temperatures and output variables, under constant
initial conditions, the step transient responses have been simulated and presented in a graphic form in order to
compare the results for the four characteristic methods considered in this paper and to analyze their practical
significance.

Key words: heat exchanger, mathematical model, comparative analysis, Laplace transform, finite difference method,

discretization method.

Introduction

HE heat exchangers are designed to achieve certain

requirements in the steady state which implies that the
transient response of the heat exchanger must be known to
define a correct control strategy.

The heat exchangers are frequently used in military and
civil aircraft as oil coolers and fuel heaters with heat
exchangers placed inside fuel tanks. In large transport
aircraft the cabin pressurization systems cool the hot engine
bleed air to a temperature suitable for use within the cabin
with a heat exchanger. The air conditioning system is also
based on a heat exchanger, known as an air-cycle machine,
in order to provide air at the desired temperature to the
cabin and flight deck.

The mathematical model of the heat exchanger must be
known in order to determine the transient response.

Many researchers have been working on this problem
within the last decade such as Cermak et al. (1968),
Roetzel, Huan (1992), Romie (1984), Spiga, Spiga (1987),
Tan, Spinner (1991).

Solving of this problem in the mentioned papers is based
on two approaches:

1. numerical solving of PDE which pulls drawbacks such
as convergence problems, stability, stiffness, etc.

2. Laplace transform which is complicated in this case and
demands a numerical inversion to the original time do-
main.

These problems and the similar ones have motivated the
research to invent new approaches for modeling these
processes in order to obtain wider practical use and not to

lose their veracity as well.
In this paper the four characteristic methods for
modelling heat exchangers are considered:

1. Analytical approach using the Laplace transform.
2. Approximation of PDE based on finite differences.
3. The method of physical discretization.

4. Transport approach.

The comparative analysis of these methods and their
practical significance is carried out on the model of a cross
flow heat exchanger.

Finally, the step responses of the derived mathematical
models are presented in a graphic form in order to compare
these results with different methods.

Analytical approach based on the laplace
transform

In this paper, the recuperative cross-flow heat exchanger
is observed, shown in Fig.1, as a process with distributed
parameters. Among many kinds of water-to-air heat
exchangers, the cross-flow geometry is very common. The
geometry of cross-flow heat exchangers can be
complicated, but in this paper we observe the case with the
simplest geometry that can be easily computed. This heat
exchanger consists of a single tube with the fluid (water or
other fluid) flow inside and the cross flow of hot air
outside.

The mathematical model of the cross flow heat
exchanger, shown in Fig.1, is carried out on the basis of the
following assumptions:
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- Fluid in the tube is incompresible and viscous.

- Temperature field fluid in the tube is one-dimensional.

- Temperature field of the tube wall is one-dimensional.

- Fluid enthalpy can be expressed by means of a corre-
sponding temperature.

- Inlet air temperature is a function of time.

- Specific heat of fluid, wall and air has constant values.

- There is convective heat transfer between the cross flow air
and the tube wall, conduction along the tube wall, and con-
vection between the tube wall and the fluid in the tube wall.

- Newton’s law of heat convection determines exactly
enough of the amount of heat exchange in the steady state
and the transient state.

- Heat transfer coefficients on both sides of the tubewall
have constant values.

- The fluid flow in the tube is one-phased.
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Figure 1. Symbolic-functional scheme and the diagram of the process of
the cross-flow heat exchanger

On the basis of these assumptions, the mathematical
model of the cross- flow heat exchanger after some simple
mathematical transformations can be written in the
following form.

- On the outside of the tube:

Gaca (0 (£)= 02" (1)) = 2277, L (8, (1) =6, (.€)) (1)

where L is the length of the tube, G, is the mass-flow rate

of air, ¢, is the specific heat of air, 8" and 6 are
incoming and outgoing air temperatures, «,, is the heat
transfer coefficient beween the hot air and the tube wall, r,
is the outer radius of the tube, &, is the air temperature
sorrounding the tube, and 6, is the tube wall temperature.
For convenience, the air temperature can be assumed to be
approximately:

0, (1= F L) @

This can be substituted in eq. (1).
- In the water:

P/‘Cf”f”% =, 277 (0, (:6) =0y (.£)) -
00,(1) )

—GfC 85

where p, is the fluid (water) density, ¢, is the specific
heat of the fluid in the tube, 7 is the inner radius, &, is the
fluid temperature, «,, is the heat transfer coefficient
between the wall and the fluid, and G, is the mass-flow

rate of the fluid.
- Finally, in the wall of the tube:

00, 0%0,

2710, (6, (1) -0, (1,E)27na,, (6, (1,0, (1,€))

where p,, is the wall density, c,, is the specific heat of the

wall, 4, isthe wall termal conductivity.
The boundary and initial conditions are:

Oy (1,0)= 67 (1), 0, (,.L) = 67" (1), )

0,(0,£)=0, 6,(0,£)=0
Introducing relative deviations in this form:

0 (:6)= 0w ($)

MOy (1,€) = e
s.(.0)- 2GS o
AO (1)= o (1) =6 (t)m_ i

where Oy, 0,,y, 6 are nominal values.

