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Analogy Between a New Formulation of the Euler-Bernoulli 
Equation and the Algorithm for Forming Mathematical Models of 

Robot Motion 

Mirjana Filipović1) 

With new knowledge collected through generations, the intensive development of new technical areas such as robotics 
especially strengthened by the development of the data computing process demanded and enabled that elastic 
deformation was considered as a real dynamic value depending on system parameters. The elastic deformation 
amplitude and its frequency are dynamic values which depend on the total dynamics of the robot system movements 
(forces) and also on the mechanism configuration, weight, length of the segments of the reference trajectory choice, 
dynamic characteristics of the motor movements, etc. We define a general form of the equation of the flexible line of a 
complex robotic system of arbitrary configuration, using the Euler-Bernoulli equation. The relation between the 
Euler-Bernoulli equation and the equation of motion at the point of elastic line tip is explained. A mathematical model 
of the actuators also comprises coupling between elasticity forces. The analogy between the Euler-Bernoulli equation 
solutions, defined by Daniel Bernoulli in the original form, and the procedure of the „direct kinematics“ solutions in 
the robotics, is presented. 

Key words: robotic, kinematics, motion dynamics, Euler-Bernoulli equations, process modeling, elastic deformation, 
coupling, stiffness matrix, motion simulation, programmed trajectory. 
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Designations 
DOF – degree of freedom 

( )t s  – time 

0.000107dt =  (s) – sample time 
4T = (s)  – whole period time 

[ ]T
sp x y z ψ ϕ= ℘  –Cartesian (external) 

coordinates 
[ ]1,1 1,2 1,3 ,4 1,... T

np p p p pϕ =  – vector of internal 
coordinates 

, , ,, ,i j i j i jx y z  – local coordinate frame, which is set in 
the base of considered mode 

, ,j j jx y z  – local coordinate frame, which is set in 
the base of the considered link 

, ,x y z  – basic coordinate frame, which is set in 
the root of the considered robotic system

1, 2,3,..., ij n=  – serial number of the mode of the 
considered link  

1, 2,3,...,i m=  – ordinal number of the link 

1 2 ... mk n n n= + + +  – whole number of the modes in the 
considered robotics configuration 

( )1
, Nmi jM R∈  – load moment for the mode tip 

( )1
, Nmi j Rε ∈  – bending moment for the mode tip 

( )Nmn
j Rε ∈  – bending moment vector for each mode 

tip of the considered link 

[ ]1 21,1 1,2 1, 2,1 2,2 2, ,... ... ... m
T

n n m nε ε ε ε ε ε ε ε=

[ ]1,1 2,1 3,1 ,1... T
m mε ε ε ε ε=   

 – vector of 
bending moments 

( )1 NmRς ∈  –  elasticity moment of the gear 

i,j#̂  –quantities that are related to an arbitrary 
point of the elastic line of the mode, for 
example: , , ,, ,i j i j i jM x ε  

,#i j  –quantities that are not designated by 
“ ^” are defined for the mode tip, for 
example: , , ,, ,i j i j i jM x ε  

# j  –quantities which characterize link 

#  –quantities that  define a desired value 

( )1 radRθ ∈  –rotation angle of the motor shaft after 
the reducer 

( )1 radRϑ ∈  –bending angle of the considered mode 

( )1 radRω ∈  –rotation angle of the considered mode 
tip (see 21) 

( )1 radRξ ∈  – deflection angle of the gear 

( )1 2
, Nmi j Rβ ∈  – flexural rigidity 

( )1
, si j Rη ∈  –factor which characterizes a part of 

damping in all flexural characteristics  
kxkH R∈  –inertial matrix 

kh R∈  –centrifugal, gravitational, Coriolis vector

eJ  –Jacobian matrix mapping the effect of 
the external contact force 

( )1
, msti jT R∈  –stationary part of flexible deformation 

caused by stationary moments that vary 
continuously over time 

( )1
, mtoi jT R∈  – oscillatory part of flexible deformation

( )1 mja R∈  – usually normal distance between j -th
and 1j + -th joints 
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( )1
j Rα ∈  – angle between the axes 1jz −  and jz  

about the axis jx . 

( )1 mjd R∈  – distance between normal 1jl −  and jl  
along the axis of j -th joint 

( )0.272R = Ω  – rotor circuit resistance 

( )u V  – voltage 

( )i A  – rotor current 

( )( )6.1 / rad/sEC V=  – proportionality constants of the 
electromotive force 

( )6.1 Nm/AMC =  – proportionality constants of the moment 

( )( )0 Nm/ rad/sB =  – coefficient of viscous friction 

( )24.52 kgmI =  – inertia moments of the rotor and reducer

0.0446S =  – expression defining the reducer 
geometry 

kxkR◊ ∈  – matrix characterizing the mutual 
influence of the bending moments 
modes of all the links 

mxm
m R◊ ∈  – characterizes the influence of the 

bending moment of each mode on the 
motor dynamics 

kxkRΘ ∈  – matrix characterizing the robot 
configuration 

( )0.3 ml =  – length of mode 

( )0.0169 mD =  – outside diameter 

0.7ξ =  – ratio between the inside and the 
outside diameter of the link cylinder 

( )1 mf R∈  – flexure 

( )
( )2

1 kg ,
0.00125 kgm

b

b

m
J

=
=

 – mass in the link base 

( )
( )2

2 kg ,
0.0025 kgm

m
j

=
=

 
– mass in the link tip 

( )8 40.3042 10 mmomI −= ∗  – inertia moments of the cross-
section of mode 

( )NmkE  – kinetic energy 

( )NmpE  – potential energy 

( )Nm/sΦ  – dissipative energy 

φ  – generalized coordinate 

( )2m/sg  – gravity acceleration 

( )1 Vu R∈  – control signal 

( )3 27.0278 10 kg/ssC = ⋅  – characteristics of the stiffness of 
the mode considered link 

