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Military Queueing Systems in Saturation Regime and Some Practical 
Consequences 

Nebojša Nikolić1) 

Military queueing systems, in combat conditions above all, could be exposed to heavy-traffic conditions. An extreme 
or boundary case of heavy traffic is saturation. Saturation of queueing systems assumes that intensity of demands for 
servicing is equal to the nominal capacity of the service channel. A possibility for theoretical modeling and analysis of 
such systems is very limited due to mathematical complexity, so that researchers turn to other methodological 
approaches. This paper presents the results of modeling and analysis of a queueing system in saturation, by the use of 
a novel method of Monte Carlo simulation modeling, marked as “Automated Independent Replications with 
Gathering Statistics of Stochastic Process”. The main problem which has to be solved is a problem of accuracy of 
simulation results. It will be also demonstrated that a queueing system under saturation conditions and for finite time 
of engagement may operate mainly in the initial transient regime. 
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Introduction 
HIS paper presents the results of modeling and 
analyzing a queueing system under the conditions of 

saturation. Saturation is a boundary case of heavy traffic, 
characterized by fullness of server capacity. In [1], there is 
an indirect confirmation of the importance of this case: 
“The ability to model the heavy traffic regime accurately is 
therefore crucial for the designer or operator of a queueing 
system”. The phenomenon of saturation is discussed in 
Section 2. Successful dealing with saturation leads to 
another phenomenon, the initial transient problem, 
discussed in Section 3. 

One novel simulation method was applied for modeling 
and analysis in a concrete example. It is known as 
“Automated Independent Replications with Gathering 
Statistics of Stochastic Processes”, or shortly: AIRGSSP, 
[2]. We have exploited a suitability of this method to 
support modeling and analysis of a queueing system 
characterized by “five Any”, [1]: “Any time of engagement; 
Any traffic intensity; Any type of input and output of 
client’s flows; Any complexity; and Any size”. In this 
paper, we are focused on “any traffic intensity” and “any 
time of engagement”. Section 4 points out the importance 
and purpose of the time-dependent states probabilities of a 
queueing system. These probabilities are obtained by the 
use of the AIRGSSP method.  

A concrete example in Section 5 relates to the military 
logistics: a model of vehicle maintenance process in a 
military unit in a hypothetical United Nations (UN) 
mission. Besides this is only an example, its importance lies 
in a fact that “participation in peace building and 
peacekeeping in the region and the world” is the second 
mission of the national military forces declared in Serbian 
strategic documents, [3]. However, more significance 
comes from conceptual generality of queueing systems. 

Almost the same Queueing models could present a very 
different reality in different branches (engineering, military, 
logistics, traffic, etc). The same conclusion is valid for 
methods of modeling and analyses of queueing systems.  

In order to demonstrate how this endeavor helps to the 
logistics and military management, we carried out an 
Operational Readiness Evaluation (ORE, [4]) of a vehicle 
fleet in a military unit engaged in an UN mission. Section 6 
demonstrates the use of the simulation results in evaluating 
the Operational Readiness of the unit for the case of a 
vehicle fleet. 

Case of saturation 
Saturation is a case when the intensity of a client’s input 

stream (a stream of demands for service) is equal to the 
intensity of an output client’s stream (nominal capacity of 
the service channel to process demands for service). Both 
streams of clients (input and output) are characterized by 
randomness. Client’s demands for servicing and servicing 
itself are both of a stochastic nature. In other words, 
saturation is a case when the frequency of input demands 
for service is equal to the frequency of servicing. In this 
sense, we can compare saturation of queueing systems with 
the phenomenon of resonance in some technical systems. 

Classical, mostly used queueing theory results are related 
to the steady-state regime, Fig.1. In a case of saturation, it is 
not appropriate to use any of these – steady-state related 
results. The only suitable theoretical results acceptable for 
application in a case of saturation are known under the 
name: transient solutions. An indirect confirmation for this 
kind of reasoning and actuality of the problem is found in 
one novel paper [1], where Hlynka, Hurajt and Cylwa used 
a theoretical (analytical) approach to the problem while a 
simulation approach is preferred in this paper. 

T 
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In their essence, transient solutions are complete 
solutions valid for any traffic intensity and for both 
regimes: initial (transient, warm-up, start-up, relaxation) 
and steady-state (equilibrium). Transient solutions assume 
time-dependent variables.  

