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Models of Technological Processes on the Basis of Vibro-impact 
Dynamics 

Katica Stevanović – Herdih, PhD (Eng)1) 
Srđan Jović, MSc (Eng)2) 

The paper presents the series of the models of technological processes on the basis of vibro-impact dynamics for 
typical technical machines and systems. The analysis of the vibro-impact motions for the operation of some machines 
is shown for some specific examples, for which dynamic models are made. The given examples for the abstraction into 
characteristic vibro-impact models of real systems are: vibro-impact hammer, hand strike - rotary hammer, printer 
and vibro-rammer (mechanical vibrator). For each of the listed models of characteristic vibro-impact systems there 
are differential equations derived, representing the vibro-impact process dynamics followed by the appropriate initial 
and impact conditions and the conditions of elongation restrictions as well. The specifics vibro-impact dynamics for 
different properties of standard light elements (linear, nonlinear elasticity, high-elasticity, hereditary and creeping 
properties) included in the basic dynamic oscillator model is investigated. The basics of the energy transfer between 
the elements of the vibro-impact system analysis are presented. For some typical cases, the phase portraits and the 
energy curves are shown, representing the original results of the authors. 
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Introduction 
NVESTIGATION of the Vibro-Impact System dynamics 
and nonlinear phenomena, taking into account influence 

of some discontinuity, is the aim of numerous researchers 
from all over the world. The aims of the international 
conferences on vibro-impact systems, the next one in China 
(ICoVIS 2010), as well as the previous one in Russia 
(DyVIS 2009), are to bring together academic and 
industrial experts to present new knowledge in the area of 
vibro-impact dynamics in real technological processes as well 
as in advances in theory of nonlinear dynamics in the 
abstractions of the real vibro-impact systems to the theoretical 
models and corresponding analytical, numerical solutions and 
comparison with corresponding experimental data. 

These international conferences are very important for 
interactions on new advances in theory and realizations of 
technological processes on the basis of vibro-impact 
dynamical processes. This is possible only with scientific 
and professional interactions between academic and 
industrial experts from the fields of non-linear and 
structural dynamics, continuum mechanics, materials 
science, physics, applied mathematics, and mechanical, 
aerospace, civil and systems engineering. 

The areas covered by research of the vibro-impact  
dynamics include: excitation, synchronisation and 
stabilisation of vibro-impact processes; dynamics of vibro-
impact machines and technological processes; vibration 
protection of operators and structures in severe 
environment; synergistic effects of repeated impacts on 
solids and granular media; non-linear fluid-solid 
interactions; analytical, experimental and numerical 

methods for the analysis of vibro-impact systems and 
processes; synthesis and optimization of vibro-impact 
systems; and measurements and applications of vibro-
impact processes. 

In reference [48] vibro-impact systems are presented as 
systems of particular interest for studying. This is due to the 
fact that even when the behaviour of the system between 
impacts is linear, the impacts make the system highly 
nonlinear. Vibroimpact systems with deterministic 
excitation have been well studied and described in detail in 
a number of references and books [1-4], [6], [8-11] and 
[34]. Systems with elastic impacts can be studied by means 
of the method which transforms an impact system to a 
system without impacts. However, this method is effective 
only in the cases where the motion between impacts is 
linear or has a polynomial nonlinearity. In the case of 
inelastic impacts, the impact condition is usually expressed 
by the Dirac delta function on the right-hand side of the 
equation of motion. The coefficient of the delta function 
expresses the value of the impact impulse. In this case, the 
problem can be solved by the method of averaging. 
Stochastic systems with linear behavior between impacts 
and a one-sided limiter located at the equilibrium position 
have been thoroughly studied. The exact expressions for the 
probability density and spectral density in such systems 
have been obtained by means of the same transformation. 
The main purpose of the presented study [48] is to obtain 
analytical estimates for the average energy of stochastic 
vibro-impact systems with inelastic impacts. This paper 
[48] presents calculations that enable the extension of the 
application area of the energy balance method to stochastic 
vibroimpact systems with interference, clearance, and two-
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sided impact. In addition, the results are compared with the 
approximate results obtained by means of the quasi-
conservative averaging and the numerical simulation 
results. The results of the numerical simulation of a vibro-
impact system with two degrees of freedom are given.  