( )50 kg/ssB =  – characteristics of the damping of the 
mode considered link 

( )31.8143 10 Nm/radCξ = ⋅  – characteristics of the 
stiffness of the gear 

( )( )20 Nm/ rad/sBξ =  – characteristics of the damping of 
the gear 

( )9 4
0 0.785410 mI −= ⋅  – polar moment of inertia, which we 

obtain depending on the diameter 
and the thickness of cross-section 
joints 

( )0.03 muva =  – length at which deflection joints 
occurred 

( )9 269.3 10 N/mIE = ⋅  –module of elasticity for aluminium 

( ) ( )
( ) ( )

0

0

0 rad ,
0 rad/s

t
t

δθ
δθ

=

=

–initial exceptions of the angle turning 
powers 

40000,
400

lp

lv

K
K

=
=

 
–position, velocity control gains for 

movement stabilization 

Introduction 
ODELING of elastic robotic systems has been a 
challenge to researchers in the last four decades. In 

paper [18] the authors extend the integral manifold 
approach to the control of flexible joint robot manipulators 
from the known parameter case to the adaptive case. Paper 
[22] presents the derivation of the equations of motion for 
the application of mechanical manipulators with flexible 
links. In [23] the equations are derived using Hamilton’s 
principle and they are nonlinear integro-differential 
equations. There are methods of variables separation and 
Galerkin’s approach suggested in [24] for the boundary-
value problem with the time-dependent boundary condition. 
The first detailed presentation of the procedure for creating 
reference trajectory was given in [1]. 

A mathematical model of a mechanism with one degree 
of freedom (DOF), with one elastic gear, was defined by 
Spong, 1987, in [29]. Based on the same principle, the 
elasticity of gears is introduced in the mathematical model 
in this paper, as well in [12-17].  

However, when the introduction of link flexibility in the 
mathematical model is concerned, it is necessary to point 
out to some essential problems in this domain.  

In our paper we do not use the “assumed modes 
technique”, proposed by Meirovitch in [28] (and used by all 
authors until today in [5-8], [19-21], [25-27], [30] etc.). We 
disagree with him. 

The LMA (“Lumped-mass approach”) is a method 
which defines motion equation at any point of a considered 
mechanism. If any link of the mechanism is elastic then we 
can also define the motion equation at any point of the 
presented link. We do not know exactly when this approach 
was stated. It defines the dynamic equation at any point of a 
mechanism during movement. The LMA in [2-4] gives the 
possibility to analyze the motion of any point of each mode. 
Papers with this research topic (approach) were rare in 
robotics journals in the last two decades. 

The EBA (“Euler-Bernoulli approach”) assumes the use 
of the Euler-Bernoulli equations which appeared in 1750. 
The EBA gives the possibility to analyze a flexible line 
form of each mode in the course of task realization. The 
EBA is an approach that is still in the focus of researchers’ 
interest and it was analyzed most often in the last decades.  

In the pertinent literature no relationship has been 
established between the LMA and the EBA.  

We consider that the EBA and the LMA are two 
comparative methods addressing the same problem but 
from different aspects, see [12], [13], [15-17].  

Using the EBA, we obtain the equations of the flexible line 
model of each mode and by setting boundary conditions we 
obtain model equations of motion at the point of the tip (or any 
other point) of each mode, which is in fact the LMA. As the 
equation of motion for the mode tip point is essentially an 
LMA, it follows directly from the equation of the flexible line 
obtained via the EBA for the preset boundary conditions. 

In the meantime, from 1750 when the Euler Bernoulli 
equation was published until today, our knowledge, especially 
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in the robotics, the oscillation theory and the elasticity theory, 
has progressed significantly. As a consequence, this paper 
points out the necessity of the extension of the Euler Bernoulli 
equation from many aspects. 

In the previous [5-8], [19-21], [25-27], [30] etc., the 
general solution of the motion of an elastic robotic system 
has been obtained by considering flexural deformations as 
transversal oscillations that can be determined by the 
method of particular integrals of D. Bernoulli. 

We consider that any elastic deformation can be 
presented by superimposing D. Bernoulli’s particular 
solutions of the oscillatory character and the stationary 
solution of the forced character. The elastic deformation is 
a dynamic value which depends on the total dynamics of 
the robot system movements, see [12], [13], [15-17].  

The reference trajectory is calculated from the overall 
dynamic model when the robot tip is tracking a desired 
trajectory in a reference regime in the absence of disturbances.  

Elastic deformation (of flexible links and elastic gears) is 
a quantity which is, at least, partly encompassed by the 
reference trajectory. It is assumed that all elasticity 
characteristics in the system (both of stiffness and damping) 
are "known" at least partly and at that level they can be 
included into the process of defining the reference motion. 
Thus defined reference trajectory allows the possibility of 
applying very simple control laws via PD local feedback 
loops which ensures reliable tracking of the robotic tip 
considered in the space of the Cartesian coordinates to the 
level of known elasticity parameters.  

The “Assumed modes technique” from [28] was used by 
all authors in the last 40 years to form the Euler Bernoulli 
beam equation. In our paper we form the Euler Bernoulli 
equation but we do not use the “assumed modes technique” 
in contrast to our contemporaries.  

We think that the “assumed modes technique” was and 
still can be useful in some other research areas but it is used 
in a wrong way in robotics, theory of oscillations and 
theory of elasticity.  

Let us emphasize once again that in this paper we propose a 
mathematical model solution that includes in its root the 
possibility for simultaneous analyzing both present phenomena 
– the elasticity of gears and the flexibility of links. The idea 
originated from [4], but is based on new principles.  

