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Introduction 
HE problem of investigation of time delay system has 
been exploited over many years. Delay is very often 

encountered in different technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, 
long transmission lines, etc. The existence of pure time 
delay, regardless if it is present in the control or/and state, 
may cause undesirable system transient response, or 
generally, even an instability. Consequently, the problem of 
stability analysis of this class of systems has been one of 
the main interests of many researchers. In general, the 
introduction of time lag factors makes the analysis much 
more complicated. In the existing stability criteria, mainly 
two ways of approach have been adopted. Namely, one 
direction is to contrive the stability condition which does 
not include information on the delay, and the other is the 
method which takes it into account. The former case is 
often called the delay-independent criteria and generally 
provides nice algebraic conditions. Numerous reports have 
been published on this matter, with a particular emphasis on 
the application of Lyapunov’s second method, or on using 
the idea of the matrix measure Lee, Diant (1981), Mori 
(1985), Mori et al. (1981), Hmamed (1986), Lee et al. 
(1986)). 

In practice one is not only interested in system stability 
(e.g. in the sense of Lyapunov), but also in bounds of 
system trajectories. A system could be stable but still 
completely useless because it possesses undesirable 
transient performances. Thus, it may be useful to consider 
the stability of such systems with respect to certain subsets 
of state-space which are defined a priori in a given 
problem. 

Besides that, it is of particular significance to consider 
the behavior of dynamical systems only over a finite time 
interval. 

These boundedness properties of system responses, i.e. 
the solution of system models, are very important from the 
engineering point of view. Therefore, numerous definitions 
of the so-called technical and practical stability were 
introduced. Roughly speaking, these definitions are 
essentially based on the predefined boundaries for the 
perturbation of initial conditions and allowable perturbation 
of system response. In the engineering applications of 
control systems, this fact becomes very important and 
sometimes crucial, for the purpose of characterizing in 
advance, in quantitative manner, possible deviations of the 
system response. Thus, the analysis of these particular 
boundedness properties of solutions is an important step, 
which precedes the design of control signals, when finite 
time or practical stability control is considered. 

Motivated by “brief discussion” on practical stability in 
the monograph La Salle, Lefchet, (1961), Weiss and Infante 
(1965, 1967) have introduced various notations of stability 
over the finite time interval for continuous-time systems 
and constant set trajectory bounds. Further development of 
these results was due to many other authors Michel (1970), 
Grujic (1971), Lashirer, Story (1972)). Practical stability of 
simple and interconnected systems with respect to time-
varying subsets was considered in Michel (1970) and 
Grujic (1975). A more general type of stability (“practical 
stability with settling time”, practical exponential stability, 
etc.) which includes many previous definitions of finite 
stability was introduced and considered in Grujic (1971, 
1975.a, 1975.b).  

A concept of finite-time stability, called “final stability”, 
was introduced in Lashirer, Story (1972) and further 
development of these results was due to Lam and Weiss 
(1974). 

In the context of practical stability for linear generalized 
state-space systems, various results were first obtained in 
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Debeljkovic, Owens (1985) and Owens, Debeljkovic (1986).  
An analysis of nonlinear singular and implicit dynamic 

systems in terms of the generic qualitative and quantitative 
concepts, which contain technical and practical stability 
types as special cases, has been introduced and studied in 
Bajic (1988, 1992). 

In this short overview, the results in the area of finite and 
practical stability were only concerned for continuous linear 
control systems. 

Here we present the problem of sufficient conditions that 
enable system trajectories to stay within the a priori given 
sets for the particular class of time-delay systems. To the 
best knowledge of authors, these problems, using this 
approach, are not yet analyzed for the time-delay systems 
by the other authors. 

Notations and preliminaries 
A linear, multivariable time-delay system can be 

represented by a differential equation: 

 ( ) ( ) ( ) ( ) ( )0 1 0 1 ,t A t A t B t B tτ τ= + − + + −x x x u u  (1) 

and with the associated function of the initial state: 

 ( ) ( ) ( ) ( ), , 0.x ut t t t tτ= = − ≤ ≤x ψ u ψ  (2) 

Equation (1) is referred to as nonhomogenous or forced 
state equation, x(t) is the state vector, u(t) control vector, 
A0, A1, B0 and B1 are constant system matrices of 
appropriate dimensions, and τ is the pure time delay, τ = 
const. (τ > 0). 

A dynamical behavior system (1) with initial functions 
(2) is defined over time interval { }0 0,J t t T= + , where the 
quantity T may be either a positive real number or symbol 
+∞, so finite time stability and practical stability can be 
treated simultaneously.  

It is obvious that J ∈ . 
Time invariant sets, used as bounds of system 

trajectories, are assumed to be open, connected and 
bounded.  

Let the index β stands for the set of all allowable states 
of the system and the index α for the set of all initial states 
of the system, such that the set S Sα β⊆ .  

In general, one may write: 

 ( ) ( ){ }2
Q: || ||S t tρ ρ= <x x , (3) 

where Q  will be assumed to be a symmetric, positive-
definite, real matrix. 

Sε  denotes the set of all allowable control actions. 
Let ( ) ( )⋅

⋅x  be any vector norm (e.g., ⋅ = 1, 2, ∞) and 

||(⋅)|| the matrix norm induced by this vector.  

Here, we use ( ) ( ) ( )( )1/ 2

2
Tt t t

Δ
=x x x  and 

2|| ( ) ||⋅ = )( *2/1
max AAλ .  

The upper indices * and T denote the transpose 
conjugate and the transpose, respectively.  

Matrix measure has been widely used in the literature 
when dealing with the stability of time delay systems.  