The division of the queueing system behavior to a 
transient regime and a steady-state one is artificial in a 
sense. Practically, there is no clear and definite “switch 
moment” from the transient to the steady-state regime, at 
least for the models with unlimited queues. Instead, that is a 
continual change across time, more or less long. Queueing 
system states probabilities displayed as time-dependent 
variables could confirm this observation, as we will see 
latter in Fig.2.  

Application and perception of queueing systems usually 
place artificial limitations on traffic intensity, such as: “the 
intensity of the input client stream has to be smaller than 
the intensity of servicing”. However, reality can be 
different from this artificial boundary. If we ignore reality 
in model building, then that model will not have enough 
fidelity and will not be able to serve its purpose 
accordingly. 

The problem arises when an analyst is faced with a need 
to study a queueing system which operates inside a finite 
portion of time, and without any limits to traffic intensity, 
[6]. Such demands appear in various military studies. Wars, 
battles and missions are all planned and executed during a 
finite period. Military resources are often heavy loaded and 
even overloaded from time to time. If we want a high 
fidelity queueing model as a military reality [7], then we 
have to face the initial transient problem [1]. 

 

Figure 1. Location of the saturation problem in constellation with the 
limitations of the theory 

Initial transient problem 
The initial transient phenomenon indicates the behavior 

of a queueing system in a period which precedes the steady- 
state regime. Due to the mathematical complexity of 
theoretical transient solutions we do not have practical 
capacity to calculate transient response of the queueing 
system. On the other hand, a steady-state regime is well 
documented, but it is hard to determine when it actually 
begins. Answering to this question involves the initial 
transient problem which is considered as one of the 
fundamental problems in the queueing simulation field.  

Transient and stationary regimes are complementary. 
The transient working regime occurs in the meantime, 
while we wait for the steady state. When the steady-state 

regime begins, and how long the transient period is are also 
complementary questions. Strictly speaking, the answer to 
any of those questions is a precondition for the correct use 
of steady-state solutions. Our belief that the queueing 
system under study works mainly or exclusively in a 
steady-state regime, and that the transient regime is of 
relatively short duration, is only a hypothesis. 

Practical consequences of the transient regime are values 
of performance measures different from their steady-state 
values. This is particularly important in situations when the 
time interval characterized by the transient regime is a 
respective part of the whole period of engagement (working 
time) of queueing systems. 

The initial transient phenomenon is well known in 
simulation of queueing systems. There are some other terms 
and phrases used for this phenomenon: warm-up or start-up 
problem, non-stationary regime, relaxation time, etc. One 
view [8] on the dynamic nature of the initial transient 
problem in simulation offers a possible explanation for this 
variety of terms. 

In order to get insight into this phenomenon, we need to 
have transient solutions. However, this is a hard task: 
solution procedures are mathematically demanding and 
solutions alone are very complex. Transient solutions were 
determined only for a limited set of queueing models of 
simple structures. This long-standing problem has attracted 
much research particularly from the simulation field 
through decades: from the time of Gafarian, Ancker and 
Morisaku (1978) [9], across the eighties (Odoni and Ruth 
1983) [10], and the nineties (Pawlikowski 1990) [11], to the 
modern times (Glynn 2005, Robinson 2005) [12]. Although 
this phenomenon deserves a long list of related references, 
we will point out only a few of them: 
- Gross and Harris (1974) on page 75 said [14]: “The tran-

sient derivation for M/M/1 is quite a complicated proce-
dure. The solution of this problem post-dated that of the 
basic Erlang work by nearly half a century, with the first 
known solution published by Lederman and Reuter 
(1956), in which they used spectral analysis for the gen-
eral birth-death process. In the same year, two additional 
papers appeared on the solution of this problem, by Bai-
ley (1956) and Champernowne (1956)”. 

- Bhat (1984) on page 360 wrote that [15]: “In many real 
situations, transient solutions are more appropriate, but 
they require better tools and techniques then we have 
now”.  

- Rothkopf and Oren (1979) observed [16]: “The general 
transient solution for the stationary single server queue is 
known. Unfortunately, it involves infinite sum of Bessel 
function and would not normally be used for numerical 
computation”. 