The area which we deal with, the robotics, is very 
important, because the modeling of the robot system 
movement dynamics with both rigid and elastic elements 
comes from it directly. The robotics is the area that can 
offer a solution and it represents the foundation of the 
further research in many other areas. The reason for that is 
quite simple: the robotics progressed significantly in the 
last 40 years. It is important to emphasize the importance of 
the further research but now based on new principles which 
will be set in this paper. 

Our future work should be directed towards the 
implementation of gears elasticity and links flexibility on any 
model of a rigid mechanism and also on a model of 
reconfigurable rigid robot as given in [10], [11] or any other 
type of mechanism. The mechanism should be modeled to 
contain elastic elements and to generate vibrations which are 
used for conveying particulate and granular materials in [9]. 

The procedure of defining the dynamic model with all 
elements of coupling is presented completely as well as 
with dynamic effects of the present forces defined in 
Section 2. We presented the kinematic model and the 
analogy between the Euler-Bernoulli equation solutions 
defined by Daniel Bernoulli and the procedure of the 

„direct kinematics” and „inverse kinematics“ solutions in 
the Robotics in Section 3. Section 4 analyzes simulation 
example for movement dynamic of an elastic robotic pair 
with an elastic gear and a flexible link in the presence of 
only one mode. Section 5 gives some concluding remarks. 

Dynamics of elastic robotic systems 
The Euler-Bernoulli equation was written in 1750. They 

did not even dream about the robotics and the knowledge 
we have now at our disposal. However, although it was 
conceived more than 250 years ago, the Euler-Bernoulli 
equation is still valid and it can be connected logically with 
the contemporary knowledge from the robotics. The 
“Source form of the Euler-Bernoulli equation” of the elastic 
line of beam bending has the following form: 

 
2

1,1

1,1
2

1,11,11,11,1
ˆ

ˆ
ˆ,0ˆˆ

x

y
M

∂

∂
⋅==+ βεε  (1) 

Equation (1) was defined under the assumption that the 
elasticity force is opposed only by the inertial force proper. 
Besides, it is supposed by the definition that the motion in (1) 
is caused by an external force 1,1F , suddenly added and then 
removed. Bernoulli presumed the horizontal position of the 
observed body as its stationary state (in this case it matches 
the position x - axis, see Fig. 1a). At such presumption, the 
oscillations happen just around the x - axis.  

If Bernoulli, at any case, had included the gravity force 
G  in (1), the situation would have been more real. Then the 
stationary body position would not have matched the x - 
axis position, but the body position would have been little 
lower and the oscillations would have happened around the 
new stationary position as presented in Fig. 1b).  

υ
=

 
a) idealized motion according to D.Bernoulli 

 
b) motion in case the presence of a gravity force 

Figure 1. Motion of an elastic body 

The Euler-Bernoulli equation (1) should be expanded as 
in [12], [13], [15-17] from several aspects in order to be 
applicable in a broader analysis of elasticity of robot 
mechanisms. By supplementing these equations with the 
expressions that come out directly from the motion 
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dynamics of elastic bodies, they become more complex.  
The motion of the considered robotic system mode is far 

more complex than the motion of the body presented in 
Fig.1a). This means that the equations that describe the 
robotic system (its modes) must also be more complex than 
(1) formulated by Euler and Bernoulli. Hence, we should  
especially emphasize the necessity of expanding the source 
equations in the following way: 
- Based on the known laws of dynamics, (1) is to be 

supplemented by all the forces that participate in the 
formation of the bending moment of the considered mode.  

- Damping is an omnipresent flexibility characteristic of 
real systems, so that it is naturally included in the Euler-
Bernoulli equation. 

 
( )2

1,1 1,1 1,1
1,1 1,1 2

1,1

ˆ ˆ
ˆ 0

ˆ

y y
M

x

η
β

∂ +
+ =

∂
 (2) 

1,1η  is a factor characterizing the share of damping in the 
total flexibility characteristic. 

The load moment is composed of all forces acting on the 
first mode of the link and these are inertial forces (own and 
coupled forces), centrifugal, gravitational, Coriolis forces 
(own and coupled), forces due to relative motion of one 
mode with respect to the other, coupled elasticity forces of 
the other modes, as well as the force of the environment 
dynamics, which is via the Jacobian matrix transferred to 
the motion of the first mode that come out directly from the 
motion dynamics of elastic bodies. In that case, the model 
of the elastic line of the elastic link’s first mode has the 
“New form of the Euler-Bernoulli equation”: 

 ( )

2
1,

1, 1,1 1,12

2
1,1 1,1 1,1

1, 1 1,1 2
1,1

ˆ ˆˆ

ˆ ˆ
0

ˆ

j T
j uk

j

d y
H h j F

dt
y y

x

η
ε β

+ + +

∂ +
+◊ + =

∂

 (3) 

Let us consider a robotic system with m  links, whereby 
the first link contains 1n  modes. 1,...i m= . The model of 
the elastic line of this complex elastic robotic system is 
given in the matrix form by the following “New form of the 
Euler-Bernoulli equation”: 

 
2

12
ˆ ˆˆ ˆ 0T

e uk
d yH h j F
dt

ε ε⋅ + + ⋅ + ◊ ⋅Θ ⋅ + =  (4) 

Robotics researchers are especially interested in the 
motion of the first mode tip.  

The equation of motion of the forces involved at any point 
of the elastic line of first mode, including the point of the first 
mode tip, can be defined from the Euler-Bernoulli eq. (3). 
The equation of motion of all forces at the first mode tip for 
the given boundary conditions can be defined by: 

 ( )

2
1,

1, 1,1 1,12

1, 1 1,1

ˆˆ

0 0
0 at the point of

first mode tip

j T
j e uk

j

d y
H h j F

dt
F M

ε β

+ + ⋅ +

Σ = Σ =
+◊ ⋅ + =

 (5) 

Eq.(5) is interesting because it allows one to calculate 
the position of the first mode tip. If we know the position of 
each mode tip, we can always calculate the position of the 
link tip too and eventually the position of the robot tip.  