The matrix measure ( )μ ⋅  for any matrix n nA ×∈  is 
defined as follows 

 ( )
0

||1 || 1lim AA
ε

εμ
ε

Δ

→

+ −
= .  (4) 

The matrix measure defined in (4) can be subdefined in 
three different ways, depending on the norm utilized in its 
definitions, Coppel (1965), Desoer, Vidysagar (1975): 

 ( ) ( )1
1

max Re | |
n

kk ikk
i
i k

A a aμ
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , (5.a) 

 ( ) ( )2
1 max *2 ii

A A Aμ λ= + , (5.b) 

and 

 ( ) ( )
1

max Re | |
n

ii kii
k
k i

A a aμ∞
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , (5.c) 

From Mori (1988), the following inequality holds: 

 ( ) ( )2 2F F F Fμ μ− ≤ − − ≤ ≤ . (5.d) 

Basic notations 
 - Real vector space 
 - Complex vector space 
( ) n n

ijF f ×= ∈ - real matrix 
TF  - Transpose of the matrix F  

0F >  - Positive definite matrix 
0F ≥  - Positive semi definite matrix 

( )Fλ  - Eigenvalue of the matrix F  

( ) ( )Fσ  - Singular values of the matrix F  

{ }Fσ  
- Spectrum of the matrix F  

F  - Euclidean matrix norm ( )max
TF A Aλ=

⇒  - Follows 
 - Such that 

Time invariant time delay systems stability 
definitions 

In the context of finite or practical stability for a 
particular class of nonlinear singularly perturbed multiple 
time delay systems various results were, for the first time, 
obtained in Feng, Hunsarg (1996). It seems that theirs 
definitions  are very similar to those in Weiss, Infante 
(1965, 1967), clearly addopted to time delay systems. 

It should be noticed that those definitions are 
significantly different from the definition presented by the 
autor of this paper. 

Definition 1. A system is stable with respect to the set 
{ }, , , , ,Tα β τ− x  α β≤  if for any trajectory ( )tx  the 

condition 0 α<x  implies ( )t β<x  [ ],t T∀ ∈ −Δ , 

maxτΔ = , Feng, Hunsarg (1996). 
Definition 2. A system is contractively stable with 

respect to the set { }, , , , ,Tα β τ− x  γ α β< < , if for 

any trajectory ( )tx the condition 0 α<x  implies  
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(i) Stabilty w.r.t.{ }, , , , ,Tα β τ− x  
(ii) There exists ] [0,t T∗ ∈ such that ( )t γ<x  for 

all ,t t T∗⎤ ⎡∀ ∈ ⎦ ⎣  Feng, Hunsarg (1996). 
Definition 3. Autonomous system (1) satisfying  initial 

condition (2) is finite time stable w.r.t. ( ){ }, ,t Jζ β  if and 
only if 

 ( ) ( )x t tζ<ψ ,  

implies: 

 ( ) 2 ,t t Jβ< ∈x ,  

( )tζ  being the scalar function with the property 

( )0 ,tζ α< ≤  0 ,tτ− ≤ ≤ – τ ≤ t ≤ 0, where α  is a real 
positive number and β ∈  and β α> , Debeljkovic et al. 
(1997.a, 1997.b, 1997.c, 1997.d), Nenadic et al. (1997). 

0 τ 2τ T t-τ

|x(t)|2

|ψx(t)|2
ζ (t)

β

α

 

Figure 1.  Illustration of the preceding definition 

Definition 4. System (1), with u(t – τ) ≡ 0, ∀t, satisfying 
initial condition (2) is finite time stable w.r.t. 

( ) ( ){ }0, , , , , 0t J Aζ β ε τ μ ≠  if and only if 

 ( ) [ ], 0x t S tα τ∈ ∀ ∈ − ,Ψ ,  

and 

 ( ) ,t S t Jε∈ ∀ ∈u ,   

imply 

 ( ) [ ]0 0, , , 0,t t S t Tβ∈ ∀ ∈x x ,  

Debeljkovic et al. (1997.b, 1997.c)  
Definition 5. System (1) satisfying initial condition (2) 

is finite time stable w.r.t. ( ){ }2 0, , , , , , 0J Aα β ε ε τ μΨ ≠  if 
and only if 

 ( ) ( ) [ ], ,x ut S t S tα ε τΨΨ ∈ Ψ ∈ ∀ ∈ − , 0 ,  (13) 

( ) ,t S t Jε∈ ∀ ∈u ,    

imply: 

 ( )( )0 0, , , ,t t t S t Jβ∈ ∀ ∈x x u ,  

Debeljkovic et al. (1997.b, 1997.c). 
Stability theorems 
Theorem 1. Autonomous system (1) with initial function 

(2) is finite time stable with respect to { }, , , Jα β τ  if the 
following condition is satisfied 

 ( ) [ ]2
1 2

/|| || , 0,1 || ||t t TA
β α
τ

Φ < ∀ ∈
+

, (6) 

where ( )⋅  is the Euclidean norm and ( )tΦ  is the 
fundamental matrix of system (1), Nenadic et al. (1997), 
Debeljkovic et al. (1997.a). 

Proof. The solution of (1) with initial function (2) can be 
expressed in terms of the fundamental matrix as 

 ( ) ( ) ( ) ( ) ( )
0

10x xt t t A d
τ

θ τ θ θ
−

= Φ + Φ − −∫x ψ ψ , (7) 

Using the above equation, one can get 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0

1

0

1

0 0

1 1

0 0

0

0

T T T
x x

T T
x x

T T T
x

T T T
x x

t t t t

t t A d

A t d t

A t d t A d

τ

τ

τ τ

η τ η η

θ θ τ θ

θ θ τ θ η τ η θ

−

−

− −

= Φ Φ

+ Φ Φ − −

⎛ ⎞
⎜ ⎟+ Φ − − Φ
⎜ ⎟
⎝ ⎠

+ Φ − − Φ − −

∫

∫

∫ ∫

x x ψ ψ

ψ ψ

ψ ψ

ψ ψ

(8) 

Using the abbreviations 

 ( ) ( ) ( ) 10 n
xt tψ a ×Φ = ∈ ,  (9) 

 ( ) ( ) ( ) 1
1 , n

xt A tψ bθ τ θ θ ×Φ − − = ∈ , (10) 

it is obvious that, if one introduces  

 ( ) ( )
0

1, nt d tb c
τ

θ θ ×

−

= ∈∫  (11) 

then (8) becomes 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 0T T T
x x

T T T
t t t t

t t t t t t
= Φ Φ
+ + +

x x ψ ψ
a c c a c c

. (12) 

A well-known result from the theory of quadratic forms 
gives 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )0 0 0 0T T T
x M x xt t tλΦ Φ ≤ψ ψ ψ ψ , (13) 

where 

 ( ) ( ) ( ){ }max T
M t t tλ σ= Φ Φ ,  (14) 

and where { }Fσ  denotes the spectrum of the matrix F . 

