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Analogy Between a New Formulation of the Euler-Bernoulli
Equation and the Algorithm for Forming Mathematical Models of

Robot Motion

Mirjana Filipovi¢®

With new knowledge collected through generations, the intensive development of new technical areas such as robotics
especially strengthened by the development of the data computing process demanded and enabled that elastic
deformation was considered as a real dynamic value depending on system parameters. The elastic deformation
amplitude and its frequency are dynamic values which depend on the total dynamics of the robot system movements
(forces) and also on the mechanism configuration, weight, length of the segments of the reference trajectory choice,
dynamic characteristics of the motor movements, etc. We define a general form of the equation of the flexible line of a
complex robotic system of arbitrary configuration, using the Euler-Bernoulli equation. The relation between the
Euler-Bernoulli equation and the equation of motion at the point of elastic line tip is explained. A mathematical model
of the actuators also comprises coupling between elasticity forces. The analogy between the Euler-Bernoulli equation
solutions, defined by Daniel Bernoulli in the original form, and the procedure of the ,,direct kinematics* solutions in
the robotics, is presented.

Key words: robotic, kinematics, motion dynamics, Euler-Bernoulli equations, process modeling, elastic deformation,
coupling, stiffness matrix, motion simulation, programmed trajectory.

Designations

—quantities that are related to an arbitrary

’ oint of the elastic line of the mode, for
DOF —degree of freedom Example' M % e
. . LML) en)
t(s) —time # —quantities that are not designated by
dt =0.000107 (s) —sample time “ " are defined for the mode tip, for
T=4() —whole period time example: M; j, % j,&i ;
=[xy zw ¢ of _f:::c:tr(ejsi'g;e(:xmmal) #, —quantftfes which ct?aracterlz_e link
o=[Ps P2 Bs Ps - ]T _ vector of internal # —quantities that define a desired value
S "7 coordinates 0 < R (rad) —rotation angle of the motor shaft after

Xi i Vi Zi —local coordlnate_frame, which is set in the reducer

the base of considered mode 1 —bending angle of the considered mode

local coordinate f hich is set | e R (rad)
Xi) Vi, 2 —local coordinate frame, which is set in ) .

the base of the considered link o e R*(rad) —rptatlonzalmgle of the considered mode
XY,2 —basic coordinate frame, which is set in tip (see ©)

the root of the considered robotic system £ eR'(rad) —deflection angle of the gear
i=12,3...n —serial number of the mode of the L 5 o

considered link pjeR (Nm ) —flexural rigidity
i=123..,m  —ordinal number of the link 7.; € RY(s) —factor which characterizes a part of
k = n+ Nn,+...+n,, —whole number of the modes in the . damping in all flexural characteristics

considered robotics configuration H e R —inertial matrix
M; ; € R*(Nm) —load moment for the mode tip he R —centrifugal, gravitational, Coriolis vector
&, € RY(Nm) —bending moment for the mode tip Je —gﬁg%k))(itzr:nrgﬁtcr;ﬁtglﬁ%irré% the effect of
£; € R"(Nm —bending moment vector for each mode Rl —stationary part of flexible deformation

! (Nm) tip of the considered link Taij € RY(m) P

T
6\2[8111 (91’2 "'gl,nl 82'1 52’2 ...82’n2 ---gm,nm ] —_ Vector of

T
Em= [51,1 21631 ---5m,1]

¢ e R*(Nm)

bending moments

— elasticity moment of the gear
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TtOi,j S Rl(m)

a; e RY(m)

caused by stationary moments that vary
continuously over time

—oscillatory part of flexible deformation
— usually normal distance between j -th
and j+1-th joints
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aj e R1(°) —angle between the axes z;; and z;
about the axis x; .

d; e R (m) —distance between normal 1;_; and I;
along the axis of j -th joint

R=0.272(Q) —rotor circuit resistance

u(Vv) —voltage

i(A) —rotor current

Ce =6.1(V /(radls)) —proportionality constants of the
electromotive force
Cy =6.1(Nm/A) —Pproportionality constants of the moment

B =0( Nm/(rad/s)) —coefficient of viscous friction
| = 4.52(kgm2) —inertia moments of the rotor and reducer

S =0.0446 —expression defining the reducer

geometry

0 e RM —matrix characterizing the mutual
influence of the bending moments
modes of all the links

0, € R™™ —characterizes the influence of the
bending moment of each mode on the
motor dynamics

® e R¥ —matrix characterizing the robot
configuration

I =0.3(m) —length of mode

D =0.0169(m) —outside diameter

&=07 —ratio between the inside and the
outside diameter of the link cylinder

reRY(m) —flexure

m, =1(kg),

J:) _ O.(0(?1)25(kgm2) —mass in the link base

m = 2(kg), —mass in the link tip

j=0.0025(kgm?)