The equation of motion of all the forces at the point of 

each mode tip of any link can be defined from the Euler-
Bernoulli eq.(4) by setting the boundary conditions.: 

 
( )2

2

0 0
0 at the tip of

any modeof
link considered

T
e uk

F M
d yH h j F
dt

ε ε
Σ = Σ =

+ + ⋅ + ◊ ⋅Θ ⋅ + = (6) 

The mathematical model of all m  motors can be written 
in a vector form as: 

 
( )

,
0

about the rotation axis
of theeach motors

E

M m m

u R i C
M

C i I B S z

θ

θ θ ε ε

= ⋅ + ⋅
Σ =

⋅ = ⋅ + ⋅ − ⋅ ⋅ +
 (7) 

Example: Dynamic model of a typical robotic pair  
We shall observe a dynamic pair with an elastic gear and 

an elastic link. See Fig.2. Behind the engine we have the 
Harmonic-drive reducer, represented with the spring 
stiffness ( )Nm/radCξ  and the damping ( )( )Nm/ rad/sBξ . 
Behind the reducer there is an elastic link which divides the 
whole mass into two parts, m(kg) and mb(kg) 0δ ≈ .  

The link is observed as an elastic stick of the fixed 
length l(m) and a constant cross-section. The stiffness of 
the link is marked with ( )2kg/ssC , and the damping of the 

link is marked with ( )kg/ssB . 
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B

‘
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O
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BBBB
BBBBB

q
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qω
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O
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q

b

q

m

CξB m
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s

δ
∼ ∼

0

ξ

B startBend

 
real position of the top 

Figure 2. Typical robotic pair in the “horizontal” plane 

The chosen robot pair is shown in Fig.2. The elasticity 
coordinate of this “kinematic” pair is q  and it is formed by: 
θ  - the turning angle of the motor shaft behind the gear, 
ξ - the deflection angle of the gear and rϑ  - the bending 
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angle of the link (one mode) in the horizontal plane. 

 rq θ ξ ϑ= + + , γ θ ξ= + , rq γ ϑ= +  (8) 

The angles θ  and rϑ  are in the same plane for the 
rotational robotic pair in space. The angle qϑ  is the angle 
of the link bending around the 2z -axis, see Figures 2 and 3. 

 cosq ql l ϑ= ⋅ , cosv q vl l ϑ= ⋅   (9) 

We will introduce one simplification that cos 1qϑ ≈ , for 
0qϑ ≈ , cos 1vϑ ≈ , 0vϑ ≈ .  

We accepted that the top of the mode has been moving 
continuously on the surface of the ball, the radius of which 
is l  without shortening for the considered mode, see Fig.3. 

 ,q vl l l l≈ ≈  (10) 

,q r
q r

f ftg tgl lϑ ϑ= = .  

For small bending angles we adopt that q qtgϑ ϑ≈ , 

r rtgϑ ϑ≈ : 

 ,q r
q r

f f
l lϑ ϑ= =  (11) 

 cos qr l ϑ= ⋅  (12) 

The dynamic model of final equations for the motion of 
the considered robotic pair was obtained by applying 
Lagrange’s equations.  

According to Figures 2 and 3, we defined four 
generalized coordinates q , γ , qϑ  and θ .  

We shall not set the terms for kinematic, potential and 
dissipative energy of the rotation shaft of the engine because 
all these expressions were already realized long time ago and 
we shall only transcribe them in a corresponding way to the 
adapted elastic robot pair. We shall put the expression for 
kinetic, potential and dissipative energy moving of mass bm , 
such as the mass m  around the observed joint, and the 
expressions which appear as a consequence of the elastic 
deformations of the link and the gear.  

We express the angles rϑ  and ξ  with the generalized 
coordinates (see Fig.3), respectively:  

 ,r qϑ γ ξ γ θ= − = −  (13) 

The relations between the angle of the bend link rϑ ( )qϑ  

and the angle of the turning top link ( )r qω ω , see [31], are:  

 1 1,2 2r r q qω ϑ ω ϑ= =  (14) 

The kinetic and potential energy of the mechanism 

presented in Fig.2 are denoted as ˆ̂
kE and ˆ̂

pE . All the angles 
in the expression for kinetic, potential and dissipative 
energy characterizing flexibility of the links should also be 
expressed via generalized coordinates.  

Thus the total potential ˆ̂
pE  and the dissipative energy 

Φ are: 

 0
ˆ̂

p p pels pelE E E E ξ= + +  (15) 

 els elξΦ = Φ + Φ  (16) 

The potential and dissipative energy as a result of the 
elasticity of the links are, respectively 

2 21 1
2 2pels s q s rE C f C f= ⋅ ⋅ + ⋅ ⋅ ,  

2 21 1
2 2els s q s rB f B fΦ = ⋅ ⋅ + ⋅ ⋅ . 

We introduce the multiplication and the division of the 
same expression with 2l ,  

2 2
2 2

2 2
1 1
2 2

q r
pels s s

f fE C l C l
l l

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ,  

2 2
2 2

2 2
1 1
2 2

q r
pels s s

f fB l B l
l l

Φ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  .  

Since (11) and (13) are valid, then it follows that: 
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Figure 3. Position of the top after introducing simplification 

 ( )22 2 21 1
2 2pels s q sE C l C q lϑ γ= ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅  (17) 

 ( )22 2 21 1
2 2els s q sB l B q lϑ γΦ = ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅  (18) 

Since (15) the potential 21
2pelE Cξ ξ ξ= ⋅ ⋅  energy and the 

dissipative 21
2el Bξ ξ ξΦ = ⋅ ⋅  energy are:  

 ( )21
2pelE Cξ ξ γ θ= ⋅ ⋅ −  (19) 

 ( )21
2el Bξ ξ γ θΦ = ⋅ ⋅ −  (20) 
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Let us define the equation of the flexible line of the link 

mode in the horizontal plane. The expressions ˆ̂
kE  and ˆ̂

pE  
should be defined for  any point of the first link (one mode) 

ˆ

0

ˆ ˆ
l

l dxγ= ∫ . 