Also, it is easy to see that ( ) ( ) ( ) 1T t t ta c f= ∈  and 

( ) ( ) ( ) 1T t t f tc a = ∈ , so it follows that 

( ) ( ) ( ) ( )T Tt t t t=a c c a .  
Now one can write 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 2
0 0

2

T T
M x x

T

t t t
t t t

λ≤

+ +

x x ψ ψ
a c c

. (15) 

Moreover 
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 ( ) ( ) ( ) ( ),
b b

a a

f t f t t dt t dtϕ ϕ≤ ≤∫ ∫ , (16) 

so it follows that 

 ( ) ( ) ( ) ( ) ( )
0

0 ,T T T
xt t t t d

τ

θ θ
−

≤ ⋅ Φ ⋅ ∫a c ψ b  (17) 

Now, equation (15) can be rewritten as 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

1

20
2

1

0 0

2 0

T T
M x x

T T
x x

x

t t t

t A t d

A t d

τ

τ

λ

θ τ θ θ

θ τ θ θ

−

−

≤

+ ⋅ Φ ⋅ Φ − − ⋅

⎛ ⎞
⎜ ⎟+ Φ − − ⋅
⎜ ⎟
⎝ ⎠

∫

∫

x x ψ ψ

ψ ψ

ψ

 (18) 

However, if 

 ( ) ( ) ( ) ( ) [ ], , 0xm t t tθ τ θ θ τ≤ Φ − − ⋅ ≤℘ ∀ ∈ −ψ (19) 

then 

 ( ) ( ) ( ) ( )
0

xm t t d t
τ

τ θ τ θ θ τ
−

⋅ ≤ Φ − − ⋅ ≤ ⋅℘∫ ψ  (20) 

It is easy to show that 

( ) [ ] ( ) ( ) [ ], 0 , 0
, xt t

θ τ θ τ
θ τ θ α

∈ − ∈ −
Φ − − ≤ Φ <ψ  (21) 

and 

 ( ) ( ) ( )0 , T
x t tα< Φ = Φψ , (22) 

so equation (18) is now 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

2
1

2 2 2
1

0 0

2 0

T T
M x x

T T
x

T

t t t

t A

t A

λ

τ α

τ α

≤

+ ⋅ Φ ⋅ ⋅ ⋅

+ Φ ⋅ ⋅ ⋅

x x ψ ψ

ψ . (23) 

Also, from the simple fact that 

 ( ) ( ) ( ) ( ) ( ) ( ) 2T T
M t t t t t tλ ≤ Φ Φ ≤ Φ ⋅ Φ = Φ  (24) 

it follows that  

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

2

2
1

2 2 2
1

0 0

2 0

T T
x x

T T
x

T

t t t

t A

t A

τ α

τ α

≤ Φ

+ ⋅ Φ ⋅ ⋅ ⋅

+ Φ ⋅ ⋅ ⋅

x x ψ ψ

ψ . (25) 

If one chooses 

 ( ) ( )0 0T
x x α<ψ ψ , (26) 

then, it immediately follows that 

 

( ) ( ) ( ) ( )
( )
( ) ( )

2 2
1

2 2 2
1

2 2
1

2

1

T Tt t t t A

t A
t A

α τ α

τ α

α τ

≤ Φ + Φ ⋅ ⋅ ⋅

+ Φ ⋅ ⋅ ⋅

= Φ +

x x

.(27) 

 

Applying the basic condition of the Theorem, i.e. (6), to 
the preceding inequality, one can get 

 ( ) ( ) ( )
2

2
1

1
1

1
T t t A

A
β α

α τ β
τ

⎛ ⎞
< ⋅ + <⎜ ⎟+⎝ ⎠

x x , (28) 

which was to be proved, Nenadic et al. (1997), Debeljkovic 
et al. (1997.a), Q.E.D. 

When 0τ =  or 1 0A = , the problem is reduced to the 
case of the ordinary linear systems, Angelo (1970).  

Theorem 2: Autonomous system (1) with initial 
function (2) is finite time stable w.r.t. { }, , , Tα β τ if the 
following condition is satisfied 

 ( ) [ ]2 0

1 2

/ , 0,1 || ||
A te t TA

μ β α
τ

< ∀ ∈
+

, (29) 

where ( )⋅  denotes the Euclidean norm, Debeljkovic et 
al. (1997.b). 

Theorem 3. Autonomous system (1) with initial function 
(2) is finite time stable with respect to 
{ }2 0, , , , ( ) 0T Aα β τ μ ≠  if the following condition is 
satisfied  

 
( )

( ) ( )
[ ]

2 0
2 0( )1

2 0 1 2

/ ,
1 || || 1

0,

A t
Ae

A A e
t T

μ
μ τ

β α
μ −−

<
+ ⋅ ⋅ −

∀ ∈

(30) 

Debeljkovic et al. (1997.c, 1997.d). 
Theorem 4. System (1), with initial function (2) is finite 

time stable w.r.t. ( ) ( ){ }2 0 1, , , , , 0, 0t J A Bζ β ε τ μ ≠ =  
if the following condition is satisfied 

 ( )2 0 /A teμ β α
φ

< , (31) 

 
( ) ( ) ( )( )( )
( ) ( )( )

2 0

2 0

1
0 0 1 2

1
0 0 2

|| || 1

|| || 1 , .