- Kleinrock (1975) on page 78 [17] made a remark about 
the analytical solution for states probabilities for the 
M/M/1 model: “This last expression is most dishearten-
ing. What it has to say is that an appropriate model for the 
simplest interesting queueing system leads to an ugly ex-
pression for the time-depended behavior of its state prob-
abilities. As a consequence, we can only hope for greater 
complexity and obscurity in attempting to find time-
dependent behavior of more general queueing systems”. 
The queueing theory as an older and more formally 

established discipline made influence on the simulation 
modeling. Relations between these two disciplines, together 
with some fundamental problems, are known to the 
simulation community. Schmeiser and Schruben (2005) 
said in [18]: “Discrete-event simulation analysis 
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methodology inherited much of its context from queueing 
theory. Simulation analysis methodology had to 
demonstrate that, at least from practical point of view, 
simulation models, when subjected to a rigorous analysis, 
can produce system-performance estimators that are as 
good as those obtained from queueing theory. It is 
embarrassingly hard to find explicit statements of 
fundamental simulation research question: the initialization 
bias problem, the run duration problem, or the input 
modeling problem. The literature has little to offer 
concerning systems that are never in steady state”. 

Perception of the initial transient problem in the Monte 
Carlo simulation of queueing systems is quite different than 
in a pure theoretical approach. A simulated queueing 
system cannot jump into its steady-state regime, as it is easy 
in the theoretical queueing theory approach. For example, 
state equations for the M/M/n queueing model are first 
order differential equations and with a stroke of the pen one 
can let the argument time tend to infinity. By doing so, one 
skip the initial transient period immediately, and reach the 
steady-state regime, while state equations become algebraic 
instead of differential ones. A simulated queueing model, 
on the other hand, really travels through its transient 
regime. The problem is, that a simulationist (a human that 
comes from a finite world), cannot wait for infinite time. 
He has to specify that infinity- to some reasonable extent, 
even when it is a large number- is still finite. 

Simulation of state probabilities  
In the steady-state regime of the queueing system, all 

state probabilities become constant. In the initial (transient, 
non-stationary) regime, state probabilities of the queueing 
system are time-dependent. If we could obtain, somehow, 
state probabilities as time-dependent variables, then it 
would be of  great help to make clear insight into the 
behavior of the queueing system in both regimes: transient 
and steady-state one.  

In fact, state probabilities are primary measures of 
performances of queueing systems. The mathematical 
description of queueing systems starts with the system of 
differential equations: every possible state of the queueing 
system is presented with one differential equation (Erlang’s 
equations, or Kolmogorov-Chapman equations). Those are 
next differential equations of first order (1): 

 ( ) ( ) ( )0 0 1p t p t p tλ μ= − +�   

( ) ( ) ( ) ( ) ( )1 0 1 2p t p t p t p tλ λ μ μ= − + +�  

 …  (1) 

( ) ( ) ( ) ( ) ( )1 2 1n n n np t p t p t p tλ λ μ μ− − −= − + +�  

( ) ( ) ( )1n n np t p t p tλ μ−= −�  

Also, these are the normalization condition (2) and the 
initial conditions (3): 

 ( )
0

1
n

i
i

p t
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 p0 (0)= 1,  p1 (0)= p2 (0)= p3 (0)=… = pn (0)= 0 (3) 

The variables pi(t) present time-dependent probabilities 
of the queueing system states. The index i presents the 

number of clients in a system. The independent variable is 
time (t). The intensity of input client’s stream is λ. The 
intensity of output client’s stream (servicing) is μ. 

The complete solution of this system of differential 
equation assumes obtaining state probabilities as time-
dependent variables. However, this task is very hard to 
perform, as we point out in Section 3.  

Instead of a purely theoretical approach and “deep 
analytical water” (Kleinrock), we can use numerical 
methods to solve a system of differential equations. 
However, numerical method approach becomes 
cumbersome in case of queueing systems with many 
possible states. In the following example with 400 hundred 
vehicles, we would have to solve a system of 401 
differential equations.  

Nevertheless, this is not the only problem with the 
application of numerical methods. In case of other types of 
queueing systems (non-exponential distributions, queueing 
networks, etc.) it is hard even to establish a system of 
differential equations. In short, irrespective of having or not 
a system of differential equations as an analytical 
description of the queueing system behavior, we want to get 
solutions: time-dependent probabilities of possible states of 
the queueing system under study.  