—inertia moments of the cross-

Inom = 0.3042%10°° (mA) section of mode

E, (Nm) —kinetic energy

E, (Nm) —potential energy

® (Nm/s) —dissipative energy

¢ —generalized coordinate
g (m/sz) —gravity acceleration
ueRY(V) —control signal

C,=7.0278 -103(kg/sz) —characteristics of the stiffness of
the mode considered link

—characteristics of the damping of the
mode considered link

C:-1.8143 -103(Nm/rad) — characteristics of the

stiffness of the gear

—characteristics of the damping of
the gear

—polar moment of inertia, which we
obtain depending on the diameter
and the thickness of cross-section
joints

—length at which deflection joints
occurred

B, =50(kg/s)

B-=20( Nm/(rad/s))

1,=0.785410"°(m* )

a,, =0.03(m)

E,=69.3-109(N/m2) —module of elasticity for aluminium

50 (t,)=0(rad), —initial exceptions of the angle turning
- powers

80 (to) = 0(rad/s)

Ky, = 40000,
Ky, =400

—position, velocity control gains for
movement stabilization

Introduction

ODELING of elastic robotic systems has been a

challenge to researchers in the last four decades. In
paper [18] the authors extend the integral manifold
approach to the control of flexible joint robot manipulators
from the known parameter case to the adaptive case. Paper
[22] presents the derivation of the equations of motion for
the application of mechanical manipulators with flexible
links. In [23] the equations are derived using Hamilton’s
principle and they are nonlinear integro-differential
equations. There are methods of variables separation and
Galerkin’s approach suggested in [24] for the boundary-
value problem with the time-dependent boundary condition.
The first detailed presentation of the procedure for creating
reference trajectory was given in [1].

A mathematical model of a mechanism with one degree
of freedom (DOF), with one elastic gear, was defined by
Spong, 1987, in [29]. Based on the same principle, the
elasticity of gears is introduced in the mathematical model
in this paper, as well in [12-17].

However, when the introduction of link flexibility in the
mathematical model is concerned, it is necessary to point
out to some essential problems in this domain.

In our paper we do not use the “assumed modes
technique”, proposed by Meirovitch in [28] (and used by all
authors until today in [5-8], [19-21], [25-27], [30] etc.). We
disagree with him.

The LMA (“Lumped-mass approach”) is a method
which defines motion equation at any point of a considered
mechanism. If any link of the mechanism is elastic then we
can also define the motion equation at any point of the
presented link. We do not know exactly when this approach
was stated. It defines the dynamic equation at any point of a
mechanism during movement. The LMA in [2-4] gives the
possibility to analyze the motion of any point of each mode.
Papers with this research topic (approach) were rare in
robotics journals in the last two decades.

The EBA (“Euler-Bernoulli approach”) assumes the use
of the Euler-Bernoulli equations which appeared in 1750.
The EBA gives the possibility to analyze a flexible line
form of each mode in the course of task realization. The
EBA is an approach that is still in the focus of researchers’
interest and it was analyzed most often in the last decades.

In the pertinent literature no relationship has been
established between the LMA and the EBA.

We consider that the EBA and the LMA are two
comparative methods addressing the same problem but
from different aspects, see [12], [13], [15-17].

Using the EBA, we obtain the equations of the flexible line
model of each mode and by setting boundary conditions we
obtain model equations of motion at the point of the tip (or any
other point) of each mode, which is in fact the LMA. As the
equation of motion for the mode tip point is essentially an
LMA, it follows directly from the equation of the flexible line
obtained via the EBA for the preset boundary conditions.

In the meantime, from 1750 when the Euler Bernoulli
equation was published until today, our knowledge, especially
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in the robotics, the oscillation theory and the elasticity theory,
has progressed significantly. As a consequence, this paper
points out the necessity of the extension of the Euler Bernoulli
equation from many aspects.

In the previous [5-8], [19-21], [25-27], [30] etc., the
general solution of the motion of an elastic robotic system
has been obtained by considering flexural deformations as
transversal oscillations that can be determined by the
method of particular integrals of D. Bernoulli.

We consider that any elastic deformation can be
presented by superimposing D. Bernoulli’s particular
solutions of the oscillatory character and the stationary
solution of the forced character. The elastic deformation is
a dynamic value which depends on the total dynamics of
the robot system movements, see [12], [13], [15-17].

The reference trajectory is calculated from the overall
dynamic model when the robot tip is tracking a desired
trajectory in a reference regime in the absence of disturbances.

Elastic deformation (of flexible links and elastic gears) is
a quantity which is, at least, partly encompassed by the
reference trajectory. It is assumed that all elasticity
characteristics in the system (both of stiffness and damping)
are "known™ at least partly and at that level they can be
included into the process of defining the reference motion.
Thus defined reference trajectory allows the possibility of
applying very simple control laws via PD local feedback
loops which ensures reliable tracking of the robotic tip
considered in the space of the Cartesian coordinates to the
level of known elasticity parameters.

The “Assumed modes technique” from [28] was used by
all authors in the last 40 years to form the Euler Bernoulli
beam equation. In our paper we form the Euler Bernoulli
equation but we do not use the “assumed modes technique”
in contrast to our contemporaries.

We think that the “assumed modes technique” was and
still can be useful in some other research areas but it is used
in a wrong way in robotics, theory of oscillations and
theory of elasticity.

Let us emphasize once again that in this paper we propose a
mathematical model solution that includes in its root the
possibility for simultaneous analyzing both present phenomena
— the elasticity of gears and the flexibility of links. The idea
originated from [4], but is based on new principles.

The area which we deal with, the robotics, is very
important, because the modeling of the robot system
movement dynamics with both rigid and elastic elements
comes from it directly. The robotics is the area that can
offer a solution and it represents the foundation of the
further research in many other areas. The reason for that is
quite simple: the robotics progressed significantly in the
last 40 years. It is important to emphasize the importance of
the further research but now based on new principles which
will be set in this paper.