A

A t

A A A e

A B e t J

μ τ

μ

φ μ μ

μ γ

−−

−−

= + −

+ − ∀ ∈
 (32) 

where,  

  ( ) ( )2 0 max 0 0
1, 2

TA A Aεγ μ λ
α

= = + , (33) 

Debeljkovic et al. (1997.c). 
Theorem 5. System (1), with u(t – τ) ≡ 0, ∀t, satisfying 

initial condition (2) is finite time stable w.r.t. 
( ) ( ){ }2 0 1, , , , , 0, 0t T A Bζ β ε τ μ ≠ = , if the following 

condition is satisfied 

 ( )1 2 0 21 || || || || ,A B t t Jβτ γ
α

+ + < ∀ ∈ , (34) 

where γ  is given with (33), Debeljkovic et al. (1997.c). 
 Theorem 6. Autonomous system (1) with initial 
function (2) is finite time stable with respect to 

( ){ }0, , , , 0T Aα β τ μ =  if the following condition is 

satisfied,  

 [ ]1 21 || || / , 0,A t Tτ β α+ < ∀ ∈ , (35) 

Debeljkovic et al. (1997.d): 
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Theorem 7. A system given by (1), with initial function 
(2) is finite time stable w.r.t. ( ){ }2 0, , , , , , 0J Aα β ε ε τ μΨ ≠  
if the following condition is satisfied 

 
( )

( )
2 0

2 0
/ ,

A te t J
A

μ
β α δ

μ
< ⋅ ∀ ∈ , (36) 

where  

( ) ( )( ) ( )( )( )2 0 2 0
2 0 1 1 21 1A A tA a e eμ τ μδ μ π π− −= + − + − (36.a) 

 ( ) ( )1 1 2 0 11 ,b b bψπ γ γ π γ= + + = + , (36.b) 

 0 0
1 1 1 0

1 1

|| || || |||| || , ,B Ba A b ba a= = = , (36.c) 

 , ψ
ψ

εεγ γ
α α

= =  (36.d) 

Debeljkovic et al. (1998.a, 1988.b, 1998.d). 
The results that will be presented in the sequel enable to 

check finite time stability of the autonomous system to be 
considered, namely the system given by (1) and (2), without 
finding the fundamental matrix or corresponding matrix 
measure. 

Equation (2) can be rewritten in its general form as: 

 ( ) ( )
( ) [ ]
0 0

, 0
x

x

t θ θ τ θ
θ τ
+ = − ≤ ≤

∈ −
x ψ
ψ C

, (37) 

where 0t  is the initial time of observation of the system (1) 
and [ ], 0τ−C  is a Banach space of continuous functions 
over a time interval of the length τ , mapping the interval 
( )[ ],t tτ−  into n  with the norm defined in the 

following manner: 

 ( )
0

max
τ θ

θ
− ≤ ≤

=ψ ψC . (38) 

It is assumed that the usual smoothness conditions are 
present so that there is no difficulty with questions of 
existence, uniqueness, and continuity of solutions with 
respect to the initial data.  

Moreover, one can write: 

 ( ) ( )0 xt θ θ+ =x ψ ,  (39) 

as well as: 

 ( ) ( )( )0 0 , xt t θ=x f ψ . (40) 

Theorem 8. The autonomous system given by (1) with 
initial function (2) is finite time stable w.r.t. { }0 , , ,t J α β  if 
the following condition is satisfied 

 ( )( ) ( )0 max2 2
0 max1 ,t tt t e t Jσ βσ

α
−+ − < ∀ ∈ ,  (41) 

( )maxσ ⋅  being the largest singular value of the matrix ( )⋅ , 
namely 

 ( ) ( )max max 0 max 1A Aσ σ σ= + . (42) 

Debeljkovic et al. (1998.c). 
 

Proof. In accordance with the known property of norm, 
one can immediately write 

 
( ) ( ) ( )

( ) ( )
( ) ( )

0 1

0 1

0 1

t A t A t
A t A t
A t A t

τ
τ

τ

= + −
≤ + −
≤ ⋅ + ⋅ −

x x x
x x

x x
 (43) 

where ( )⋅  denotes the induced matrix norm, as well as: 

 ( ) ( )sup
t t t

t t
τ

τ
∗

∗

− ≤ ≤

− ≤x x  (44) 

Employing the previous inequality, (43) may be written 
in the following form 

 
( ) ( ) ( ) ( ) ( )

( )
max 0 max 1

max 0

sup

sup ,
t t t

t t t

t A t A t

t t t
τ

τ

σ σ

σ τ

∗

∗

∗

− ≤ ≤
∗

− ≤ ≤

≤ +

≤ > +

x x x

x
(45) 

or 

 ( ) ( )max 0
sup ,

t t t
t t t t

τ
σ +

∗

∗

− ≤ ≤

≤ >x x  (46) 

However, 

 ( ) ( ) ( )0 10

max

0x x

x

t A A τ
σ

+ = + −
≤

x ψ ψ
ψ C

 . (47) 

so, combining (46) and (47), it yields 

 ( ) ( )0 maxsup x
t t t

t t
τ

σ
∗

∗

− ≤ ≤

⎛ ⎞
≤ + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
x x ψ C . (48) 

To obtain the final result one has to integrate (1), so that 

 

( ) ( ) ( )( )

( ) ( )( )

0 0

0

0 1

, ,
t t

t t

t

t

t dt v v v dv

A v A v dv

τ

τ

+

+

= −

= + −

∫ ∫

∫

x f x x

x x

. (49) 

It is obvious 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

( )

( ) ( )