From eq. (2), (3), (4), (5) the mathematical model of the
cross-flow heat exchanger is obtained in the following
form:

o2 AD v A0
A gt(t’ég):alAHW(t,f)—azAHf(t,g)_%Aéfg’ee) o)
0AO, (1,E) 52AT9W(¢,§)_ -
ot - bl 652 bz AHW ([’§)+ (8)
+byA0 (1,E)+ by AL (1)
where:

2a,, ,
a = of HWN

1= 5
PrCrli HjN

2a
a, = il s
Prerhi
Gy

2 b
Prli 7

as =

_ A
bl B pM"cVV ’ (9)

b — 2G, o (1@ + 10y )+ 20yt ol L
) =

>

2 2
chw(”o — 1 )(Gaca+aw'a”rOL)
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2y Oy
2 2 ’
PwCw (rO i ) 0“’N

b3:

in

2r0aawGaca aN

by = .
) chw(l”oz _nz)(Gaca +aavv7tr0L)9WN

Taking the Laplace transform of (6), (7) first with
respect to ¢, and then with respect to the spatial coordinate
&, L, , with initial conditions (5) we find:

(s+ay +a30)Ef (s,0)= a,AG, (S,G)+G3E/‘ (5,0) (10)

(s —bo’+b, )Aié?w (s,0)=

o 59 . (11)
=b3A€f (S,O_)_bIUAHW(S,0)+b4Aeg (S)

Sollution of the system (10), (11) for &, (s,o) has the

following form:

B a3b10'2—M(s) — B
O (s,0)= asb*+P(s)o?~Q(s)o-R(s) A0 (s.0)
— @by AG, (s)+ (12)
asbo® + P(s)o* —Q(s)o—R(s)
aho AO,, (s5,0)

+a3b10'3 +P(s)o>—0(s)o—R(s)
where

M (s)=asys+azby, P(s)=bs+ab,
O(s)=ass+azb, , (13)

R(S):S2+(a2 +b2)S+a2b2—alb3

Taking the inverse Laplace transform of (12) with
respect to the spatial coordinate, L;l_,g , and switching
&=L, appropriate transfer functions are obtained in the
following form:

A0 () g 1)+
A0y (s,0) ; (14)
+F(0y,8,L)+F(03,s,L)

Wi (s,L)

Aby(s,L
Wy (s,0) =2 8 _ G s r)s
Aea (S) (15)
+G(O'2,S,L)+G(O'3,S,L)
where
2 p—
Flopsl)=— 800Ul o (16
3asbio, +V (s)o, —U(s)
G(Gn,S,L): ; —b4a1 e—o"L
3ashoy, +V (s)o, —U(s)
and

U(s)=ass+ashy, V(s)=2(bis+aby) (17)

o,,n=1,2,3 are the roots of the equation

asbo” +(bis+axb ) o —(ass +azh, ) o —
—S2 —(az +b2)S+alb3 —a2b2 =0

(18)

In order to obtain the step response for the mathematical
model of the cross-flow heat exchanger it is necessary to
take another inverse Laplace transform with respect to time,

L;%,,. Considering the complexity of the right side of Egs.

(14) and (15) this can be done using the numerical methods
for the inverse Laplace transform, Abate, Choudhury
(1999), Abate, Valko (2004).

Applying the Gaver-Stehfest algorithm for the inverse
Laplace transform of (14),(15) we find:

AO;(t,L) In(2)RE (kln(Z)j
Tf(t,off(”M)‘ . ;ng =] (19

Aé?fiSt,L):g(t’M):ln(Z)ngG(kln(Z)j 0
Aga (t) t k=1

where

et B @

J={(k+1)/2]

with [(k+1)/2] being the greatest integer lower than or
equal to (k+1)/2, kAM =min{k,M} and the positive
integer M.

Differential-discrete mathematical model of the
cross-flow heat exchanger

The system of PDE is very complex to be solved
analytically as it was considered in the analytical aproach
for modeling the cross-flow heat exchanger. A numerical
method based on the finite differences is developed to
approximate infinite-dimensional equations by finite-
dimensional ones. The spatial coordinate of the cross-flow
heat exchanger is discretized by means of the finite
difference method. In this manner the system of PDE is
transformed to the system of ODE. Discretization of the
spatial variable is carried out by means of substituting
partial derivation with respect to the spatial coordinate in
certain numbers of points. In the physical sense, the
observed heat exchanger is divided into equal p-cells with
the spatial coordinate discretization.