Our future work should be directed towards the
implementation of gears elasticity and links flexibility on any
model of a rigid mechanism and also on a model of
reconfigurable rigid robot as given in [10], [11] or any other
type of mechanism. The mechanism should be modeled to
contain elastic elements and to generate vibrations which are
used for conveying particulate and granular materials in [9].

The procedure of defining the dynamic model with all
elements of coupling is presented completely as well as
with dynamic effects of the present forces defined in
Section 2. We presented the kinematic model and the
analogy between the Euler-Bernoulli equation solutions
defined by Daniel Bernoulli and the procedure of the

»direct kinematics” and ,,inverse kinematics“ solutions in
the Robotics in Section 3. Section 4 analyzes simulation
example for movement dynamic of an elastic robotic pair
with an elastic gear and a flexible link in the presence of
only one mode. Section 5 gives some concluding remarks.

Dynamics of elastic robotic systems

The Euler-Bernoulli equation was written in 1750. They
did not even dream about the robotics and the knowledge
we have now at our disposal. However, although it was
conceived more than 250 years ago, the Euler-Bernoulli
equation is still valid and it can be connected logically with
the contemporary knowledge from the robotics. The
“Source form of the Euler-Bernoulli equation” of the elastic
line of beam bending has the following form:

. 0%y
My, +&1; =0, bu=py — @

11

Equation (1) was defined under the assumption that the
elasticity force is opposed only by the inertial force proper.
Besides, it is supposed by the definition that the motion in (1)

is caused by an external force F,, suddenly added and then

removed. Bernoulli presumed the horizontal position of the
observed body as its stationary state (in this case it matches
the position X - axis, see Fig. 1a). At such presumption, the
oscillations happen just around the X - axis.

If Bernoulli, at any case, had included the gravity force
G in (1), the situation would have been more real. Then the
stationary body position would not have matched the X-
axis position, but the body position would have been little
lower and the oscillations would have happened around the
new stationary position as presented in Fig. 1b).

b) motion in case the presence of a gravity force

Figure 1. Motion of an elastic body

The Euler-Bernoulli equation (1) should be expanded as
in [12], [13], [15-17] from several aspects in order to be
applicable in a broader analysis of elasticity of robot
mechanisms. By supplementing these equations with the
expressions that come out directly from the motion
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dynamics of elastic bodies, they become more complex.
The motion of the considered robotic system mode is far

more complex than the motion of the body presented in

Fig.1a). This means that the equations that describe the

robotic system (its modes) must also be more complex than

(1) formulated by Euler and Bernoulli. Hence, we should

especially emphasize the necessity of expanding the source

equations in the following way:

- Based on the known laws of dynamics, (1) is to be
supplemented by all the forces that participate in the
formation of the bending moment of the considered mode.

- Damping is an omnipresent flexibility characteristic of
real systems, so that it is naturally included in the Euler-
Bernoulli equation.

~ 0? ( 91,1 +1a 91,1)
My + Bis T =0 2
11

m is a factor characterizing the share of damping in the

total flexibility characteristic.

The load moment is composed of all forces acting on the
first mode of the link and these are inertial forces (own and
coupled forces), centrifugal, gravitational, Coriolis forces
(own and coupled), forces due to relative motion of one
mode with respect to the other, coupled elasticity forces of
the other modes, as well as the force of the environment
dynamics, which is via the Jacobian matrix transferred to
the motion of the first mode that come out directly from the
motion dynamics of elastic bodies. In that case, the model
of the elastic line of the elastic link’s first mode has the
“New form of the Euler-Bernoulli equation”:

~ d%y . -
Hy j #JF by + le,lFuk +
dt . 3)
0 ()71,1 + 771,191,1)
+<>1,j€1 +ﬂ1,1,\—2 = 0
0 1,1

Let us consider a robotic system with m links, whereby
the first link contains n, modes. i=1,..m. The model of
the elastic line of this complex elastic robotic system is
given in the matrix form by the following “New form of the
Euler-Bernoulli equation”;

a dzy DT A
H-F+h+je-Fuk+<>-®~gl+g=O 4

Robotics researchers are especially interested in the
motion of the first mode tip.

The equation of motion of the forces involved at any point
of the elastic line of first mode, including the point of the first
mode tip, can be defined from the Euler-Bernoulli eq. (3).
The equation of motion of all forces at the first mode tip for
the given boundary conditions can be defined by:

~ A%y .
Hyj 7dt2111 +his+ e’ - Fuc+
IF =0(ZM =0) (5)
+01,j - & + pig = 0/at the point of
first mode tip

Eq.(5) is interesting because it allows one to calculate
the position of the first mode tip. If we know the position of
each mode tip, we can always calculate the position of the
link tip too and eventually the position of the robot tip.

The equation of motion of all the forces at the point of

each mode tip of any link can be defined from the Euler-
Bernoulli eqg.(4) by setting the boundary conditions.:

dZ ZFZO(ZM =0)
HEY h+ T -Fy+0-0©-5+5=0[at thetipof  (6)
dt any mode of

link considered

The mathematical model of all m motors can be written
in a vector form as:

u=R-i+Cg -0,
L. M =0 7
Cy-i=l-0+B0-S(z,-&+ ¢y )|about the rotation axis
ofthe each motors

Example: Dynamic model of a typical robotic pair

We shall observe a dynamic pair with an elastic gear and
an elastic link. See Fig.2. Behind the engine we have the
Harmonic-drive reducer, represented with the spring
stiffness C. (Nm/rad) and the damping B (Nm/(rad/s)).