0

0

0

0

0 0 1

0 0 1

0 max

0

max 0

sup

sup

t

t
t

t
t

x
v t vt

t

x
v t vt

t t A v A v dv

t A v A v dv

t t dv

t

t t t dv

τ

τ

τ

τ

σ

σ

∗

∗

∗

− ≤ ≤

∗

− ≤ ≤

≤ + + −

≤ + + −

⎛ ⎞
≤ + +⎜ ⎟⎜ ⎟

⎝ ⎠
≤ +

⎛ ⎞
⎜ ⎟+ − +
⎜ ⎟
⎝ ⎠

∫

∫

∫

∫

x x x x

x x x

x x ψ

x

ψ x

C

C

 (50) 

and since: 

 ( ) ( )0 0x xt = ≤x ψ ψ C , (51) 

it is possible to write: 
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( ) ( )( )

( )
0

0 max

max

1

sup

x
t

v t vt

t t t

t dv
τ

σ

σ
∗

∗

− ≤ ≤

≤ ⋅ + −

+ ∫

x ψ

x

C

. (52) 

It is clear that: 

 ( ) ( )( )0 max1 xt t tϕ σ= + − ⋅ ψ C , (53) 

is a nondecreasing function, so that: 

 ( ) ( ) ( )
0

sup sup
t

t t t v t vt

t t t dv
τ τ

ϕ
∗ ∗

∗ ∗

− ≤ ≤ − ≤ ≤

≤ + ∫x x  (54) 

If a very well known Bellman-Gronwall lemma, Hale 
(1971), is applied, one can get: 

 
( ) ( )

( )( ) ( )0 max
0 max

sup

1
t t t

t t
x

t t

t t e
τ

σσ

∗

∗

− ≤ ≤
−

≤

≤ + − ⋅

x x

ψ C

, (55) 

or equivalently 

 ( ) ( )( ) ( )0 max2 2 22
0 max1 t t

xt t t e σσ −≤ + − ⋅x ψ C . (56) 

According to (39), one can get 

 ( ) ( )( ) ( )0 max2 2 2
0 max1 t tt t t e σα σ −≤ + −x ,  (57) 

and finally, applying the basic condition of the Theorem 8, 
namely (41), it is obvious that: 

 ( ) 2 ,t t Jβ< ∀ ∈x  (58) 

that had to be proved, Q.E.D, Debeljkovic et al. (1998.c). 
Theorem 9. The autonomous system given by (1) with 

initial function (2) is finite time stable w.r.t. { }0 , , ,t J α β  if 
the following condition is satisfied 

 ( )0 max2 ,t te t Jσ β
α

− ⋅ < ∀ ∈ , (59) 

where ( )maxσ ⋅  is defined in (42), Debeljkovic et al. 
(1998.c). 

Note 1. In the case when in the Theorem 9  

1 0A = , (60)  

e.g. 1A  is the null matrix, we have the result similar to that 
presented in Angelo (1974). 

Fractional order time delay systems  

Itroduction 
Recently, there have been some advances in the control 

theory of fractional differential systems for stability 
questions, Matignon (1994).  

A fractional order means that the delay differential 
equation order is non-integer. However, for fractional order 
dynamic systems, it is difficult to evaluate the stability by 
simply examining its characteristic equation either by 
finding its dominant roots or by using other algebraic 
methods.  

At the moment, a direct check of the stability of 

fractional order systems using polynomial criteria 
(e.g.,Routh's or Jury's type) is not possible, because the 
characteristic equation of the system is, in general, not a 
polynomial but a pseudopolynomial function of fractional 
powers of the complex variable s.  

Thus there remain only geometrical methods of the 
complex analysis based on the so-called argument principle 
(e. g. Nyquist type) which can be used for the stability 
check in the BIBO sense (bounded- input bounded-output).  

Also, for linear fractional differential systems of finite 
dimensions in a state-space form, both internal and external 
stabilities are investigated by Matignon (1996,1998). 

An analytical approach was suggested by Chen, Moore 
(2002.a) who considered the analytical stability bound 
using Lambert function W for a class of second-order 
ordinary delay differential equations (DDE) and case of the 
linear fractional–order (DDE) Chen, Moore (2002.b). 

On the other side, the approach which will be presented 
in the sequel does not demand any solving of the delay 
differential equation (DDE) but it is based on forming the 
corresponding criteria (criterion of practical stability and 
finite time stability) in which the basis matrices of the 
system 0 1,A A  exclusively appear, where the basis matrices 
may contain tuning parameters which inflence the stability 
of the system more obviously than in both papers Chen, 
Moore (2002.a, 2002.b). For the first time, a finite time 
stability test procedure is proposed for linear and nonlinear 
autonomous time-invariant delay fractional order systems.  

Here, we examine the problem of sufficient conditions 
that enable system trajectories to stay within the a priori 
given sets for the particular class of linear and perturbed 
nonlinear autonomous fractional order time-delay systems.   

 Preliminaries on fractional differential systems 
Although the fractional order calculus is a 300-years-old 

topic, the theory of fractional-order derivative was 
developed mainly in the 19th century.  

Even though the idea of fractional order operators is as 
old as the idea of the integer order ones is, it has been in 
last decades when the use of fractional order operators and 
operations has become more and more popular among 
many research areas. 

The theoretical and practical interest of these operators is 
nowadays well established, and its applicability to science 
and engineering can be considered as emerging new topics.  

Fractional differential equations (FDEs) have been the 
focus of many studies due to their appearance in various 
fields such as physics, chemistry, and engineering Torvik, 
Bagley (1984), Mainardi (1996) and Podlubny (1999). 

Moreover, fractional derivatives provide an excellent 
instrument for the description of memory and hereditary 
properties of various materials and processes.  

The mathematical modelling and simulation of systems 
and processes, based on the description of their properties 
in terms of fractional derivatives, naturally leads to 
differential equations of fractional order and to necessity to 
analyse and solve such equations.  

Also, due mainly to the works Oldham and his co-
authors Oldham (1972), Oldham, Spanier (1974), 
electrochemistry is one of those fields in which fractional-
order integrals  and derivatives have a strong position and 
bring practical results where the idea of using a half-order 
fractional integral of the current -1/ 2

0 ( )tD i t  was proposed 
Oldham (1972).  