The mathematical model of the cross-flow heat
exchanger is derived in the previous section, described with
Egs. (1), (3), and (4). The finite difference method has a
different form for the first, k-th (k= 2,3,..., p-1) and the last
cell. This method has a lot of different forms. Regarding a
one-dimensional problem, the finite difference method has
the following form:

AE=& =& =1, 0, (1)=0,(t,k), k=12,...,p

00, (t,
Caizég)k = %(@um ()-0,4(2),  (22)

%0, (,8)

Y= = i(H.f’,lcﬂ (1) =260, 4 (1) + 6741 (1)) -

12
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Substituting (22) into (3), (4) the differential-discrete
model of the cross-flow heat exchanger is obtained in the
following form:

- for the first cell:

dé, (t 2
f,l( ): » )_ Ay ‘9f1 (t)—
dt prcrty prcrty

@[wmrwmj @)

- prim 2/

Zan P

6, (1) a, [ew,z (t)=26, (f)J+

dt - PwCy 12
2r,a,,G,C i
+ s@awMata 0‘;)1 )+
PwCy (7'02 _n'z)(GaCa +aawﬂ-r0L) ( )
2ra,r
+ 0, (1) (24)
,chw(”o i )

2Gaca (roaaw + nawf ) + zaawawf'ron'”L

6,.(1)

PrCr (r02 -2 )(Gaca +a,mrL)

k-th cell:
dgf,k (t) ZOJW)«» 2awf
i :p_c'r o (1) = O, (1)
Gy (Orpa (1) =014 (1)

dew,k (t) _ A% [ew,lﬁ—l (t)_29w,k (t)+6w,k—l (t)j+

dt B PwCy 12
4 5 2}?2)aawGaca 0[11'71 (t)+
chw(’”o —n )(Gaca +aaw7z'rOL)
21,
O g (1) (27)
pwcw(roz _’,;_2) .

2G ¢, (1@ + 1@y ) + 20yt roli L

O, (¢
PuCos (r02 —r,-z)(Gaca + gty L) #(0)
- last cell:
do t 2 2
(1) _ 20 (=220, (1)+
dt Prcrti prceti P
Gy Or,a(1)
piw 2

00,0 (1) 200y (1)~ 00ps (1)

dt - PwCw 12 i
2]"00,’ G,c in
+ aw—a-d 6 (t)+
PwCw (7'02 _7;'2 )(Gaca +aaw7[rOL) ( )
2r )
+ nO’;W/ 2 gfp (t)_
PwCw (”0 —h ) .

ZGaCa (}’oaaw + 1iyyr ) + zaawawfror;ﬂ'[‘

Oup (1)

£oCov (r02 -2 )(Gaca + L)

where

Or (,L)=0;,(t), 6.0()=0, (29)

Or pa (t)=0, Orp (t): ‘9}” (1)

Introduce relative deviations and define the state
variables in this form:

— O, (t)-0
MOy (1) =LA 2L (af)Nk MK — (1),

A70\4/,,% (t) = M

=x (1),

HWN,](

—in 19"’ t _gin

AOY (t)= f(e)ﬂv =u (1), (30)
™

800 (1)= 200 o),
aN

o[58} w0-[2].

The mathematical model of the cross-flow heat
exchanger is obtained in the state space:
- for the k-th cell:

Xk (t):AIEX](,l (t)"rA/?Xk (t)+A/?Xk+1 (t)"l‘Bku(t) (31)

where
0 —-a a
Alz(ald )’ Azz( k1 k4j’
h 0 bk3 g bk4 _bkl
3 _ —djn O _ O 0
4 ‘( 0 bkzj’B"_(O bis )’
K=23,...,p-1 (32)
and
2a,, G Onin
ar = s Qo = > >
Prcrli prrim2l Ok

_ Gy O _ 20,y Oy i
A3 = 2 0 > ks = D

prrim2l Ok PrCrli Uk

by = ZJ-W +2Gaca (roaaw+n'aw/')+2aawawfr0ri”[‘

“ pwcwl2 PwCw (1’02 _7;'2 )(Gaca + aawﬂ-rOL)

b = A Ounis box = Aw  Ouni
" PuCul® Oun i e PuCl® Oun i ’

b= % Oni jmpp o (33)
P (17 —17) O
2}" aawGaca zin
bys = ’ N

- 22 :
chw(”o =7 )(Gaca +6{awﬂ'l"0L) GWNJ‘

The mathematical model of the first and the last cell in the
state space will be slightly modified, because these two cells,
through control boundary, have contact with enviroment.
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The mathematical model of the first cell has the
following form:

X, (£) = A7x, (1) + 4%, (£) + Bu(¢) (34)

where

- — 0
42 = an 014)’143:( apn j’ 35
1 (bM by) "= 0 b (35)
_ a5 O
Bl‘(o bls)’

while this model in the state space for the last cell can be
written as follows:

X, (t)=A4yx,(1)+4,x, (1) +B,u(t) (36)
where
0 —a a
Al — ap3 ), A2 :( pl p4 J , 37
g ( 0 bp3 g bp4 _bpl 37

0 0
Bp:(o bij'

The state equation and the output of the cross-flow heat
exchanger are given with:

X(t)=Ax(t)+ Bu(r) (38)

x (1) =¢"x(¢),

A 4 0 0 ...0 0 0 0

A 4L 4 0 0 0 0 0
4| 0 A 45 4 ...0 0 0 0
0 0 0 0 0 4y, A, 4,
0 0 0 O 0 0 4, 4
0]
-~ ) 0
B,
B, 0 Xl(f)
B X, (¢
B= :3 , €= 0 =X(t)= 2:() )
By x, ()
| B, |
1
_0_

x(1)=A07,(1).