Behind the reducer there is an elastic link which divides the
whole mass into two parts, m(kg) and my(kg) 6 ~0.

The link is observed as an elastic stick of the fixed
length 1(m) and a constant cross-section. The stiffness of

the link is marked with C, (kg/s’), and the damping of the
link is marked with B (kg/s) .

real position of the top

Figure 2. Typical robotic pair in the “horizontal” plane

The chosen robot pair is shown in Fig.2. The elasticity
coordinate of this “kinematic” pair is g and it is formed by:

@ - the turning angle of the motor shaft behind the gear,
£ - the deflection angle of the gear and 9, - the bending
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angle of the link (one mode) in the horizontal plane.

q:§+§+19r:7:§+§vq:7+19r (8)

The angles & and 9 are in the same plane for the
rotational robotic pair in space. The angle §, is the angle

of the link bending around the z, -axis, see Figures 2 and 3.
lg =1-cosd,, I, =1, -cos, 9)

We will introduce one simplification that cos 4, ~1, for
9, =0, cosd, =1, 4 =0.
We accepted that the top of the mode has been moving

continuously on the surface of the ball, the radius of which
is | without shortening for the considered mode, see Fig.3.

l, ~| (10)

f
g9, =|—q, tg 9, =%.
For small bending angles we adopt that 4, ~tg9,,
9 =19 :

f f,
ng = T, lgr = T (11)

r=1-cosd, (12)

The dynamic model of final equations for the motion of
the considered robotic pair was obtained by applying
Lagrange’s equations.

According to Figures 2 and 3, we defined four

generalized coordinates q, y, 4, and 0.

We shall not set the terms for kinematic, potential and
dissipative energy of the rotation shaft of the engine because
all these expressions were already realized long time ago and
we shall only transcribe them in a corresponding way to the
adapted elastic robot pair. We shall put the expression for
kinetic, potential and dissipative energy moving of mass m, ,
such as the mass m around the observed joint, and the
expressions which appear as a consequence of the elastic
deformations of the link and the gear.

We express the angles 9, and & with the generalized

coordinates (see Fig.3), respectively:
§=y7-0 (13)

The relations between the angle of the bend link 9, ()

'-gr:q_yi

and the angle of the turning top link @ (), see [31], are:

o ==Y, a)q:%gq 14

1
2
The kinetic and potential energy of the mechanism

presented in Fig.2 are denoted as Ek and ép . All the angles

in the expression for kinetic, potential and dissipative
energy characterizing flexibility of the links should also be
expressed via generalized coordinates.

Thus the total potential ép and the dissipative energy
@ are:

Ep =Epo + Epeis + Epels (15)

D =Dy + (DeI§ (16)

The potential and dissipative energy as a result of the
elasticity of the links are, respectively

Epels :%'Cs : fq2+%’cs ) frz,
Dy =1.B,- f2+1.B,- 2.

2 2

We introduce the multiplication and the division of the
same expression with 12,
fr2 |2

f2
E pets :%'Cs .Tg.|2 +%'CS'|T'

_1 fq2 12 1 f? 12
(DPE«‘lS_E'BS.IT. +§BSIT .

Since (11) and (13) are valid, then it follows that:

Figure 3. Position of the top after introducing simplification

Epe|s:%-Cs-9§-|2+%-C5-(q—)/)2~|2 (17)

%-Bs-ng-lz+%-85~(q-;})2~lz (18)

Dy =
Since (15) the potential E: :%-C§ -£2 energy and the

dissipative @ -1 B. - &2 energy are:

2
Epe,gz%-cg-(y—é)z (19)
~\2
o =3B (7-0) (20)
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Let us define the equation of the flexible line of the link

mode in the horizontal plane. The expressions Ek and ép
should be defined for any point of the first link (one mode)

|
f:J'diy.
0

By applying Lagrange’s equation with respect to the first
generalized coordinate g using the expressions E,,, Enq,

Epets» Epeiz» es, Pgrz We obtain the load moment M,
which is opposed by the flexibility force

0 (yr +n- yr)

This is just the procedure for obtaining the ,,New form of
the Euler-Bernoulli equation” by which the motion of any
point on the flexible line of the link (one mode) in the
horizontal plane:

&= in the plane x, — v,

62(9r+77'§/r)

Hys-G+Hyp -7+ + 8- =0 @)

Hy :m-I2~cosz(.9q)+%jzz...

Following the same analogy, we define the equation of the
flexible line of the same link (one mode) in the vertical plane.

The expressions Ekm and Ep should be defined for any

|
point of the link (one mode) | = J‘dA1 .
0
Thus we obtain the expressions ékuq and épuq. By
applying Lagrange’s equation with respect to the third
generalized coordinate v, using the expressions Ekuq,

Epug + Epets s Epetsr @eis, Perz We obtain the load moment

Puq

I\7IU0| which is opposed by the flexibility force

B 52(91‘”7'%)

E %
This is just the procedure for obtaining the ,,New form of
the Euler-Bernoulli equation” by which the motion of any

point on the flexible line of the same segment in the vertical
plane (one mode):

in the plane x, — ;.