Complexity of a purely analytical approach or numerical 
method application to this task could be avoided using the 
Monte Carlo simulation modeling methodology. In [2], we 
propose a concrete simulation method for simulating state 
probabilities as time-dependent variables. Practically, we 
got numerical solutions for time-dependent state 
probabilities by the use of the Monte Carlo simulation 
modeling and without dealing with the system of 
differential equations itself.  

The basic statistics postulates were used in order to 
establish control over the accuracy of simulation results. 
This approach was thus termed “Statistical integration of 
differential equations”, or, which is already known in 
literature, “Monte Carlo integration”. We mark this specific 
simulation method as “Automated Independent 
Replications with Gathering Statistics of Stochastic 
Processes”, shortened as: AIRGSSP. The essence of the 
method is in his name.  

The next formula (4) gives the connections among: 
number of Independent Replications (n, sample size); 
probability (proportion) which is estimated (p) and its 
complement (q=1-p); maximal error of estimation in 
percents (ε); and confidence coefficient for Normal 
distribution (Zc). This formula comes from a well-known 
interval estimation for probability.  

 ( )2
2100
c

qn zp ε=  (4) 

In [9], we demonstrate how to achieve control over 
discrepancy of the simulation results with increasing a 
number of Independent Replications (IR) of the simulation 
experiment. For example, ten thousands Independent 
Replications of the simulation experiment obtain maximally 
7.7% of discrepancy of estimation, for a probability level of 
0.1, and with the level of statistical confidence at 0.99 (Zc 
(0.99) = 2.58). This number of IR is used in the example in 
the next section. 

One example of saturation 
Here we will elaborate one military logistics situation. It 

is a model of vehicle maintenance process in a military unit 
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in a UN mission. Some modifications are related only to 
numerical values.  

Duration of the mission is six months, which 
corresponds to 18,000 arbitrary chosen time units in the 
simulation model (that is: one day corresponds to 100 time 
units). Demands for vehicle maintenance appear every 50 
time units on average. Demands are stochastic according to 
the exponential distribution function. The average service 
time is also 50 time units, having a stochastic pattern in 
agreement with the Exponential distribution function.  

This military unit covers a huge area of responsibility 
with everyday tasks on patrolling, escorting, etc. Vehicles 
are among the most important items for this kind of a job. 
There are 400 vehicles. The road network in the mission 
area is poor. The military unit is far away from national and 
UN logistics bases, so supply routes are long.  

According to the UN mandate, there is a strictly limited 
number of soldiers and a possible increase of logistics 
personnel automatically means a decrease in the number of 
mission core soldiers. Therefore, logistics resources are 
very limited and there could be only one mobile 
maintenance team.  

The maintenance officer got several tasks. The unit 
commander ordered him to make the operational readiness 
evaluation (to estimate probability that defined percentage 
of vehicles would be operationally available, i.e. “not in 
failure”). The main logistics officer asked for an estimate of 
average number of vehicles in the state of “failure”, as well 
as for an average time of waiting for maintenance. Finally, 
his subordinates from the mobile maintenance team asked 
for information whether they would work all the time, or 
there would be some free time.  

When summarizing all this, the maintenance officer 
found the following: this is a queueing model M/M/1 in 
saturation. Time of mission is finite and that is valid for the 
queueing model too. The main hypothesis is as follows: in 
finite operating time, the queueing system may not reach 
the steady state.  

In the case of saturated conditions, the steady state 
practically means a disaster: probably all vehicles will be in 
state of failure! Therefore, the use of steady-state solutions 
could be inappropriate (because of finite time, not because 
of a disaster). He decided to make a simulation model for 
the described maintenance situation and to find: average 
queue length, average waiting time in queue, and level of 
utilization of the service channel.  

Above all, as a professional officer, he wants to carry out 
the order of the unit commander. For that purpose, he will 
simulate state probabilities as time dependent variables: 
p0(t) and p1(t); and grouped (clustered) states probabilities: 
p2-11(t), p12-21(t), p22-31(t), p32-41(t), p42-51(t), p52-101(t), and 
pi>101(t). Clustered states probabilities present groups of 
states: 1 to 10 clients in queue; 11 to 20 clients in queue; 40 

to 50 clients to queue; 50 to 100 clients in queue; and more 
than 100 clients in queue. This approach allowed him to 
produce a quick and useable support for operational 
readiness evaluation. 