Moreover, Matignon (1994) gives the model of the 
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pressure wave transmission through an air-filled tube with 
viscothermic perturbation and discusses the stability of the 
transfer function as example of a fractional delay system.  

Recently, in their paper, Hotzel, Fliess (1998)  
considered the BIBO stability and control of finite-
dimensional fractional time delay systems.  

The use of fractional-order derivatives and integrals as 
boundary controls, i.e.the Crone controller design of a 
complex order of an active suspension systems have been 
recently studied by Lannuse et al. (2003).  

These systems give rise to the same type modules 
as linear fractional time delay systems. 

Also, there are new results in colloid and interface 
science where the general fractional order model of liquid-
liquid interfaces is considered.  

A new theory of electroviscoelasticity describes the 
behavior of electrified liquid-liquid interfaces in fine 
dispersed systems, and is based on a new constitutive 
model of liquids, Spasic et al.(2005).  

Also, taking into account a small transport time-delay τ , 
the electromagnetic oscillation of the ”continuum” particle 
can be obtained by the linear time delay fractional order of 
differential equation, Spasic, Lazarevic, (2004).  

 Linear autonomous fractional order time delay systems 
Also, it is shown that the fractional-order time delay 

state space model of PDα  control of the Newcastle robot 
can be presented by the linear time delay fractional order of 
differential equation in the state space form Lazarevic 
(2006) 

 

( ) ( ) ( )

( )( ) ( )
( )

( )

0 1

(1)

0

0

1 , 0 1
t

t

d t
A t A t

dt
f

D f t d
t

α

α

α
α

τ

τ
τ α

α τ

= + −

= < <
Γ −∫

x
x x

 (61.a) 

and with the associated function of the initial state 

 ( ) ( ), 0,xt t tτ= − ≤ ≤x ψ  (61.b) 

for 0 1α< <  and where ( )Γ ⋅  is the well known Euler`s 
gamma function.  

Also, for a case of multiply time delays in state 
fractional order systems the time delay system can be 
presented as 

 
( ) ( ) ( )0

1

1 20

n

i i
i

i n

d t
A t A t

dt

α

α τ

τ τ τ τ τ
=

= + −

≤ = Δ

∑x
x x

3< < <...< <...<
, (62.a) 

and with the associated function of the initial state: 

 ( ) ( ) , 0xt t t= − Δ ≤ ≤x ψ . (62.b) 

Stabilty definitions 
Definition 6. System (61.a) satisfying initial condition 

(61.b) is finite stable w.r.t { }0 , , , , ,t J δ ε τ δ ε<  if and only 
if 

 ( ) , 0x t tδ τ< − ≤ ≤ψ
C

,   

implies 

 ( ) ,t t Jε ∀ ∈x < ,  

where δ  is a real positive number and , <ε δ ε∈ , 
Lazarevic, Debeljkovic (2003). 

Definition 7. System (62.a) satisfying initial condition 
(62.b) is finite stable w.r.t. { }0 , , , , ,t J δ ε δ εΔ <  if and 
only if 

 ( ) [ ], , , 0x t t J Jψ <C δ Δ Δ∀ ∈ = −Δ ∈   

implies: 

 ( ) ,t t Jε ∀ ∈x < ,  

where δ  is a real positive number and , <ε δ ε∈ , 
Lazarevic, Debeljkovic (2003). 

 Stabilty theorems 
Theorem 10. System (61.a) satisfying initial condition  

(61.b) is finite time stable w.r.t. { }0 , , , , ,t J δ ε τ δ ε< , if 
the following condition is satisfied 

 ( ) ( ) ( ) ( )

( )[ ]

max 01
max 0

0 0

1
1

,

AT t t
AT t t e

t J t t T

α
σα α εσ δα

−
Γ +⎛ ⎞+ − ⋅ ≤⎜ ⎟Γ +⎝ ⎠

∀ ∈ = +

, (63) 

where ( )maxσ ⋅  being the largest singular value of the 

matrix ( )⋅ , namely 

 ( ) ( )0 1max max max
A A Aσ σ σ= + , (64) 

and ( )Γ ⋅  is the Euler's gamma function, Lazarevic, 
Debeljkovic (2003). 

Theorem 11. The system given by (62.a) satisfying 
initial condition (62.b) is finite time stable w.r.t. 
{ }0, , , , ,t Jδ ε δ εΔ < , if the following condition is 
satisfied 

 ( ) ( ) ( ) ( )

( )[ ]

max 01
max 0

0 0

1
1

,

AT t t
AT t t e

t J t t T

α
σα α εσ δα

−
Γ +⎛ ⎞+ − ⋅ ≤⎜ ⎟Γ +⎝ ⎠

∀ ∈ = +

  

where ( )maxσ ⋅  being the largest singular value of the 
matrix , 0,1, 2...,iA i n= , namely 

 ( ) ( ) ( )max max 0 max 1 max....A
nA A Aσ σ σ σ= + + + , (65) 

Lazarevic, Debeljkovic (2003). 

Nonlinear autonomous fractional order time delay 
systems 

Now we consider a class of fractional non-linear 
autonomous system with time delay described by the state 
space equation:  

 
( ) ( ) ( )

( ) ( ) ( )( )

0 0

1 1

d t
A A t

dt
A A t f tN

α

α

τ

= + Δ

+ + Δ − +

x
x

x x

, (66.a) 

with the associated function of the initial state: 
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 ( ) ( ) , 0,t t tx τ= − ≤ ≤x ψ  (66.b) 

and the vector functions ( )( )Nf tx  satisfied 

 ( )( ) ( ) [ [0 , 0,Nf t c t t≤ ∈ ∞x x , (67) 

where 0c +∈  is a known real positive number, Lazarevic, 
Debeljkovic (2007). 