62(91+77-§/1)

I-A|3,3~9q+h3+/5" P
1

=0 (22)

The expressions E, and ép should be defined for the

full length of the link | = x,. Thus, for the given boundary
conditions, by applying Lagrange’s equation with respect to
the first generalized coordinate q, we can obtain the

equation of motion of the tip point of the considered elastic
line link.

Hy -G+ Hyp 7+ +Bg-1-f,-Co-1-f, =0 (23)

Hy =m-I? ~cosz(9q)+%Jzzz...

The expressions E, and ép should be defined for the

full length of the link I. Following the same procedure and
by applying Lagrange’s equation with respect to the second
generalized coordinate y, we define the equation of

motion.

Hpp-G+Hyp 7 =B -l- f, =Cs-1- f; -B¢-§-C§-§:0 (24)

The expressions E, and ép should be defined for the

full length of the link I. Following the same procedure and
by applying Lagrange’s equation with respect to the third
generalized coordinates §,, we obtain the equation of

motion.
Hgs 9 +hg+Bg-1-fy+C-1-f, =0 (25)

By applying Lagrange’s equation with respect to the fourth
coordinate & , we obtain the motion equation of the motors:

u=R-i+Cg -0,
iThE s, | . (26)
Cy-i=1-0+B-0-S:(B;-£+C; &)
In this paper, we choose the positional control law with
local feedback for the realization of simulations:

u=K,p~(§°—§)+K|v-(§°—§) 27)

Note: Eq.(21) cannot be equated to (23) because they are
equations of different types. Eq. (21) is an equation of
flexible lines (Euler-Bernoulli equation (EBA)) of the link
in the horizontal plane, while (23) is an equation of motion
(LMA) at the point of the tip of the same link in the
horizontal plane. Eq. (22) is the Euler-Bernoulli equation of
the link in the vertical plane, while (25) is an equation of
motion at the point of the tip of the same link in the vertical
plane.

All examples which we have analyzed in our papers up
to now have two modes, see [12], [13], [15-17]. They have
been manually developed, which limits their complexity.
The example which we analyze in this paper has 4 DOFs.
The segment has only one mode unlike the example in [12],
[13], [15-17]. Since we are now at the stage of the pioneer
research steps in this field, we believe that these equations
should be first analyzed on the simplest examples in order
to make public experts accept the idea of the new
interpretation of the Euler-Bernoulli equation and a root of
the equation. For these reasons, everything is shown on a
little “simpler” example, step by step. It was developed in
the period of the first research steps, but it does not make it
less important. Considering the fact that it has not been
published and that it gives the possibility of explaining all
analyzed phenomena, we find it appropriate because it
helps understanding this field.

Kinematics of elastic robotic systems

First we can analyse the solution of Euler-Bernoulli
eq.(1). The general solution of motion, i.e. the form of
transversal oscillations of flexible beams can be found in
the method of particular integrals of D. Bernoulli, that is,
see Fig.la):

9101(21,1'1) = )21,1(21,1)'1:@1,1 (t) (28)
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By superimposing the particular solutions (28), any
transversal oscillation can be presented in the following
form:

ytgl X1 J! Xl j Tlol,j (t)

&Mg

(29)

As already mentioned, equations (1), (28), (29) are
defined under the assumption that the elasticity force is
opposed only by the inertial force proper. The solution (28),
(29) of D. Bernoulli satisfies these assumptions.

The Bernoulli solution (28), (29) describes only partially
the nature of motion of real elastic beams. More precisely,
it is only one component of motion. This fact is overlooked,
and the original equations (28), (29) are widely used in the
literature to describe the robotic system motion. This is
very inadequate because valuable pieces of information
about the complexity of the elastic robotic system motion
are thus lost.

The Daniel Bernoulli solution (28), (29) should be
expanded.

By superposing the particular solution of oscillatory
nature, and the stationary solution of forced nature, see Fig.
1b), any flexible deformation of a considered mode may be
presented in the following general form:

)71,1 = )21,1 ()21,1 ) : (fstl,l (t) + -I:tgl,l (t)) (30)

TAsu,1 is the stationary part of flexible deformation caused

by stationary forces that vary continuously over time. ﬁ01,1

is the oscillatory part of flexible deformation as in (28).

By superposing solutions (30), any flexible deformations
of a flexible link with an infinite number of degrees of
freedom (modes) may be presented in the following form:

1 (%0t stlJ(t)’L-':tol,j (t)) (31)

&MB

The solution of system (4) and dynamic motor motion,
i.e. the form of its elastic line, can be obtained in the
presence of the dynamics (angle) of rotation of each motor,
as well as by taking into account the robotic configuration.

§=a(% T j Tijn 0, )
R =b(% ;. Tai 1. T . 0 )
zze(x Tai i Tij» 0,0, -
v =d ( J,Suj,Tto,Jéozt)
E=8(Rj T, T, 0,0t
o= (%, et T 0,0t

Thus we defined the position and orientation of each
point of the elastic line in the space of Cartesian
coordinates. It should be pointed out that the form of elastic
line comes out directly from the dynamics of the system
motion.