The method of physical discretization

To avoid partial differential equations, the method of
physical discretization suggested by Gruji¢ (1978) is used.
By this method the observed heat exchanger is divided into
the same p cells with the spatial coordinate discretization.
These cells are assumed to have homogenous fields of
specific physical values. The qualitative description of the
process with distributed parameters can be obtained taking
into consideration a big enough number of cells.

The advantage of such an approach is avoiding complex
PDE to be set and solved. Ballance differential equations are
set for an arbitrary cell, taking especially into consideration

the first an the last cell which through control boundary have
contact with environment. The flowing index indicates the
position of the cell in the heat exchanger.

In the physical sense, the observed cross-flow heat
exchanger is divided into equal p cells with the spatial
coordinate discretization. Assuming that the number of
cells is big enough, each of these cells can be considered as
a process with certain parameters. The fundamental law of
energy conservation is derived for every cell, so the
mathematical model of the cross-flow heat exchanger can
be reperesented as a system of ODE.

Considering the k-th cell, the ballance equation can be
written in the following form:

db;i (1) G
f,k()= ; (gfk_l(t)—igfk(f))+
dt pyriml ’ (39)
2awf-
Ouic (1) —0r i (2
PfoV,-( # (=67 (0)
40 (1) _ A

dt pwcwl (ew’k71 (t) - Hwﬂk (t)) +

b 2% (0 (1)=0,, (1)~  (40)
,chw(”o -k )
210y

> z)(ew,k (6)= 674 (1))

chw(ro "t

(6 (-0 (0) = (0. ()0, (1) 4D

where

0,(t)= AUMARY) (t)+29;"f ) (42)

Using Egs. (39) - (42) the mathematical model of the
cross flow heat exchanger can be obtained in the following
form:

- k-th cell:

do,, (¢ 20, G,
e DROY
dt prerli perial )

G 2an
= (t)+m0qu (1)

(43)

deo, (1) _ 4o il O (1)~
dt pwcw<r02 _riz)(Gaca +aaw7[r01) m

A
_p c ,l Hw,k (t)_

2ra,, A,
poen (1 =) O g O ()

210y (Gucy — Ayl

2 2r
&y +2 r;azwf ew’k (t)+
pwcw(ro — ) (44)

+

Hin (Z)

pwcw (roz - ”;2 )(G(IC(I + aaw”rol) ‘

- for the first cell:

def,l(t)__( 20 Gy

prcfr pf’; Zl (45)
. a
+—L g (t)+—L-0,, (1)
prtiml PrCrli
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do,, (t) dal, 13l 0, (1)
dt L€ M(ro -7 )(G Co + Uy 7t1yl) "
—LH ](t)_Zroaaw+2rawf0 1(lf)
i O e =) SO
21’,-Ulzmgf . 0, (t)+
pucy (1 =1")

2r0aaw (Gaca - aaw”rol)

2 2
PwCw (Vo —r )(Gaca +05aw7”’01)

o (1)

- for the last cell:

a6,,() [ 2a, G,
dlt? == —t 2 Or.p (t)
Prrty priil (46)
el (1) 22 g, (1)
ppral T pren
de,p (t) _ 4a5wr027fl 0
- 2 2 w,p (t)_
dt pw w( - )(G Ca +aaw”r01)
2 2
6,,(1)- Mﬁw(’ﬁ
pwcwl (VO - ) (48)
2r.a,,
g, ()0, (1)
PwCw (”0 - )
21y (Gacy —aawﬂrol ) o ()

PoCr (r02 - )(Gaca + gy Tyl )

Introducing relative deviations and defining the state
variables in this form:

— t *
AOyi (1) = “(9)““” =x (1), (49)

ey 2 O () =0

AG7 (1) === =u (1),
N
@L”(z):‘ga(’),%:uz(t).
aN

The mathematical model for the k-th cell is obtained in
the following form:

dxk (t)
dt

== X (t) + AprXp_g (t) + ak3xz (t) (50)

dx (t * .
B _ i (1) b (1) + G

+bk3.xk (t) + bk4u2 (t)

where k=1,2,...,p and

_ 2ay Gf Gy O k-1
apy =—— -+ Ay =
PrCrli  pyr; 2xl’

prrial O’

20,0 Oy
ag3 = 0
PrCrli O ik
by = 402 it xl B
k1 = 7 >
pwcw(ro -7 )(Gaca +05aw7”’01) (52)
Ay 200, + 210, ’
pr‘wl PwCw (V02 - ’?2 )
b Ay Ouni bye = 2ra,, O i
k2 = > Op3 =
pwcw Z ng k pwcw (7"02 — ’,12) ewN,k
21 (GaCy = Ay 1) Ogn
bk4 =

PuCo (roz - )(Gaca + Q711 ) O

The mathematical model for the k-th cell of the cross-
flow heat exchanger is obtained in the state space:

dx, (1)
dt

0 —-a, a
Al :(akz j’ A2 :( k1 k3)’
L0 b)) T b by
0 0
Bk - (0 bk4j s (54)

% (=[x () 5 ()] u()=[u() w@)]

For the first cell of the cross-flow heat exchanger the
state space equation has the following form:

X, (1) = A7x, (t)+ Bu(t) (55)

= AILX](,I (t)+ A]?Xk (t)+Bku (t) (53)

where

where

- 0
e :( an a13)’ B :(alz ) 56
I U ) B WY 0
For the last cell the state space equation can be written as
follows:

( ) Ap p- l(t)+A1%Xp (t)+Bpu(t) (57)
p O N e (58)
» 0 b, bys by )

0 0
o= 1)
The state equation and the output of the cross-flow heat

exchanger are given with:

x(t)= Ax(¢)+Bu(t), (59)
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A4 0 0 0 0 0
A 4 0 0 0 0
A= 0 4 4 0 0 0
e 0 0
0 0 0 0 A, 4
o0
0
B 0 Xl(t)
B, 0 % (1)
B= B3 , C= ,X(t): 2: .
B, x, (1)
1
_O_

xi(1)=0;, (1) =x, (1)

The transport approach

The transport approach represents the special metohod
for mathematical modelling of heat exchangers. This
approach is based on dividing the observed heat exchanger
into the same p cells.

The fundamental law of energy conservation is derived
by means of the finite differences for every cell with
respect to the finite time interval Af. In this manner the
system of partial differential equations is transformed to the
system of algebric equations which are easy to solve by
numeric, itterative methods, //i¢ (2002).

Let us observe the -th cell, k=1,2,..., p, of the cross-flow
heat exchanger. Considering the heat ballance within the
observed cell, the heat input and output by fluid flow
through the boundary of the cell can be identified as well as
the heat exchange between the fluid in the cell and the wall.

Consider the changes of the specific physical values in a
particular interval defined with ¢ and ¢+ A¢ . The amount of
heat exchange into the k-th cell for the time interval Az can
be written in the following form:

é(At)zQ(t)+%(t+At)At,

G, () - 20l
RRCE A
0, (8= 2 70 (1280

where Q, (Ar) is the heat change at the cell inlet for the
time interval Az, O, (At) is the heat change at the cell

outlet and @wf (At) the heat exchange between the wall

and the fluid in the cell.
The heat flow can be presented as:

O ()=, GO7 (1), Qo (1) =, G073 (1), (61)

Oy (1) = aup Auyr (0., (1) =0, (1))

Assuming that fluid temperature in the cell can be
expressed in the folowing form:

O (1) = w : (62)

The heat content in the fluid for the observed cell can be
expressed in the following form:

o 91’(1 gout
O(t)=mysc; O (t) =myscs M , (63)

The total amount of heat accumulated in the observed
cell for the time interval ((I+At)—t) = At can be written

as follows:
AQ(At) ( +At)- ( )=
— 64
=0, (4)-0,,, (A1) +0,, (a1) )
where
Q-n (Af)=¢,G; o7 (t)+9271 (t+At)At’
Qom (At)_Cfo out (t)+ 2l)ut(t+At) At (65)
0,, (A= ”/AWN( (1 )_()J’gom()}r
+W[9W(t+m)—e’ (Z+A’)29m(l+Af)]

The ballance equation for the observed cell is obtained in
the following form:
- for the fluid in the tube:

myc Op i (t+A)=mpcOp, (1) =
c,G/At .
) f (074 (1) -0 (t+Ar))-
G At
S 07 (1) 07 (4 )+

in out
+ ‘W/AWfAt(gw’k(t)_gfsk( )+6 ( )J+

(66)

2 2
+awamy‘At gfk(t+At)+90ut (t+At)]

3 (ew,k (t+Ar)- 3

- for the wall:

LY
1, (B (1 A1) =0, (1)) = 2222250, (1) = 0,5 (1)) +

+W(9‘, (t+A)= 0,4 (t+At))-

A ! At m t ()ut t
_(XW/ 2wf (Hw)k (t) ( )+ ( )J

2

(67)

A, At in (t+ At M (t+ At
_ Gy Ay (6’“,;((1+At) 9 ( + )+9 ( + )]
2 ’ 2
- for the air:

Gaca (62 (1) = 02" (1)) = QarAur (8 (£) = 0, (1)) (68)

The mathematical model for the observed cell after a
simple mathematical transformation can be obtained in the
following form:
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07 (t+At) = @07 (1) + a0 () + 69)
+a39w,k (t)+a49'f'ik (t+At)+a39qu (t+ At)
Hw,k (t‘l‘At) = blgw,k (t)+b29fl” (t)+
+b,0 (t+At)+ 5,07 (1) + 5,07, (t+At)+  (70)
+hO7L (1) + O (1 )

where

' 2mecy +2¢,GrAt+a,p Ay AL’

_ 2mef + 2C/GfAt - aW,Awat
%= 2m/1Cf +2CfoAt + awawat ’

_ 2awawat
B szCf + ZCfoAt + anAWfAt ’

@

(71)

. (2,6, Oy Aary N0t Ay AN 2G o Cort @y Ay Uy Ay D

aw
1= 2 42
(2m,,C, 0y A AT+ Ay ALY 2G €ty Ay Yy Ay A

_2c;GyAL=2mycs —any Ay At
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- 20 A MG, C,
(20,0, + QA Al Ay ALY 2G 1€+ Oy Ay YOl A A
b;— awawat(ZGaca+ aawAuw)