Theorem 12 Nonlinear perturbed system (66.a) 
satisfying initial condition (66.b) and the vector functions 

( )( )f tN x  satisfied (67) is finite time stable w.r.t. 

{ }0, , , ,t Jδ ε δ ε< , if the following condition is 
satisfied: 

( )

( )
( )

0
0 1( )

1 / ,
1

p t t
p t t

e t J

αμα
αμ

ε δ
α

−
Γ +⎛ ⎞−

+ ≤ ∀ ∈⎜ ⎟Γ +⎝ ⎠
,(68) 

where 

 

0

1

0 1

0

1 1

1

0 1,

Aoco Ao A

A A A

p Aoco A

A A

c

A A

μ σ γ
σ σ γ
μ μ σ

γ γ

Δ

Δ Δ

Δ

Δ Δ

= + +
= +

= +
= Δ = Δ

, (69) 

 and ( )Γ ⋅  the Euler's gamma function, Lazarevic, 
Debeljkovic (2007). 

Conclusion 
In the circumstances when it is possible to establish a 

suitable connection between the fundamental matrices of a 
linear time delay system and a non-delay system, some of 
these results enable an efficient procedure for testing finite 
time stability of a particular class of linear time delay 
systems. 

The matrix measure has been widely used in the 
literature dealing with stability and asymptotic stability of 
time-delay systems. This approach has been used here to 
develop some results which have an evident advantage over 
those derived earlier. In that sense, delay dependent criteria 
expressed by simple inequalities have been derived yielding 
sufficient conditions of the non-Lyapunov stability of the 
system considered. Moreover, a new theorem has been 
presented, enabling the application of a very well-known 
Bellman-Gronwall lemma for time delay systems. 

The same idea has been used to establish analogous 
results for fractional order time delay systems. 

APPENDIX A 
Some additional result 

Lemma 1. Let Q(t) be an n × n characteristic matrix for 
autonomous system (1) with initial function (2), also 
continuous and differentiable in [ ]0, τ and zero elsewhere.  

Define the following vector: 

 ( ) ( ) ( ) ( )
0

t t Q t t d
τ

θ θ= + −∫y x x ,  (A.1) 

where the matrix Q(t) satisfy the following matrix equation: 

 ( ) ( )( ) ( )0 0 , [0, ]Q A Q Q Qθ θ θ τ= + ⋅ ∈ , (A.2) 

with the boundary value: 

 ( ) 1Q Aτ = , (A.3) 

Lee, Diant (1981). 
If 

 ( )( ) ( ) ( )TV t t t=y y y ,  (A.4) 

is the aggregation function for system (1), then 

 ( )( ) ( )( ) ( )TV t t R t= −y y y , (A.5) 

where: 

 ( )( ) ( )( )0 00 0TR A Q A Q− = + + + ,  (A.6) 

The proof is omitted, for the sake of brevity and can be 
found in Lee and Diant (1981). 

Theorem A.1 If λM is the maximal eigenvalue of the 
matrix ( )R−  being defined by (A.6), then 

 ( ) ( ) ( ) ( )2

0 0

|| || || 0 || || ||
M

Q t d Q e t d
τ τ λ θ

θ θ θ θ θ− ≤ −∫ ∫x x  (A.7) 

Debeljkovic et al. (2001).  

APPENDIX B 

Basic mathematical tools for fractional calculus 
The fractional integro-differential operators (fractional 

calculus) represent a generalization of integration and 
derivation to non-integer order (fractional) operators. The 
idea of fractional calculus has been known since the 
development of the regular calculus, with the first reference 
probably being associated with Leibniz and L'Hospital in 
1695.  

The theoretical and practical interest of these operators is 
nowadays well established, and its applicability to science 
and engineering can be considered as emerging new topics. 
Even if they can be thought of as somehow ideal, they are, 
in fact, useful tools for both the description of a more 
complex reality, and the enlargement of the practical 
applicability of the common integer order operators.  

At first, one can generalize the differential  
and integral operators into one fundamental tDα  operator t 
which is known as fractional calculus Podlubny (1999), 
Oldham, Spanier (1974) 

( )

Re 0,

1 Re 0 ,

Re 0.

a t
t

a

d
dt

D

d

α

α
α

α

α

α

τ α−

⎧
⎪ >⎪
⎪= =⎨
⎪
⎪ <
⎪⎩
∫

(B.1)  

The two definitions generally used for the fractional 
differintegral are the Grunwald definition and the Riemann-
Liouville (RL) definition.  

The Grunwald definition is given here: 

 ( ) ( )
0

0

( )/
1( ) lim 1 j

a t h
j

t a h

D f t f t jhjh
α

α
α

⎡ ⎤⎣ ⎦

→
=

−
⎛ ⎞= − −⎜ ⎟
⎝ ⎠∑  (B.2) 
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where a, t are the limits of the operator and [x] means the 
integer part of x .  

The RL definition of the fractional derivative is given by 
the expression: 

 
( ) 1

( )1( ) ,( )

t
n

a t n n
a

fdD f t dn dt t
α

α
τ τα τ − +=

Γ − −∫  (B.3) 

for ( 1n nα− < < ) and where (.)Γ  is the well-known 
Euler's gamma function as follows:  

 1

0

( ) , , ( 1) ( )t zz e t dt z x iy z z z
∞

− −Γ = = + Γ + = Γ∫ ,(B.4) 

Fractional differentiation is a linear operator 

 ( ) ( )( ) ( ) ( )D f t g t D f t D g tα α αλ μ λ μ+ = + , (B.5) 

where Dα  denotes any mutation of the fractional 
differentiation.  

Closely related to fractional-order differentiation is 
fractional order integration i.e the Riemann-Liouville 
fractional integral is defined as 

 ( ) ( )
( )

( )1
1 , 0

t

a t

a

f
D f t d

t
α

α

τ
τ α

α τ
−

−= >
Γ −∫  (B.6) 

The property of the Riemann-Liouville fractional 
derivative is that for 0α >  and t a>   

 ( )( ) ( ) ,a t a tD D f t f tα α− =  (B.7) 

which generalizes an analogous property of integer 
derivative and integrals.  