He made a simulation model using the AIRGSSP 
method and got a time-dependent response for the desired 
states probabilities. Then he displayed them as in Fig.2.  

It is obvious from the shape of the curves in Fig.1 that 
this queueing system works mainly in the transient regime. 
Simply because none of the state probabilities has a 
constant value, instead, they have dynamic characters. 

Saturation, M /M/1; 10,000 IR
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Figure 2. Time-dependent states probabilities of the queueing system in 
saturation. 

Two state probabilities are presented as single ones: p0(t) 
and p1(t). Other state probabilities are clustered: 10 to 20; 
21 to 30; 31 to 40; 41 to 50; 50 to 100; and, more than 100 
vehicles in the state of failure, i.e. in queue waiting for 
maintenance (Series p0, to p>102 , respectively, Fig.2).  

Evaluation of operational readiness 
Some indicative numerical values for state probabilities 

are presented in Table 1. Fig.3 shows two cases for time-
dependent Operational Readiness Evaluation: probability 
that 95% (and 90% in the other case) of vehicles will be 
ready for use during six months of the mission (Series 1 and 
2 respectively, Fig.3).  

Operational readiness evaluation assumes the estimation 
of probability that the defined percentage of vehicles would 
be operationally available.  

Thanks to simulation data, we can make this evaluation 
across the time span for any point on the time axis (using 
data presented in Fig.3), or also make some general 
conclusions for the end of the mission, as well as deal with 
some average values for the entire mission (Table 1). 

  Table 1. Numerical values of state probabilities: at the end of the mission, and on average for the entire mission 

 p0 p1 p2-11 p12-21 p22-31 p32-41 p42-51 p52-101 p>101 
At the end 0.0314 0.033 0.30678 0.242851 0.169516 0.112677 0.0589 0.04434 0.004 
Onaverage 0.06637 0.05815 0.434563 0.23497 0.117019 0.053812 0.02344 0.011658 1.7E-05 

Operational readiness 

On average, for the whole mission period, we can claim with 
probability of 0.965 that Operational readiness of the military ve-
hicles will be 90%. 
NOTE: we summarized probabilities of all states where the queue 
length is less than or equal to 40 vehicles, (Military unit has 400 
vehicles, so 40 vehicles represent 10 %). 

  Probability of “disaster” is very 
small. 

 
The average utilization of the service channel is 0.937. 

Therefore, the personnel from the mobile maintenance team 
will have more than 6% of time in mission for free 
activities. 
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The average waiting time is 608 time units. Thequeue 
length on average is 12.3 clients. The average number of 
satisfied demands for maintenance for the entire mission is 
340.2.  

To conclude, the assumed situation of saturation for the 
queueing model presenting operations of mobile 
maintenance team will not be a disaster. It is true that the 
service channel will be occupied almost all the time. It is 
also true, however, that the unit will be able to perform its 
UN mission with reasonably high operational readiness. On 
average, from 400 hundred vehicles, fewer than 14 will be 
in state of failure: waiting for repair (in queue fewer than 
13), or being in the service channel (1). 

Operational Readiness Evaluations
for two levels:  95%   and  90%  of vehicles are operationaly ready
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Figure 3. Time-dependent Operational Readiness Evaluation for two cases 

In the end, it could be said that a dramatic situation of 
saturation (similar conclusion could be drawn for the case 
of heavy traffic and some cases of overloading) in a 
queueing model which operates for finite time has been 
softened owing to the influence of the initial transient 
phenomenon. 

Conclusion 
A careful investigation of conditions under which the 

theory is valid, in correlation with fidelity in modeling of 
reality, can lead to potentially new insights into the 
problem. The queueing theory has some important 
limitations related to the heavy-traffic operating conditions. 
A case of saturation is one of them.  

The simulation results confirm that the initial transient 
period could have a respective duration. Therefore, in the 
case of military queueing systems engaged for a finite time, 
it is possible to sustain Operational Readiness dynamic at 
an acceptable level. 

Future research could be dedicated to the next interesting 
case: overloading of queueing systems. Overloading is a 
case when the intensity of input client streams is greater 
than the intensity of servicing in service channels.  