By applying Lagrange’s equation with respect to the first 
generalized coordinate q  using the expressions ˆ

kqE , ˆ
pqE , 

pelsE , pelE ξ , elsΦ , elξΦ  we obtain the load moment ˆ
qM  

which is opposed by the flexibility force 

( )2

2

ˆ ˆ
ˆ

ˆ
r r

r
r

y y

x

η
ε β

∂ + ⋅
= ⋅

∂
 in the plane r rx y−   

This is just the procedure for obtaining the „New form of 
the Euler-Bernoulli equation” by which the motion of any 
point on the flexible line of the link (one mode) in the 
horizontal plane:  

 
( )2

1,1 1,2 1 2

ˆ ˆ
ˆˆ ˆ 0

ˆ
r r

r

y y
H q H h

x

η
γ β

∂ + ⋅
⋅ + ⋅ + + ⋅ =

∂
 (21) 

( )2 2
1,1

9ˆˆ ˆcos ...4q zzH m l Jϑ= ⋅ ⋅ +  

Following the same analogy, we define the equation of the 
flexible line of the same link (one mode) in the vertical plane. 

The expressions ˆ̂
kmE  and ˆ̂

pE  should be defined for any 

point of the link (one mode) 
ˆ

1

0

ˆ ˆ
l

l dx= ∫ . 

Thus we obtain the expressions ˆ
qkE υ  and ˆ

qpE υ . By 
applying Lagrange’s equation with respect to the third 
generalized coordinate qυ  using the expressions ˆ

qkE υ , 
ˆ

qpE υ , pelsE , pelE ξ , elsΦ , elξΦ  we obtain the load moment 
ˆ

qMυ  which is opposed by the flexibility force 

( )2
1 1

2
1

ˆ ˆ
ˆ

ˆq

y y

xυ

η
ε β

∂ + ⋅
= ⋅

∂
 in the plane 1 1x y− . 

This is just the procedure for obtaining the „New form of 
the Euler-Bernoulli equation” by which the motion of any 
point on the flexible line of the same segment in the vertical 
plane (one mode): 

 
( )2

1 1
3,3 3 2

1

ˆ ˆ
ˆˆ 0

ˆq

y y
H h

x

η
ϑ β

∂ + ⋅
⋅ + + ⋅ =

∂
 (22) 

The expressions ˆ̂
kE  and ˆ̂

pE  should be defined for the 
full length of the link rl x= . Thus, for the given boundary 
conditions, by applying Lagrange’s equation with respect to 
the first generalized coordinate q , we can obtain the 
equation of motion of the tip point of the considered elastic 
line link.  

 1,1 1,2 1 0s r s rH q H h B l f C l fγ⋅ + ⋅ + + ⋅ ⋅ ⋅ ⋅ ⋅ =  (23) 

( )2 2
1,1

9cos ...4q zzzH m l Jϑ= ⋅ ⋅ +  

The expressions ˆ̂
kE and ˆ̂

pE  should be defined for the 
full length of the link l. Following the same procedure and 
by applying Lagrange’s equation with respect to the second 
generalized coordinate γ , we define the equation of 
motion.  

2,1 2,2 0s r s rH q H B l f C l f B Cξ ξγ ξ ξ⋅ + ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  (24) 

The expressions ˆ̂
kE and ˆ̂

pE  should be defined for the 
full length of the link l. Following the same procedure and 
by applying Lagrange’s equation with respect to the third 
generalized coordinates qϑ , we obtain the equation of 
motion.  

 3,3 3 0q s q s qH h B l f C l fϑ⋅ + + ⋅ ⋅ + ⋅ ⋅ =  (25) 

By applying Lagrange’s equation with respect to the fourth 
coordinate θ , we obtain the motion equation of the motors: 

 
( )

,E

M

u R i C
C i I B S B Cξ ξ

θ
θ θ ξ ξ

= ⋅ + ⋅

⋅ = ⋅ + ⋅ − ⋅ ⋅ + ⋅
 (26) 

In this paper, we choose the positional control law with 
local feedback for the realization of simulations: 

 ( ) ( )lp lvu K Kθ θ θ θ= ⋅ − + ⋅ −  (27) 

Note: Eq.(21) cannot be equated to (23) because they are 
equations of different types. Eq. (21) is an equation of 
flexible lines (Euler-Bernoulli equation (EBA)) of the link 
in the horizontal plane, while (23) is an equation of motion 
(LMA) at the point of the tip of the same link in the 
horizontal plane. Eq. (22) is the Euler-Bernoulli equation of 
the link in the vertical plane, while (25) is an equation of 
motion at the point of the tip of the same link in the vertical 
plane. 

All examples which we have analyzed in our papers up 
to now have two modes, see [12], [13], [15-17]. They have 
been manually developed, which limits their complexity. 
The example which we analyze in this paper has 4 DOFs. 
The segment has only one mode unlike the example in [12], 
[13], [15-17]. Since we are now at the stage of the pioneer 
research steps in this field, we believe that these equations 
should be first analyzed on the simplest examples in order 
to make public experts accept the idea of the new 
interpretation of the Euler-Bernoulli equation and a root of 
the equation. For these reasons, everything is shown on a 
little “simpler” example, step by step. It was developed in 
the period of the first research steps, but it does not make it 
less important. Considering the fact that it has not been 
published and that it gives the possibility of explaining all 
analyzed phenomena, we find it appropriate because it 
helps understanding this field. 