2(2m,, ¢, @y A Aty Ay ALY 2G €+t gy Ay V2000, A AL

Eliminating 6, (¢+At) from Egs. (69) and (70) the
outlet temperature from the -th cell can be expressed in the
following form:

9?% (t + At) = 019;?11 (Z) + Cza;-rn‘k (t) + C30w,k (t) + (72)
+cy 05 (1) +cs0F (1 + A1) +c,6) (t+Ar)

where

_ @ tashs
2 1 — a3b3 ’

_a tabs

_aztazb
= ¢ (73)

3T 1—a3b3 ’

a3b2 _ay + a3b3
5 1- a3b3

€= 1- a3b3 ’
Eq. (72) is used for the simulation of the process in the
cross-flow heat exchanger.

Assuming, in the first step, 67 (¢+Ar)=067;(t) and

0" (t+At)=0. (t) where At is small enough, the outlet

temperature is determinated for the k-th cell, i=1,2,..., p.
Repeating this procedure for different values of Ar the
fluid temperature of cross-flow heat exchanger at the cells
outlet is obtained as a function of time.

Simulation and comparative analysis

This section presents the analysis of the mathematical model
of the cross-flow heat exchanger with respect to different
methods considered in the previous sections. The characteristic
of a real cross-flow heat exchanger are given in Table 1.

The observed heat exchanger is divided into five cells. If the
results are unsatifactory the number of cells must be increased.

Table 1.

Parameter Dimension Value
1 Cy kJ/kgK 0.53
2. P Kg/m’® 7.85-10°
3. A W/mK 0.04-10°
4, ro m 0.016
5. 7 m 0.012
6. wy m/s 0.5
7. G, kg/s 0.12
8. G, kg/s 1.8
9. por Kg/m® 952.38
10. cr kJ/kgK 4233
11. Ay W/(m’K) 220
12. Pa Kg/m’ 0.748
13 Ay W/(m’K) 3000
14. Ca kJ/kgK 1.097
15. L m 10
16. O °C 110
17. o, °C 220

Results of the simulation for the analytical approach based
on Laplace transformation

Fig.2 and 3 show the step response of the outlet
temperature of the vfluid in the tube for the step change of
the inlet fluid temperature and the inlet air temperature.
Since the temperature function obtained using the approach
explained in Section 2 is complex valued, the amplitude of
this function is used for the simulation.

Step change of the inlet fluid temperature
045 T T T T T T

04t g

035 ~

03 ~

025k 4

02 4

015 4

01 ~

The outlet temperature of the fluid in the tube

0ns ~

DU 10'0 20'0 30‘0 40‘0 50‘0 BUIU 70'0 SUIU 900
Time (gec)

Figure 2. Step response of the outlet temperature of the fluid in the tube

for the step change of the inlet fluid temperature

Step change of the inlet air ternperature
05 T T T T T T

The outlet ternperature of the fluid in the tube

0 L L L L L L L L
) 100 200 300 400 500 ) oo &0o Q0o

Tirme (sec)

Figure 3. Step response of the outlet temperature of the fluid in the tube
for the step change of the inlet air temperature
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Results of the simulation for the differential discrete
mathematical model based on the finite difference method
Figures 4, 5, 6 and 7 show the step response in the fluid
outlet temperature and the temperature profile in the outlet
of each cell for the step change in the fluid inlet
temperature and the step change in the air inlet temperature.

Step change of the fluid inlet temperature
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o

The fluid outlet termperatur
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Figure 4. Step response of the outlet temperature of the fluid in the tube
for the step change of the inlet fluid temperature

Step change of fluid inlet tmperature
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Temperature profile in the outlet of the cells
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Figure 5. Temperature profile in the outlet of each cell for the step change
in the fluid inlet temperature

Stepchange of the air inlet temperature
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Figure 6. Step response of the outlet temperature of the fluid in the tube

for the step change of the inlet air temperature

Step change of the air inlet temperature
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Figure 7. Temperature profile in the outlet of each cell for the step change

in the air inlet temperature

Results of the simulation for the mathematical model based
on the physical discretization

Fig. 8, 9, 10 and 11 show the step response in the fluid
outlet temperature and the temperature profile in the outlet
of each cell for the step change in the fluid inlet
temperature and the step change in the air inlet temperature.
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Figure 8. Step response of the outlet temperature of the fluid in the tube
for the step change of the inlet fluid temperature
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Figure 9. Temperature profile in the outlet of each cell for the step change
in the fluid inlet temperature
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Figure 10. Step response of the outlet temperature of the fluid in the tube
for the step change of the inlet air temperature
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Figure 11. Temperature profile in the outlet of each cell for the step
change in the air inlet temperature
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Results of the simulation for the mathematical model based
on the transport approach

Fig. 12 and 13 show the step response in the fluid outlet tempe-
rature and the temperature profile in the outlet of each cell for the
step change (from 220°C to 257°C) in the air inlet temperature.