In reference [8], a time-optimal feedback control driving 
the particle from an arbitrary initial state to a prescribed 
terminal position is constructed for a simple vibro-impact 
system consisting of a particle moving on a line segment 
between two rigid stops. The control variable is the force 
applied to the particle, the magnitude of this force being 
constrained. 

In reference [4] a vibro-impact interaction between a 
rotor and a floating sealing ring is studied. The two-mass 
model of a “high-speed rotor-sealing ring” is considered. 
The model includes an unbalanced flexible rotor with 
elastic bearings. The rotor rotates inside the floating sealing 
ring. The ring is able to contact with the casing. The 
hydrodynamic forces in the clearance between the rotor and 
the ring as well as the dry friction between the ring and the 
casing are taken into account. The investigation of flow-
coupled vibro-impact oscillations of the rotor and the ring 
are presented. For these regimes, the analytical solution is 
obtained as well as the numerical results. The main 
dynamic features of these behaviour and stability domains 
are discussed. 

In reference [9], the response analyses of vibro-impact 
systems to random excitation are greatly facilitated by 
using certain piecewise-linear transformations of state 
variables which reduce the impact-type nonlinearities (with 
velocity jumps) to nonlinearities of the common  type-
without velocity jumps. This reduction resulted in some 
exact and approximate asymptotic solutions for stationary 
probability densities of the response for random vibrations 
with white-noise excitation. Moreover, if a linear system 
with a single barrier has its static equilibrium position 
exactly at the barrier, then the transformed equation of free 
vibration is found to be perfectly linear in case of the elastic 
impact. The transformed excitation term contains a 
signature-type nonlinearity, which is found to be of no 
importance in the case of a white-noise random excitation. 
Thus, an exact solution for the response spectral density 
was obtained previously for such a vibroimpact system, 
which may be called ”pseudolinear”, for the case of a 
white-noise excitation. This paper presents the analysis of a 
lightly damped pseudolinear single degree of freedom 
vibro-impact system under a non-white random excitation. 
The solution is based on the Fourier series expansion of a 
signum function for a narrow-band response. The formulae 
for the mean square response are obtained for a resonant 
case, where the (narrow-band) response occurs 
predominantly with frequencies, close to the system's 
natural frequency; and for a non-resonant case, where 
frequencies of the narrow-band excitation dominate the 
response. The results obtained may be applied directly for 
studying the response of moored bodies to ocean wave 
loading, and may also be used for establishing and 
verifying procedures for the approximate analysis of 
general vibro-impact systems. 

Bifurcation phenomena of an electro-vibroimpact system 
have been investigated by means of the numerical analysis 
and presented in reference [31]. It has been shown that the 
system undergoes transition from a chaotic motion to a 
periodic motion as the control frequency of the solid state 
relay (one of the system parameters) varies. A close co-
relationship with an experimental bifurcation diagram has 

been observed. A periodic motion has been identified to 
yield better system performance over a chaotic motion. The 
foundation of implementing an optimal feedback control 
strategy is established. Studies on vibro-impact systems 
have revealed very rich system dynamics due to the 
presence of nonlinearities in the system characteristics 
(Hinrichs et al. [30], 1997; Pavlovskaia and Wiercigroch 
[39-40], 2003; Peterka [41], [42], [43], 1996). The 
construction of Poincar`e maps, bifurcation diagrams and 
basins of attraction are useful to understand the qualitative 
dynamics of the system. The considered electro-vibro-
impact system is a discontinuous system, both from a 
mathematical and a physical point of view. A detailed 
approach to describe and solve dynamical systems with 
motion dependent discontinuities was undertaken by 
Wiercigroch (2000). An important result from that piece of 
work was the clarification of accurate mathematical 
modelling of such systems and the numerical realisation of 
the analytical solution.  