For convenience, the Laplace domain is usually used to 
describe the fractional integro-differential operation for 
solving engineering problems.  

The formula for the Laplace transform of the RL 
fractional derivative has the form 

  ( ) ( ) ( )
1

1
0 0 0

00

n
st k k

t t t
k

e D f t dt s F s s D f tα α α
∞ −

− − −
=

=

= −∑∫  (B.8) 

Also, there is another definition of the fractional 
differintegral introduced by Caputo (1967).  

Caputo’s definition can be written as 

 ( ) ( )
( )

( )

( )

1
1 , 1

t n
C
a t n

a

f
D f t d n n

n t
α

α

τ
τ α

α τ − += − < <
Γ − −∫ , (B.9) 

and its Laplace transform 

( ) ( ) ( )
1

1 ( )
0

00

 0 ,

1

n
st k k

t
k

e D f t dt s F s s f

n n

α α α

α

∞ −
− − −

=

= −

− < <

∑∫  (B.10) 

which implies that all the initial values of the considered 
equation are presented by a set of only classical integer-
order derivatives (evaluated at the initial time) with a well-
known physical meaning.  

In view of our objective to provide a suitable 
mathematical treatment of fractional derivative phenomena, 
the following notation is introduced: 

 
( ) ( )

( )

( )

1 .

n

C
a t

d f t f t if n
D f t if n ndt

α

αα
α

α
⎧⎪ = ∈⎪= ⎨⎪ − < <⎪⎩

 (B.11) 

We also note that in the limit cases the definition (B.9) 
yields ( )( ) ( )C n n

a tD f t f t=  (using delta distribution), 
Mainardi (1996).  

The relation between the two fractional derivatives, 
Riemann-Liouville and Caputo, is: 

 
1

( )

0

( ) ( ) (0 ) !

n kC RL k
a t a t

k

tD f t D f t f k
α α

−
+

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ . (B.12) 

The Caputo and Riemann-Liouville formulation coincide 
when the initial conditions are zero.  

Also, Lorenzo, Hartley (1998) considered variable 
prehistories of ( )tx  in 0t < , and its effects were taken into 
account for the fractional derivative in terms of the 
initialization function.  

Moreover, using the short memory principle Podlubny 
(1999) and taking into account (2) one can obtain a correct 
initial function where it is assumed that there is no 
difficulty with questions of continuity of solutions with 
respect to the initial data (function). 
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Stabilnost linearnih kontinualnih sistema sa čistim vremenskim 
kašnjenjem na konačnom vremenskom intervalu: Pregled rezultata 

Ovaj rad daje detaljan pregled radova i rezultata mnogih autora na polju Neljapunovske stabilnosti (stabilnost na 
konačnom vremenskom intervalu, tehnička stabilnost, praktična stabilnost, krajnja stabilnost) posebne klase 
linearnih kontinualnih sistema sa čistim vremenskim kašnjenjem u stanju. 
Ovaj pregled obuhvata period posle 1995.god., pa sve do današnjih dana i ima snažnu nameru the predstavi glavne 
koncepte i doprinose koji su stvoreni u pomenutom periodu u celom svetu a koji su publikovani u respektabilnim 
međunarodnim časopisima ili prezentovani na prestižnim međunarodnim konferencijama. 

Ključne reči: kontinualni sistem, linearni sistem, stabilnost sistema, Neljapunovska stabilnost, sistem sa kašnjenjem, 
sistem na konačnom vremenskom intervalu. 

Ustoj~ivostx linejnwh neprerwvnwh sistem so ~istwm 
vremennwm zapazdwvaniem na kone~nom vremennom intervale: 

Obzor rezulxtatov 

Nasto}|a} rabota daët podrobnwj obzor rabot i rezulxtatov mnogih avtorov v oblasti issledovani} 
nel}punovoj ustoj~ivosti  (ustoj~ivostx na kone~nom vremennom intervale, tehni~eska} ustoj~ivostx, 
prakti~eska} ustoj~ivostx, kone~na} ustoj~ivostx) osobogo klassa linejnwh neprerwvnwh  sistem so 
~istwm vremennwm zapazdwvaniem v sosto}nii.  
$tot obzor rezulxtatov ohvatwvayt period posle 1995-ogo goda do sih por i u nego vwrazitelxnoe 
namerenie predstavitx osnovnwe koncepcii  i vkladw  v &toj oblasti sozdanнwe v celom mire v 
upom}nutom periode i opublikovannwe v peredovwh me`dunarodnwh `urnalah ili pokazanw i 
predstavlenw na vwday|ihs} me`dunarodnwh konferenci}h. 

Kly~evwe slova: neprerwvna} sistema, linejna} sistema, ustoj~ivostx sistemw, nel}punova} 
ustoj~ivostx,  sistema so zapazdwvaniem, sistema na kone~nom vremennom intervale. 

Stabilité des systèmes linéaires continus à délai temporel pur chez 
l’intervalle temporelle finie: présentation des résultats 

Ce travail donne un compte-rendu des travaux et des résultats de nombreux auteurs dans le domaine de la stabilité de 
non Lyapunov (stabilité chez l’intervalle temporelle finie, stabilité technique, stabilité pratique, stabilité finale) de 
classe particulière des systèmes linéaires continus à délai temporel pur. Ce bulletin recouvre la période depuis 1995 
jusqu’à nos jours et a l’intention  de présenter les concepts principaux et les contributions réalisés au cours de la 
période citée dans le monde entier et publiés dans des revues internationales renommées ou bien présentés lors des 
conférences internationales de prestige.  

Mots clés: système continu, système linéaire, stabilité du système, stabilité non Lyapunov, système à délai, système 
chez l’intervalle temporelle finie. 