Step change of air inlet temperature
190 T T T T

The fluid outlet temperature
=
=)
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Figure 12. Step response of the outlet temperature of the fluid in the tube
for the step change of the inlet air temperature

Step change in the air inlet temperature
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The temperature profile in the cells outlet
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Figure 13. Temperature profile in the outlet of each cell for the step
change in the air inlet temperature

Fig. 14 and 15 show the step response in the fluid outlet tempe-
rature and the temperature profile in the outlet of each cell for the
step change (from 110°C to 127°C) in the fluid inlet temperature.

Step change in fluid inlet termperature
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7ar q

The fluid outlet temperature
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Figure 14. Step response of the outlet temperature of the fluid in the tube
for the step change of the inlet fluid temperature

Step change in the fluid inlet terperature

The fluid outlet ternperature

Time (sec)

Figure 15. Temperature profile in the outlet of each cell for the step
change in the fluid inlet temperature

Finally, it should be pointed out that the temperature
changes obtained by the aplication of the transport
approach are in total coordinates while the step responses
obtained by the application of previous methods are
represented by the relative deviations.

Conclusion

In this paper some characteristic methods in mathematical
modelling of the heat exchangers are considered.

Analyzing the analytical approach using the Laplace
transform it can be concluded that the system of PDE is very
complex to be solved analytically and this model has only
academic significance while its practical usage is limited.

In order to overcome the solution difficulties, the
procedure of differential discrete modelling is applied,
leading to the set of ordinary differential equations of a
rather high order. This procedure is based on the
discretization of spatial coordinates using the finite
difference method.

One of possible methods to avoid partial differential
equations is the method of physical discretization which
implies dividing the observed heat exchanger into an
appropriate number of cells. If the number of cells is big
enough it can be assumed that the process within one cell is
a process with certain parameters. This procedure results in
ordinary differential equations of a high order that are still
simple enough to be solved.

The transport approach is based both on the spatial and
time discretization which transforms the system of partial
differential equations to the system of the algebric
equations that can be solved using numerical, iterative
procedures. This procedure should be carried out taking
into account the conditions for the convergence of
numerical procedures.

The graphical results of simulations of the different
mathematical models of cross-flow heat exchangers are
presented in this section.

Comparing the step responses obtained by the
application of different methods for mathematical
modelling of the heat exchanger it can be concluded that
results agree very well with each other.
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Komparativna analiza razliitih metoda matematickog modeliranja

rekuperativnih razmenjivaca toplote

Rekuperativni razmenjivaci toplote se veoma Cesto koriste kao konstruktivni elementi razli¢itih postrojenja tako da je
poznavanje njihove dinamike veoma vazno. Razmenjivaci toplote se takode Koriste i u vojnim letilicama svih veli¢ina,
razli¢itih namena, kao delovi razli¢itih sistema ovih letilica. Njihovo funkcionisanje je najce$ée kontrolisano
regulacijom ulaznih temperatura radnih fluida ili veli¢ine njegovog masenog protoka. Na bazi realno usvojenih
pretpostavki izveden je linearizovani matematicki model razmenjivaca toplote sa unakrsnim strujanjem radnih
fluida, uzimajuéi u obzir i dinamiku zida razmenjivaca. Model je zasnovan na fundamentalnom zakonu konzervacije
energije, uzimajuéi u obzir sve akumulatore toplote ovog procesa i predstavljen je pomocu sistema parcijalnih
diferencijalnih jednacina (PDE), {ije reSenje nije, u opStem slu¢aju, moguée u zatvorenom obliku. Kao jedan od
moguéih nacina da se izbegne reSavanje sistema parcijalnih diferencijalnih jednacina, u ovom radu se razmatraju
razliite metode matematickog modeliranja razmenjivaca toplote: prilaz zasnovan na primeni Laplasove
transformacije, aproksimacija parcijalnih diferencijalnih jednacina pomoéu metode kona¢nih razlika, metoda fizicke
diskretizacije i transportni prilaz. Za konkretno usvojene vrednosti parametara razmenjivaca toplote izvrSena je
simulacija njegovog rada i dati su graficki prikazi odsko¢nih odziva za sve razmatrane metode i analiziran je njihov
prakti¢ni znacaj.

Kljucne reci: razmenjiva¢ toplote, matematicki model, uporedna analiza, Laplasova transformacija, metoda kona¢nih
razlika, metoda diskretizacije.