Kinematics of elastic robotic systems 
First we can analyse the solution of Euler-Bernoulli 

eq.(1). The general solution of motion, i.e. the form of 
transversal oscillations of flexible beams can be found in 
the method of particular integrals of D. Bernoulli, that is, 
see Fig.1a):  

 ( ) ( ) ( )0 01 1, 1,1 1,1 1,1
ˆ ˆˆ ˆ ˆ,t j ty x t X x T t= ⋅  (28) 
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By superimposing the particular solutions (28), any 
transversal oscillation can be presented in the following 
form: 

 
( ) ( ) ( )0 01 1, 1, 1, 1,

1

ˆ ˆˆ ˆ ˆ,t j j j t j
j

y x t X x T t
∞

=

= ⋅∑
 (29) 

As already mentioned, equations (1), (28), (29) are 
defined under the assumption that the elasticity force is 
opposed only by the inertial force proper. The solution (28), 
(29) of D. Bernoulli satisfies these assumptions.  

The Bernoulli solution (28), (29) describes only partially 
the nature of motion of real elastic beams. More precisely, 
it is only one component of motion. This fact is overlooked, 
and the original equations (28), (29) are widely used in the 
literature to describe the robotic system motion. This is 
very inadequate because valuable pieces of information 
about the complexity of the elastic robotic system motion 
are thus lost. 

The Daniel Bernoulli solution (28), (29) should be 
expanded.  

By superposing the particular solution of oscillatory 
nature, and the stationary solution of forced nature, see Fig. 
1b), any flexible deformation of a considered mode may be 
presented in the following general form: 

 ( ) ( ) ( )( )01,1 1,1 1,1 1,1 1,1
ˆ ˆ ˆˆ ˆ st ty X x T t T t= ⋅ +  (30) 

1,1ŝtT  is the stationary part of flexible deformation caused 

by stationary forces that vary continuously over time. 01,1t̂T  
is the oscillatory part of flexible deformation as in (28).  

By superposing solutions (30), any flexible deformations 
of a flexible link with an infinite number of degrees of 
freedom (modes) may be presented in the following form: 

  ( ) ( ) ( ) ( )( )01 1, 1, 1, 1, 1,
1

ˆ ˆ ˆˆ ˆ ˆ,j j j st j t j
j

y x t X x T t T t
∞

=

= ⋅ +∑  (31) 

The solution of system (4) and dynamic motor motion, 
i.e. the form of its elastic line, can be obtained in the 
presence of the dynamics (angle) of rotation of each motor, 
as well as by taking into account the robotic configuration. 
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ˆ ˆˆ ˆ , , , , ,
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i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

y a x T T t

x b x T T t

z c x T T t

d x T T t

e x T T t

f x T T t

θ α

θ α

θ α

ψ θ α

ξ θ α

ϕ θ α

=

=

=

=

=

=

 (32) 

Thus we defined the position and orientation of each 
point of the elastic line in the space of Cartesian 
coordinates. It should be pointed out that the form of elastic 
line comes out directly from the dynamics of the system 
motion.  

The robot tip motion is defined by the sum of the 
stationary and oscillatory motion of each mode tip plus the 
dynamics of motion of the motor powering each link, as 
well by the included robot configuration (solution of (6) 
and (7)): 

 

( )
( )
( )
( )

( )
( )

0

0

0

0

0

0
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, , , , ,

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

y a x T T t
x b x T T t
z c x T T t

d x T T t
e x T T t
f x T T t

θ α
θ α
θ α

ψ θ α
ξ θ α
ϕ θ α

=
=
=
=
=
=

 (33) 

From (33) we can calculate the motion of each mode tip 
and link, and finally, of the robot tip motion.  

Example: Kinematic model of a typical robotic pair  
In order to define the shape and position of the elastic 

line of the mode link from Fig.2, during the realization of 
the robot task in the space of Cartesian coordinates, it is 
necessary to find solutions (21), (24), (22) and (26). The 
general solution of the dynamics movement of the observed 
model is given with (32). 

Then, (23), (24), (25) and (26) will be valid and 
according to these conditions, all generalized coordinates 

, , ,qq γ ϑ θ  could be calculated. According to (13), (14), 
other values of the system , , ,r r qξ ϑ ω ω  could be defined. 
According to the analogy with robot systems, these values 
can be named ‘internal coordinates’.  

A geometric link between these characteristics (internal 
coordinates) and the space of Cartesian coordinates 
(external coordinates) was defined by the use of the 
transformation matrix, or so-called “direct kinematics” in 
the robotics. In order to describe space coordinates of the 
moving of this link top we shall need four matrices of 
rotation (see Fig.3): 

* rotation around 1z  axis in the point “A” for the angle q , 

1 0a = , 1 0d = , 1 0α = . The transformation matrix is 
1
0

eT .  

* turning of the link top around the 2z  axis in the point 
“A” for the angle qϑ , 2a l= , 2 0d = , 2 90α = . The 

transformation matrix is 2
1
eT . 

* turning of the link top around the 3z  axis in the point 
“B`” in the same plane for the angle qω , 3 0a = , 3 0d = , 

3 0α = . The transformation matrix is 2
3eT . 

* turning of the link top around the 4z  axis in the point 
“B” for the angle rω , 4 0a = , 4 0d = , 4 90α = . The 
transformation matrix is 3

4eT . 