The robot tip motion is defined by the sum of the
stationary and oscillatory motion of each mode tip plus the
dynamics of motion of the motor powering each link, as
well by the included robot configuration (solution of (6)
and (7)):

(%, i Tij Toirj 0 o t)
b(% 5 Tat,j Toinj 0t t)
c(%, Tstij T2 60, @, )
w =d (%}, Taij Tij 0, . t)
¢= e( i Tt Toi 0 at)
o =1 (%5 Tati,j Toij 0 )

From (33) we can calculate the motion of each mode tip
and link, and finally, of the robot tip motion.

y=
X
z

(33)

Example: Kinematic model of a typical robotic pair

In order to define the shape and position of the elastic
line of the mode link from Fig.2, during the realization of
the robot task in the space of Cartesian coordinates, it is
necessary to find solutions (21), (24), (22) and (26). The
general solution of the dynamics movement of the observed
model is given with (32).

Then, (23), (24), (25) and (26) will be valid and
according to these conditions, all generalized coordinates

q,7,9.60 could be calculated. According to (13), (14),
other values of the system &, 9, o, @, could be defined.

According to the analogy with robot systems, these values
can be named ‘internal coordinates’.

A geometric link between these characteristics (internal
coordinates) and the space of Cartesian coordinates
(external coordinates) was defined by the use of the
transformation matrix, or so-called “direct kinematics” in
the robotics. In order to describe space coordinates of the
moving of this link top we shall need four matrices of
rotation (see Fig.3):

* rotation around z; axis in the point “A” for the angle q,

a1=0, d1=0, o
* turning of the link top around the z, axis in the point
d2 :O, a; =90°. The

=0 . The transformation matrix is Te‘l) .

“A” for the angle 4,, a, =1,
transformation matrix is T, .

* turning of the link top around the z; axis in the point
“B™” in the same plane for the angle @,, a; =0, d; =0
as =0°. The transformation matrix is T3.

* turning of the link top around the z, axis in the point
“B” for the angle w,, a,=0, d,=0, a,=90". The
transformation matrix is TS,

cosq -sing 0 O
o_|sing cosq 0 O
To = 0 0 10 (34)
0 0 01
cosd, 0 sing |.cosd,
ing, 0 —cosy, 1-sing
7L =| ¥ G ‘ 35
e 0 1 0 0 (35)
0 o0 0 1
coswy; —sSinw; 0 0
00
T2 _|Sin@, cosa, 36
% 0 0 10 (36)
0 0 01
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cosw, 0 sinw, 0

3 _|sineg 0 —cosw, O

Tey = 0 1 0 0 (37)
1

0 O 0

The total transformation matrix is calculated as a product
of the transformation matrices of these four rotations.

Te?t :Te(l) 'Telz 'Teg 'Tei (38)

In accordance with the analyzed example, it is evident
that the rotational robotic pair from the elastic effects can
compensate only for the stick bending in the direction of
those forces that act in the direction of the motor shaft

turning. The bending angles 4,, @y, @, which are not in

the direction of the motor shaft turning, cannot be
compensated for and they form a continual mistake in the
tracking of reference trajectory.

As we have defined the transformation matrix for the

same manipulator Teg , given by (38), now it is easy to form
the Jacobian matrix J,.
The Jacobian matrix for a manipulator with elastic joints

and links maps the velocity vector of the external
coordinates p, into the velocity vector of the internal

coordinates ¢ :
ps=J(¢)9. (39)

Where pxyzy o (p]T defines the velocity of a
given point of the robotic system in the Cartesian
coordinates, whereas qﬁz[plyl P2 Pz Pra - /)Ln]T defines

the velocity vector of the internal coordinates. In this
example see Fig.2, eq.(39) has a form:

x| |-l-sing -cosq —l-cosd,-sing g
y|=|-1-sing,-sinqg +l-cosd,-cosq { f‘} (40)
z] |+l-cosd, 0 a

The elements of the Jacobian are only functions of the
elements of the homogenous transformation matrix Tei :

Here we have one more innovation concerning the
known considerations. In robotics the reference trajectory is
defined in a purely kinematic way i.e. geometric and now in
the presence of the elasticity elements we can include also
the elastic deformation values at the reference level i.e. at
the level of knowing the elasticity characteristics during the
reference trajectory defining.

There are two aspects in defining the reference trajectory
of the motor angle (see [12-17]):

1. Elastic deformation is considered as a quantity which is
not encompassed by the reference trajectory.

2. Elastic deformation is a quantity which is at least partly
encompassed by the reference trajectory.

It is clear now that (33), generally, and in our example
(38) serve for the calculation of the robot tip movement
during the robot task realization and that based on the
motor rotating angles, elastic deformation values and all
other kinematic and dynamic robot mechanism
characteristics (such as its geometry, configuration, weight
disposal, motor characteristics, reference trajectory choice
as well as many other important characteristics that
influence the robot system movement dynamics). We, in

the robotics, call this procedure the solution of ,direct
kinematics*.

In this way we presented the analogy:

between
A N

the Euler-Bernoulli equation
solutions which were defined
by Daniel Bernoulli by (28) (or
(29)) in the original form (i.e. the procedure of the
the form of elastic line|and|,direct kinematics“
solutions (32) in the extended (38) in the robotics.

form or the form of equation of
the motion solutions of tip

(33)

The analogy between the Euler-Bernoulli equation and
its solution and modern knowledge from the Robotics is
presented in this way.