CpaBHHHTeJILHbIﬁ AHAJU3 Pa3sjiHIHbIX METOA0OB MATCMATHYIECCKOTO

MOACJIUPOBAHUA PCKYIICPATUBHBIX TeNnJI000MEHHUKOB

PexynepaTuBHBbIE TEII00OMEHHHKH O0YeHb YACTO HCIOJIL30BAHBI B POJIH KOHCTPYKTHBHBIX 3JIEMEHTOB Pa3IHYHbIX
o0opyIoBaHMii, H3-32 4Yero O4YeHb BAXKHBIM sIBJsIEeTCS IO3HAHME MX [IHHAMHKH. Ten1000MeHHHKH ToukKe
YHOTPeOIsII0TCSI BO BOCHHBIX JIeTATEJbHBIX aNliapaTax BceX Pa3MepoB, C PA3IMYHbIMH HA3HAYEHHUSIMM H B POJIM
COCTABHBIX 4aCTell Pa3sJHYHBIX CHCTeM JITHX JeTaTelbHbIX ammaparoB. UX ¢yHKHuMoHHpoBaHHe B (OJbIIHHCTBE
c/Iy4aeB KOHTPOJMPOBAHO PeryJIMPOBAHMEM BXOALIMX TeMIepaTyp padouyux KHAKOCTel MJIM 3HAYeHHeM MX
nporoka Maccel. Ha ocHOBaHHM NeliCTBHTe/IbHO MPHHSATHIX NMPEATNOJI0KEeHNI BbIBeeHAa JIMHeilHAsl MaTeMaTHYecKast
Mo/eJb TeIIOOOMEHHHUKA ¢ IepPeKPECTHBIM IMOTOKOM pPAaGo4YHX MKHUIKOCTeH, Y4YMTbIBasg M JAHHAMHKY CTeHbI
Tenj000MeHHMKa. Mogeab 000CHOBaHA HAa (YHIAMEHTAJIBLHOM 3aKOHe KOHCEPBALMH JHEPrHH, YYHTBHIBasi Bce
AKKYMYJSITOPBI TeIUIOTHI JTOr0 IpoLecca M MpeAcTaBjieHA HYTEM CHCTeM 4YaCTHYHBIX AH(pdepeHnnaIbHBIX
ypaBuenuii (YY), ubé pemenue B o0ueM ciay4yae BO3MOKHO TOJIBKO B 3aKpbIToii ¢opme. B posm oaHoro us
BO3MOKHBIX CIIOCO00B BO M30¢:KaHHe PElICHHIl CHCTeM YacTHYHbIX AH(depeHIHaIbHBIX YPABHEHUH, B HacTOsILI et
padoTe paccMATPHBAIOTCSl PAa3jIHYHble METOJbl MATEMATHYECKOI0 MOACTHPOBAHUS TeIIO0OMEHHHKOB: IOIXO0J
o0ocHoBaH Ha TpaHchopmauun Jlannaca, npudaMiKeHHe (ANPOKCUMANMA) YACTHYHBIX M QepeHIHATBHBIX
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YPaBHEHHIi IPU MOMOIIH MeTO/Ia KOHEYHBbIX Pa3HUL, MeToa (PU3NUYECKOil JHCKPeANTAMH U TPAHCIIOPTHBIN MOAX0A.
J1s1 KOHKPETHO NMpHeMJIeMbIX 3HAYEHHIl MapaMeTPOB TeIIO0OMEHHHKA MPOBeJeHa CUMYJISINUS ero padoTbl H AaHBI
rpagMKH OTCKAKHMBAIOIIMX OT3bIBOB /ISl BCeX PACCMATPHBAHHBIX METOJAOB H AHAIM3HPOBAHO HX NPAKTHYeCKOe
3HaYeHHe.

Kly~evwe slova: ten1006MeHHHK, MaTeMaTHYeCKasi Mo/ie/Ib, CPABHHUTEJIbHBII aHaan3, Tpancopmanus Jamiaca,
MeTO/I KOHEYHbIX 3J1eMEHTOB, METO/I IUCKPETHU3AIHH.

Analyse comparative des différentes méthodes de modélisation
mathématique des échangeurs récupérables de chaleur

Les échangeurs récupérables de chaleur sont trés souvent utilisés comme les éléments constructifs pour les différentes
installations et la connaissance de leur dynamique est trés importante. On utilise les échangeurs de chaleur dans les
avions militaires de toutes tailles, de diverses missions, comme les parties de différents systémes de ces avions. Leur
fonctionnement est controlé le plus souvent par le réglage des températures d’entrée des fluides moteurs ou par la
grandeur de leur écoulement de masse. A la base des hypothéses réellement adoptées on a dérivé le modele
mathématique linéarisé de ’échangeur de chaleur a I’écoulement croisé de fluides moteurs considérant la dynamique
du paroi de I’échangeur. Le mode¢le est congu sur la loi fondamentale de la conservation d’énergie tenant compte de
tous les accumulateurs de chaleur de ce processus et il est représenté par le systéme des équations partielles
différentielles (EPD) dont la solution , généralement, n’est pas possible en forme fermée. Comme un des moyens
d’éviter la solution du systéme des équations partielles différentielles, dans ce travail on considére les différentes
méthodes de la modélisation mathématique pour les échangeurs de chaleur : approche basée sur I’application de la
transformation de Laplace, approximation des équations partielles différentielles par la méthode des différences
finies, méthode de discrétisation physique et approche de transport. Pour les valeurs adoptées des paramétres des
échangeurs de chaleur, on a effectué la simulation de leur fonctionnement et on a donné les formes graphiques des
réponses pour toutes les méthodes étudiées en analysant leur importance pratique.

Mots clés: échangeur de chaleur, modéle mathématique, analyse comparative, transformation de Laplace, méthode
des différences finies, méthode de discrétisation.