A large variety of dynamic responses is known to exist 
for nonlinear discontinuous systems. For example, systems 
exhibiting dry friction are known to behave in a chaotic 
manner, as demonstrated by Stefanski et al. [49] (2003). 
For detailed presentation of the current advances in the field 
of the vibroimpact systems see previous cited reference 
[31] written by Jee-Hou Ho and Ko-Choong Woo. 

In Serbia there are a few researchers specialist in area of 
the vibro-impact dynamics. Some of these are among the 
VTI researchers.  Three research projects supported by the 
Ministry of Sciences of Republic Serbia in basic sciences 
(in the period of 1990-2010), with project leader Hedrih 
(Stevanović) K., resulted in a number of titles in the field of 
vibro-impact dynamics. One of these is a doctoral thesis 
entitled Stability of the deterministic and stochastic 
processes of the vibro-impact systems [33] written by Mitic 
Sl. defended in 1994, and a corresponding monograph  
based on research results was published (in 2005). A series 
of the published papers by Mitić Sl.and Hedrih K. [34-38] 
in the period from 1992 to 1997 and by Hedrih 
(Stevanović) Katicam and Jović Srdjan [27-28] and Hedrih 
(Stevanović) Katica, Raičević Vladimir and Jović Srdjan 
[29] in 2009  is also a result of the cited projects. An MSc 
thesis entitled Energy analysis of the vibro-impact systems, 
written by Jović Srdjan in 2009, has been submitted as well.  

All vibro-impact systems with single or multi degree of 
freedom can be divided into the systems with one-sided 
constraint and the systems with two-sided constraints along 
each degree of freedom. In the case of one-sided constraint, 
the coordinate of the limiter, measured from the equilibrium 
position of the system can be negative (interference), zero, 
or positive (clearance), while in the case of two-sided 
constraint, the limiters can be arranged symmetrically or 
asymmetrically relative to the equilibrium position. 

A series of the vbro-impact systems represents the 
piecewise-conservative vbro-impact systems. The energy 
loss in such systems occurs at certain discrete time instants 
between impacts. These instants are unknown beforehand 
and depend only on the position and/or velocity of the 
system. Vibro-impact systems with impact-induced 
dominant losses are characteristic representatives of the 
class of piecewise-conservative systems. The idea of the 
method as applied to vibro-impact systems implies the 
consideration of the behaviour of the energy of the system 
between impacts and the balance of the energy before and 
after an impact. It is important that this method does not 
require the change in the system energy per period to be 
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small, as is the case for the quasi-conservative averaging 
method. 

Due to the fact that even when the behaviour of the 
system between impacts is linear, the impacts make the 
system highly nonlinear by discontinuity, we made a choice 
of the vibro-impact models with one degree of freedom and 
one side impact limiter of the elongations representing 
abstractions of the real technological process vibro-impact 
dynamics. The characteristic vibro-impact dynamics for 
different properties of the standard light elements, as linear, 
nonlinear elasticity, high-elasticity, hereditary and creeping 
properties included in the structure of the basic dynamic 
oscillator model, is investigated. The basics of energy 
transfer between the elements of the vibro-impact system 
analysis are presented. For some typical cases, the phase 
portraits and the energy curves are shown as the original 
results of the authors. 

Vibroimpact hammer 
This model was studied through the adjusting method by 

Koбринский А.E., Koбринский А.А. [32]. A vibro-impact 
hammer (Fig.1) represents a machine for which the vibro-
impact regime is the basis of the technological – operation 
process. The basis of the operation of this machine lies in 
the vibro-impact ramrod - striking effect. 

Here is a brief description of the machine operation 
process: driving force leads to reversion of the crank 
mechanism (1) and is transferred through the connecting 
rod (2) and the spring element (c) to the rings (3). They are 
linked with the ramrod - striker (4). While the crank 
mechanism spins, the ramrod strikes the anvil (5), where 
frequency and intensity of the impact are regulated by the 
spinning speed of the crank mechanism. The initial position 
of the hammer is regulated by changing the length of the 
connecting rod. In most of operation processes the hammer 
moves periodically with sufficient accuracy. 