 
1
0

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

e

q q
q qT

−⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (34) 

 2
1

cos 0 sin cos
sin 0 cos sin

0 1 0 0
0 0 0 1

q q

q q q
e

l
lT

ϑ ϑ ϑ
ϑ ϑ ϑ

⋅⎡ ⎤
⎢ ⎥− ⋅= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (35) 

 3
2

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

q q

q q
eT

ω ω
ω ω

−⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (36) 
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4
3

cos 0 sin 0
sin 0 cos 0

0 1 0 0
0 0 0 1

r r

r r
eT

ω ω
ω ω

⎡ ⎤
⎢ ⎥−= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (37) 

The total transformation matrix is calculated as a product 
of the transformation matrices of these four rotations.  

 2 34 1 4
0 0 1 2 3

e ee e eT T T T T= ⋅ ⋅ ⋅  (38) 

In accordance with the analyzed example, it is evident 
that the rotational robotic pair from the elastic effects can 
compensate only for the stick bending in the direction of 
those forces that act in the direction of the motor shaft 
turning. The bending angles qϑ , ωq, ωr, which are not in 
the direction of the motor shaft turning, cannot be 
compensated for and they form a continual mistake in the 
tracking of reference trajectory.  

As we have defined the transformation matrix for the 
same manipulator 

4
0

eT , given by (38), now it is easy to form 

the Jacobian matrix eJ .  
The Jacobian matrix for a manipulator with elastic joints 

and links maps the velocity vector of the external 
coordinates sp  into the velocity vector of the internal 

coordinates φ : 

 ( )sp J φ φ= ⋅ . (39)  

Where [ ]T
sp x y z ψ ϕ= ℘  defines the velocity of a 

given point of the robotic system in the Cartesian 
coordinates, whereas [ ]1,1 1,2 1,3 1,4 1,... T

nφ ρ ρ ρ ρ ρ=  defines 
the velocity vector of the internal coordinates. In this 
example see Fig.2, eq.(39) has a form: 

 
sin cos cos sin
sin sin cos cos
cos 0

q q
q

q q

q

l q l qx
y l q l q

qz l

ϑ ϑ
ϑϑ ϑ

ϑ

− ⋅ ⋅ − ⋅ ⋅⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ = − ⋅ ⋅ + ⋅ ⋅ ⋅ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦+ ⋅⎣ ⎦ ⎣ ⎦

 (40)  

The elements of the Jacobian are only functions of the 
elements of the homogenous transformation matrix 

4
0

eT .  
Here we have one more innovation concerning the 

known considerations. In robotics the reference trajectory is 
defined in a purely kinematic way i.e. geometric and now in 
the presence of the elasticity elements we can include also 
the elastic deformation values at the reference level i.e. at 
the level of knowing the elasticity characteristics during the 
reference trajectory defining. 

There are two aspects in defining the reference trajectory 
of the motor angle (see [12-17]):  
1. Elastic deformation is considered as a quantity which is 

not encompassed by the reference trajectory.  
2. Elastic deformation is a quantity which is at least partly 

encompassed by the reference trajectory.  
It is clear now that (33), generally, and in our example 

(38) serve for the calculation of the robot tip movement 
during the robot task realization and that based on the 
motor rotating angles, elastic deformation values and all 
other kinematic and dynamic robot mechanism 
characteristics (such as its geometry, configuration, weight 
disposal, motor characteristics, reference trajectory choice 
as well as many other important characteristics that 
influence the robot system movement dynamics). We, in 

the robotics, call this procedure the solution of „direct 
kinematics“. 

In this way we presented the analogy: 
 

      between 
                            

the Euler-Bernoulli equation 
solutions which were defined 
by Daniel Bernoulli by (28) (or 
(29)) in the original form (i.e. 
the form of elastic line 
solutions (32) in the extended 
form or the form of equation of 
the motion solutions of tip 
(33)) 

and 
the procedure of the 
„direct kinematics“ 
(38) in the robotics. 

The analogy between the Euler-Bernoulli equation and 
its solution and modern knowledge from the Robotics is 
presented in this way. 

Simulation Example 
We are analysing the behavior of a robotic pair with an 

elastic gear and an elastic link as in Fig.2. The tip of the 
robot started from the position “Bstart” ( )( )0 radstartq =  and 

moves directly to the point “Bend” ( )( )radendq π=  in a 

predicted time of ( )4 sT = .  
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Figure 4. Reference velocity and acceleration in the space of internal 
coordinates 

The trapezoidal profile of velocity together with the time 
of acceleration and deceleration from 0.2 T⋅  is adopted. 
See Fig.4.  

The links have a tube form. The outside diameter is 
( )mD , and the ratio between the inside and the outside 

diameter of the cylinder is ξ .  
The characteristics of stiffness and damping of the gear in 

the real and reference regimes are not the same and neither 
are the stiffness and damping characteristics of the link. 

00.99C Cξ ξ= ⋅ , 00.99B Bξ ξ= ⋅ , 00.99s sC C= ⋅ , 00.99s sB B= ⋅ . 
The only disturbance in the system is the ignorance of the 
rigidity characteristics and damping. 

The defined parameters of the mechanism with their 
values can significantly influence the stability of a robot 
system. Fig.5 gives the change of the generalised 
coordinates , ,q γ θ  during the realization of the robot task. 
Since we control directly the position of turning of the 
angle of the motors behind the reducer θ , it is obvious that 
we have almost an ideal tracking comparing to the 
reference. 
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Figure 5. Position and deviation from the references in the space of 
internal coordinates 

In Fig.6 we can see that during the free motion from the 
point “Bstart”  to the point “Bend”, in the space of external 
coordinates, there is a good tracking of the reference 
trajectory.  
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Figure 6. Position and deviation from the references in the space of exter-

nal coordinates 
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Figure 7. Elastic deformations and deviation from the reference 

Fig.7 shows the level of elastic deformations, the angle 
of the gear deflection ξ  and the angle of the link bend qϑ  
as well as rϑ  during the realization of the robot task. In the 
same figure, the deviation of these values from the referent 
ones can be seen as well.  