Simulation Example

We are analysing the behavior of a robotic pair with an
elastic gear and an elastic link as in Fig.2. The tip of the

robot started from the position “Byar” (0an =0(rad)) and
moves directly to the point “Beng” (g = z(rad)) in a
predicted time of T =4(s).

1 2

velocity (° [rad/s]
(=]
o

acceleration §° [rad/s?

(=}
(=}

1 2 3 4 0 1 2 3 4
time (s) time (s)

Figure 4. Reference velocity and acceleration in the space of internal
coordinates

The trapezoidal profile of velocity together with the time
of acceleration and deceleration from 0.2-T is adopted.
See Fig.4.

The links have a tube form. The outside diameter is
D(m), and the ratio between the inside and the outside

diameter of the cylinder is &.
The characteristics of stiffness and damping of the gear in

the real and reference regimes are not the same and neither
are the stiffness and damping characteristics of the link.

C.=0.99-C?, B.=0.99-B?, C,=0.99-CJ, B.=0.99-B/.

The only disturbance in the system is the ignorance of the
rigidity characteristics and damping.

The defined parameters of the mechanism with their
values can significantly influence the stability of a robot
system. Fig.5 gives the change of the generalised

coordinates q,7,0 during the realization of the robot task.
Since we control directly the position of turning of the

angle of the motors behind the reducer @ , it is obvious that
we have almost an ideal tracking comparing to the
reference.
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real

reference .
x10°
4 2
3 q -
0
0]
2 / q -9
0
1 q 2
0 -4
1. 2 4 1. 2
time (s) time (s)
x10”"
4 2
3 Y 1
2 0
0
0
. AN y—y
o/ 2
0 1 2 3 4 0 1 2 3 4
time (s) time (s)
x 10"
4 2
’ o '
2 0
o] - -—
9 4N\, 6-9
0 -2
0 1 2 3 4 2
time (s) time (s)

real and reference magnitude [rad] deviations [rad]

Figure 5. Position and deviation from the references in the space of
internal coordinates

In Fig.6 we can see that during the free motion from the
point “Bga” to the point “Beng”, in the space of external
coordinates, there is a good tracking of the reference
trajectory.

real
- - —-reference

x 10°
0.4 6
£ 0
= = X-X
E o2 X .
c
=] <
g o 5
S X° g,
< 02 3
04 0
0 1 2 3 4 0 1 2 3 4
time (s) time (s)
x 10
0.3 10
E E
S 02 ° -
.g y z\ 5
| 5]
2 _yO
s 0 5 y-y
> y B o0
0 3
o
0.1 5
0 1 2 3 4 0 1 2 3 4
time (s) time (s)
x 10°
-0.027 1
= E
[ =N
= 0.0275 N z-7°
.g < 0
5
2 0028 s
N 8 4
N — -
-0.0285 z z° 3
-0.029 2
0 1 2 3 4 0 1 2 3 4
time (s) time (s)

reference and real magnitude [m] deviation real of reference [m]

Figure 6. Position and deviation from the references in the space of exter-

nal coordinates

real
- — - —reference

x10° x 10°

& & §-¢’

joint deflection angle [rad]
o
o
L7

2 5
0 1 2 3 4 0 12 3
time (s) time (s)
x10°
-0.09 4
i 2 0
£ 0092 -
. | 9,-9°
2 / 0
<
> -0.004 9° 9
£ 2
o
g WY q/
-0.096 4
0 1 2 3 4 0 1 2 3 4
time (s) time (s)
x 10 x10°
4 2

S8

A/ . s

0 1 2 3 4 o 12
time (s) time (s)

bending angle [rad]
o
©
s}
o

reference and real magnitude [rad] deviation real of reference [m]

Figure 7. Elastic deformations and deviation from the reference

Fig.7 shows the level of elastic deformations, the angle
of the gear deflection & and the angle of the link bend 9,

as well as 9. during the realization of the robot task. In the
same figure, the deviation of these values from the referent
ones can be seen as well.

Fig.8 depicts the signal control along the realization of
the robot task.

20
>
g u
€
Q
(&)
= 0
oy
=
(%]

-10

0 1 2 3 4
time (s)

Figure 8. Signal control

Conclusion

It is pointed out that the elastic deformation is the
consequence of the total mechanism dynamics which is
essentially different from a widely used method that implies
the adaptation of the “assumed modes technique”.

The analogy between the solution of the Euler-Bernoulli
equation which Daniel Bernoulli defined in the original
form and ,,the direct kinematics solution“ was defined and
the basic solution for further analysis of elastic robotic
systems was presented.

With fundamental approach to the analysis of flexibility
of complex mechanisms, a wide field of working on
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analyzing and modeling complex mechanical constructions
as well as on the implementation of different controls of
laws was opened. All this was presented for a relatively