Queueing models and corresponding methods are 
general in their essence. So, results and achievements in 
one scientific discipline (like military logistic, in this case) 

could be used in other disciplines (like purely engineering 
disciplines).  
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Vojni sistemi masovnog opsluživanja u režimu zasićenja i neke 
praktične posledice 

Vojni sistemi masovnog opsluživanja mogu biti izloženi visokom nivou opterećenosti, što naročito važi za borbene 
uslove. Granični slučaj visoko-opterećenog režima, u tom smislu je režim zasićenosti. Režim zasićenosti sistema 
masovnog opsluživanja podrazumeva da je intenzitet pojave zahteva za opsluživanjem jednak nominalnom 
kapacitetu kanala opsluživanja. Mogućnosti teorijskog modelovanja ovih slučajeva su vrlo ograničene zbog 
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matematičke složenosti postuupka kao i samog rešenja, pa se izlaz traži u drugim metodološkim pristupima. U radu 
su prikazani rezultati modelovanja i analize rada sistema masovnog opsluživanja u zasićenom režimu, primenom 
metode Monte Karlo simulacionog modelovanja, označene kao “Automatizovana Nezavisna Ponavljanja sa 
Prikupljanjem Statistike Slučajnih Procesa”. Osnovni problem koji treba rešiti jeste problem tačnosti simulacionih 
rezultata. Takođe, pokazaće se da u konačnom vremenu funkcionisanja sistem masovnog opsluživanja u režimu 
zasićenja značajno vreme provodi u takozvanom prelaznom režimu rada. 

Ključne reči: sistem masovnog opsluživanja, vojni sistem, logistika, zasićenost sistema, metoda Monte Karlo. 

Военные системы массового обслуживания в режиме 
насыщенности и некоторние практические последствие 
Военные системы массового обслуживания могут быть подвергнуты высокому уровню нагрузки, что 
особенно относится к боевым условиям. Предельный случай режима высокой нагрузки в этом смысле 
представляет режим насыщенности. Режим насыщенности системы массового обслуживания подразумевает, 
что интенсивность явления требования за обслуживанием равна номинальной ёмкости канала 
обслуживания. Возможности теоретического моделирования этих случаев очень ограничены из-за 
математической сложности поступка, а в том роде и самого решения, и из-за этого выход пришлось искать в 
других методических подходах. В настоящей работе показаны результаты моделирования и анализа работы 
системы массового обслуживания в режиме насыщенности, при применении метода Монте Карло 
симуляционного моделирования, обозначенного как «Автоматизированные Самостоятельные Повторения со 
Скоплением Статистики Случайных Процессов». Главной проблемой, которую надо решить, является 
проблема точности симуляционных результатов. Тоже проявиться, что в конечном времени 
функционирования  система массового обслуживания в режиме насыщенности значительную долю времени 
проводит в так называемом переходном режиме работы. 

Kly~evwe slova:  система массового обслуживания, военная система, тыл и снабжение, насыщенность 
системы, метод Монте Карло. 

Les systèmes militaires de file d’attente dans le régime de saturation 
et certaines conséquences pratiques 

Les systèmes militaires de file d’attente peuvent être exposés à un niveau de dense  circulation, ce qui est surtout 
évident dans les conditions de combat. Le cas limite du régime de la dense circulation est, dans ce sens, le régime de la 
saturation. Ce régime de la saturation du système suppose que l’intensité des demandes de service est égale à la 
capacité nominale de la chaîne de service. Les possibilité de la modélisation théorique de ces cas sont très limitées à 
cause de la complexité mathématique du procédé et de la solution même ; pour tout cela la solution est recherchée 
parmi les autres procédés méthodologiques. Dans ce papier on a exposé les résultats de la modélisation et l’analyse du 
fonctionnement du système de la file d’attente dans le régime de saturation, à l’aide de la méthode Monté Carlo de la 
modélisation simulée  qui est  désignée comme »les répétitions automatiques indépendantes avec rassemblement 
statistique des procédés stochastiques ». Le problème basique à résoudre consiste dans la précision des résultats de la 
simulation. On démontrera aussi que dans le temps final du fonctionnement le système de la file d’attente sous le 
régime de saturation passe un temps considérable dans le régime transitoire d’engagement. 

Mots clés: système de la file d’attente, système militaire, logistique, saturation du système, méthode Monté Carlo. 

 
 