Fig.8 depicts the signal control along the realization of 
the robot task. 
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Figure 8. Signal control 

Conclusion 
It is pointed out that the elastic deformation is the 

consequence of the total mechanism dynamics which is 
essentially different from a widely used method that implies 
the adaptation of the “assumed modes technique”.  

The analogy between the solution of the Euler-Bernoulli 
equation which Daniel Bernoulli defined in the original 
form and „the direct kinematics solution“ was defined and 
the basic solution for further analysis of elastic robotic 
systems was presented. 

With fundamental approach to the analysis of flexibility 
of complex mechanisms, a wide field of working on 
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analyzing and modeling complex mechanical constructions 
as well as on the implementation of different controls of 
laws was opened. All this was presented for a relatively 
“simple” mechanism that offered the possibility of 
analyzing the phenomena involved. Through the analysis 
and modeling of an elastic mechanism we attempted to give 
a contribution to the development of this area. 
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Aanalogija između novog oblika Ojler-Bernulijeve jednačine i 
algoritma za definisanje matematičkog modela kretanja robota  

Sa novim, generacijski skupljenim znanjima, intenzivnim razvojem novih tehničkih oblasti kao što je robotika, 
posebno osnažena razvojem kompjuterskih tehnologija, podstiče i omogućuje da elastična deformacija bude 
razmatrana realno kao dinamička veličina koja zavisi od parametara sistema. Amplituda elastične deformacije kao i 
frekvencija su dinamičke veličine koje zavise od ukupne dinamike kretanja robotskog sistema (sila) i takođe od 
konfiguracije mehanizma, težina, dužina segmenata, odabrane referentne trajektorije, dinamičkih karakteristika 
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kretanja motora i td. Mi definišemo opštu formu jednačine elastične linije kompleksnog robotskog sistema određene 
konfiguracije, koristeći Ojler-Bernulijeve jednačinu. Prikazana je veza između Ojler-Bernulijeve jednačine i 
jednačine ravnoteže u tački vrha elastične linije. Matematički model motora takođe obuhvata sprezanje između sila 
elastičnosti. Prikazana je analogija između rešenja Ojler-Bernulijeve jednačine, koje je definisao  Daniel Bernuli u 
originalnoj formi, i procedure rešenja „direktne kinematike“ u robotici. 

Ključne reči: robotika, kinematika, dinamika kretanja, Ojler-Bernulijeve jednačine, modelovanje procesa, elastična 
deformacija, sprezanje, matrica krutosti, simulacija kretanja, programirana trajektorija. 

Analogi} me`du novwmi formami  $jler-Bernulli уravneni} 
i algorifma dl} opredeleni} matemati~eskoj  modeli 

dvi`eni} robota 

С новыми, на протяжении многих поколений накапливающимися знаниями, с интенсивным развитием 
новых технических областей, а в том числе и робототехники, особенно усиленной развитием 
вычислительного процесса, побуждается и обеспечивается чтобы эlasti~na} deformaci} реально была 
рассматривана как dinami~eskая veli~inа, kotora} zavisit от параметров системы. Амплитуды эlasti~nой 
deformaciи, а в том числе и частота, являются dinami~eskими veli~inами зависящими ot sovokupnoj 
dinamiki dvi`eni} robototehni~eskoj sistemw (сил) и тоже от konfiguraciи механизма, весов, длины 
сегментов, отобранной относительной траектории, от динамических характеристик движения двигателя и 
так далее. Мы определяем общую форму уравнения &lasti~noj linii сложной robototehni~eskой sistemы 
определённой konfiguracii, пользуясь уravneniем $jler-Bernulli. Здесь показана связь между 
уravneniем $jler-Bernulli и уravneniем равновесия в точке вершины &lasti~noj linii. Matemati~eska} 
modelx dvigatel} to`e ohvatwvaet sv}zwvanie me`du silami &lasti~nosti. Здесь показана аналогия между 
решениями uravneniя $jler-Bernulli, kotorwe opredelil Daniel Bernulli в подлинной форме, и 
процедуры  решения чпрямой кинематикич в робототехнике. 

Kly~evwe slova: robototehnika, кинематика, dinamika dvi`eni}, uravneni}  $jler-Bernulli, 
modelirovanie processa, &lasti~na} deformaci}, sv}zwvanie, matrica `ëstkosti, imitaci} dvi`eni}, 
programmirovana} traektori}. 

Analogie entre de la nouvelle forme de l’équation Euler-Bernoulli et 
l’algorithme pour la définition du modéle mathématique du 

mouvement chez robot 
Avec les nouvelles connaissances accumulées par des générations et par le développement intensif de nouveaux 
domaines techniques tel que la robotique, renforcée en particulier par le développement des technologies numériques, 
la déformation élastique peur être considérée réellement comme la valeur dynamique qui dépend des paramètres du 
système. L’amplitude de la déformation élastique ainsi que la fréquence sont les valeurs dynamiques qui dépendent de 
la dynamique totale du mouvement du système robotique (forces)  et aussi  de la configuration du mécanisme, poids, 
longueur des segments, trajectoire référentielle choisie, caractéristiques dynamiques du mouvement de moteur  etc. 
Nous définissons la forme générale de l’équation de la ligne élastique du système robotique complexe de la 
configuration déterminée au moyen de l’équation Euler-Bernoulli  et l’équation de l’équilibre au point du sommet de 
la ligne élastique. Le modèle mathématique du moteur comprend aussi le couplage entre les forces d’élasticité. On a 
présenté l’analogie entre la solution de l’équation Euler-Bernoulli et le processus de la solution pour « cinématique 
directe » en robotique. 

Mots clés: robotique, cinématique, dynamique de mouvement, équations Euler-Bernoulli, modélisation du processus, 
déformation élastique, couplage, matrice de rigidité, simulation du mouvement, trajectoire programmée. 

 