“simple”

mechanism that offered the possibility of

analyzing the phenomena involved. Through the analysis
and modeling of an elastic mechanism we attempted to give
a contribution to the development of this area.
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Ojler-Bernulijeve jednacine i

algoritma za definisanje matemati¢kog modela kretanja robota

Sa novim, generacijski skupljenim znanjima, intenzivnim razvojem novih tehni¢kih oblasti kao $to je robotika,
posebno osnazena razvojem kompjuterskih tehnologija, podsti¢e i omoguéuje da elastiéna deformacija bude
razmatrana realno kao dinamiéka veli¢ina koja zavisi od parametara sistema. Amplituda elastiéne deformacije kao i
frekvencija su dinami¢ke veli¢ine koje zavise od ukupne dinamike kretanja robotskog sistema (sila) i takode od
konfiguracije mehanizma, teZina, duZina segmenata, odabrane referentne trajektorije, dinami¢kih karakteristika
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kretanja motora i td. Mi definiSemo opstu formu jednacine elasti¢ne linije kompleksnog robotskog sistema odredene
konfiguracije, koristeéi Ojler-Bernulijeve jednaéinu. Prikazana je veza izmedu Ojler-Bernulijeve jednaéine i
jednacine ravnoteZe u tacki vrha elastiéne linije. Matemati¢ki model motora takode obuhvata sprezanje izmedu sila
elastiénosti. Prikazana je analogija izmedu reSenja Ojler-Bernulijeve jednacine, koje je definisao Daniel Bernuli u
originalnoj formi, i procedure redenja ,,direktne kinematike* u robotici.

Kljucne reci: robotika, kinematika, dinamika kretanja, Ojler-Bernulijeve jednaéine, modelovanje procesa, elasti¢na
deformacija, sprezanje, matrica krutosti, simulacija kretanja, programirana trajektorija.

Analogi} me~du novwmi Formami $jler-Bernulli yravneni}
1 algorifmadl} opredeleni} matemati~eskoj modeli
dvi ~eni} robota

C HOBBIMHM, Ha NPOTHNKEHUH MHOI'UX MOKOJIEHH HAKANVIMBAKIIUMHUCH 3HAHUAMH, ¢ UHTCHCUBHBIM Pa3BUTHEM
HOBBIX TEXHHYECKHX oﬁﬂacTeﬁ, a B TOM 4YHC]Ie H pOGOTOTeXHl/lKH, 0CO0EHHO ycl/lHeHHOﬁ pa3sBUTHEM
BBLIYHC/IMTENBLHOIO mpouecca, nodyxnaercs u obecnieunBaercs yro6bl dlasti~na} deformaci} peanbno Gbuia
paccmarpuBana kak dinami~eskas vel i~ina, kotora} zavisit or mapamerpos cucrembr. AMmiutyasi 3lasti~noii
defFormaciu, a B TomM uncie u uyacrora, sipasiroress dinami~eskumu veli~inamu 3aBucsimuvu ot sovokupnoj
dinamiki dvi~eni} robototehni~eskoj sistemw (cua) u Toxke or konFiguraciu mexanusma, BecoB, JIMHbBI
CEerMeHTOB, OTOﬁpaHHOﬁ OTHOCHTEJIbHOMH TPACKTOPUH, OT THHAMHUYECCKHUX XAPAKTCPUCTHK ABUKCHHUA JABHUraTe/ sl
TaKk aajee. Mbl onpenensiem o6uryro gpopmy ypasuenust &lasti~noj 1inii caoxuoii robototehni~eskoii sistemst
onpenenénnoii konfFiguracii, moassysice yravneniem $jler-Bernulli. 3pecs nokazana cBsu3p Mexay
yravneniem $j ler-Bernul 11 u yravneniem pasnosecus B Touke Bepuunsi &lasti~noj linii. Matemati~eska}
modelx dvigatel} to~ e ohvatwvaet sv}zwvanie me ™ du silami &lasti~nosti. 3aecr nokazana ananorus: Mmexay
pewenusivu  uravnenis $jler-Bernulli, kotorwe opredelil Daniel Bernulli B mopmunoii ¢dopme, n
Npoueaypsl peuleHusi YNPAMOii KWHEMATHKUY B POOOTOTEXHUKE.

Kly~evwe slova: robototehnika, xkunemaruka, dinamika dvi~eni}, uravneni} $jler-Bernulli,
modelirovanie processa, &lasti~na} deformaci}, sv}zwvanie, matrica ~éstkosti, imitaci} dvi~eni},
programmirovana} traektori}.

Analogie entre de la nouvelle forme de I’équation Euler-Bernoulli et
I’algorithme pour la définition du modéle mathématique du
mouvement chez robot

Avec les nouvelles connaissances accumulées par des générations et par le développement intensif de nouveaux
domaines techniques tel que la robotique, renforcée en particulier par le développement des technologies numériques,
la déformation élastique peur étre considérée réellement comme la valeur dynamique qui dépend des parameétres du
systéeme. L’amplitude de la déformation élastique ainsi que la fréquence sont les valeurs dynamiques qui dépendent de
la dynamique totale du mouvement du systéme robotique (forces) et aussi de la configuration du mécanisme, poids,
longueur des segments, trajectoire référentielle choisie, caractéristiques dynamiques du mouvement de moteur etc.
Nous définissons la forme générale de I’équation de la ligne élastiqgue du systeme robotique complexe de la
configuration déterminée au moyen de I’équation Euler-Bernoulli et I’équation de I’équilibre au point du sommet de
la ligne élastique. Le modele mathématique du moteur comprend aussi le couplage entre les forces d’élasticité. On a
présenté I’analogie entre la solution de I’équation Euler-Bernoulli et le processus de la solution pour « cinématique
directe » en robotique.

Mots clés: robotique, cinématique, dynamique de mouvement, équations Euler-Bernoulli, modélisation du processus,
déformation élastique, couplage, matrice de rigidité, simulation du mouvement, trajectoire programmeée.