Studies of the vibro-impact hammer dynamics (Fig.1.a*) 
are reduced and abstracted to the analysis of the dynamical 
vibro-impact models shown in Fig.1.b*. 

Vibro-impact hammer, abstracted into a dynamical 
model with a single degree of freedom is shown in the 
dynamic model in Fig.1.a* as a vibro-impact system on the 
basis of a free oscillations harmonic oscillator with one side 
limited elongations and a spring with linear stress-strain 
constitutive relation. 

 

a* 

 
        b*                          c*                          d*                          e* 

Figure 1. a* Vibroimpact Hammer – machine with corresponding abstraction 
into different dynamical models of vibro-impact systems with one side impact 
limit elongations: a* oscillator with an ideal elastic linear/nonlinear spring with 
one side impact limit elongations; b*oscillator with an ideal elastic spring and a 
damper with one side impact limit elongations, d* hereditary oscillator with one 
side impact limit elongations; e* fractional order oscillator with one side impact 
limit elongations. 

Taking into account that the model is with one degree of 
freedom, we take x  as a generalized coordinate. The form 
of the ordinary differential equation of the vibro-impact 
motion is:  

 2 0x xω+ =  (1) 

where: 2c
m ω= , the square of the eigen circular frequency 

depending of the spring rigidity c and the mass m . The 
ordinary differential equation is accompanied by the initial 
conditions: 

 0(0)x x=   and  0(0)x x=  (2) 

and by the impact conditions determined by one side impact 
limit of the elongation caused by the collision with the 
limiter: 

 ( )i iul ulx x t δ−= = ,   1,2,3,...,i n=  (3) 

The impact (collision) conditions are: 
 a* for an ideally elastic impact  

 ( ) ( )i i iodl ul ulx x t x t+ −= = − ,  (4) 

 b* for an arbitrary case between the ideally elastic and 
the ideally plastic impacts:  

 ( ) ( )i i iodl ul ulx x t kx t+ −= = − (5)  

The solution of the ordinary linear differential equation 
(1) for the no-impact system is: 

 1 1( ) cos sinx t A t B tω ω= +  (6) 

And for given initial copnditions (2) the particular 
solution is: 

 0
0( ) cos sinxx t x t tω ω

ω
= +  (7) 

The integral constants 1A  and 1B are derived from the 
initial conditions (2). 

 
a* 
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b* 

 
c* 

 
d* 

Figure 2. 1k = : a* Phase portrait piecewise linear vibro-impact oscillator; 
b* the graphics  of kinetic energy ( )Ek f t= ; c* the graphics of potential 

energy ( )Ep f t= ; d* the graphics of total mechanical energy ( )E f t= . 

The solution of the primary no-impact system dynamics 
is in the basis of which the solution of a corresponding 
impact system dynamics is founded. In the considered 
example the model of vibro-impact dynamics is structured 
by one side impact limiter of the elongations and solution is 
structured  for each interval between two followed impacts, 
determined by the corresponding values of integral 
constants according to the impact conditions (4) or (5)., 

 
a* 

  

 
b* 

 
c* 

 

 
d 

 
e* 

 

 
f* 

 
g* 

Figure 3. 0,65k =  a* Phase portrait; b*and c* the graphics of kinetic 
energy ( )Ek f t=  for the followed intervals between impacts; d* and e* 

the graphics of potential energy ( )Ep f t=  for followed intervals 
between impact; f* and g* the graphics of the vibro-impact system total 
mechanical energy ( )E f t=  for the followed intervals between impacts. 
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and the coefficient of the restitution, or the conditions of the 
one side impact limit of the elongations (3). 

The solution of differential equation (1) for the observed 
vibro-impact system in the period after the first impact is in 
the form: 

 1( ) cos siniul
i

v
x t t tδ ω ω

ω
−= −   1i >  (8) 

where 1iulv −  is the velocity before the i -th impact, as well 
as the velocity of the i -th impact. 

The energy analysis for this case of the considered 
model of the vibro-impact system is shown in Figures 2 and 
3, through a phase portrait containing one phase trajectory 
( )1k =  or a series of phase trajectories (k =0.65) and the 
curves of kinetic energy change, potential energy and vibro-
impact system total mechanical energy as a time function in 
the following intervals of motions between each two 
impacts and for the case when the coefficient of the 
restitution takes the following values: k = 1 (see Fig.2) and 
k =0.65 (see Fig.3). 

Vibroimpact hammer is presented through the 
dynamical model in Fig.1.b* as a vibro-impact system 
based on the forced harmonic oscillator with one side 
limited elongations. 

The differential equation has the form: 

 2 cosx x h tω+ = Ω  (9) 

where: 2c
m ω= , 0Fh m= , and 0F amplitude and Ω circular 

frequency of the external single frequency excitation. The 
ordinary differential equation (9) is accompanied by initial 
conditions in the form (2) and by impact conditions 
determined by one side impact limit of the elongation 
caused by the colision with the limiter in form (3). The 
impact conditions are in form (4) or (5). 

The solution of differential equation (9) of a no-impact 
system is: 

 1 1 2 2( ) cos sin coshx t A t B t tω ω
ω

= + + Ω
−Ω

 (10)  

and for the given initial conditions in form (2) it is:  

 
0 2 2

0
2 2

( ) ( )cos

sin cos

hx t x t

x ht t

ω
ω
ωω ω

= − +
−Ω

+ + Ω
−Ω

 (11) 

The integrating constants 1A  and 1B are derived from 
initial conditions (2) for the no- resonant case ωΩ ≠ . 

The solutions for the primary no-impact system on the 
basis of which a vibro-impact system is structured are used 
for finding solutions of the vibro-impact system where each 
period between impacts is determined by the integral 
constant according to the impact conditions or the 
coefficient of the restitution (4) or (5) and the conditions of 
elongations restrictions (3) (time after each collision runs 
from zero to the next collision). 

The solutions of differential equation (9) for the 
observed vibro-impact system for the followed intervals 
between two impacts are in the following forms:  
1. in the second interval after the first impact is in the fol-

lowing form: 

 
a* 

 

 
b* 

 

 
c* 

 

 
d* 

Figure 4. 1k= : a* Phase portrait piecewise linear vibro-impact oscillator for the 
forced no resonance vibro-impact regimes; b* the graphics of kinetic energy 

( )Ek f t= ; c* the graphics of potential energy ( )Ep f t= ; d* the graphics of 
total mechanical energy ( )E f t=  
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( )

( )

( )

1

1 1

1

2 2 2

2 2

2 2

( ) cos cos

1 sin sin

cos

ul

ul ul

ul

hx t t t

hv t t

h t t

δ ω
ω

ω
ω ω

ω

⎡ ⎤= − Ω +⎢ ⎥⎣ ⎦−Ω

⎡ ⎤+ − + Ω Ω +⎢ ⎥⎣ ⎦−Ω

+ Ω +
−Ω

 (12) 

2. in the third interval after the second impact is in the 
form: 

 

( )

( )

( )

12

2 12

12

3 2 2

2 2

2 2

( ) cos cos

1 sin sin

cos

ul

ul ul

ul

hx t t t

hv t t

h t t

δ ω
ω

ωω ω

ω

⎡ ⎤= − Ω +⎢ ⎥⎣ ⎦−Ω

⎡ ⎤+ − + Ω Ω +⎢ ⎥⎣ ⎦−Ω

+ Ω +
−Ω

 (13) 

where: 12 1 2ul ul ult t t= +  etc. 
The energy analysis is presented, in Fig.4, through the 

phase portrait and the graphics of kinetic energy changes, 
potential energy and vibro-impact system total mechanical 
energy as a time function in the following intervals of 
vibrations between two followed impacts. 

Vibroimpact hammer is shown in Fig.1.c* by the 
dynamic model as a vibro-impact system based on free 
oscillations of the oscillator with a damping force, which is 
linearly proportional to the system velocity and with one 
side impact limiter of elongation (limited elongations).  

The differential equation has the form: 

 22 0x x xζω ω+ + =  (14) 

where:  
2c

m ω=  and 
2

b
c
m

ζ =   

damping coefficient. 
The ordinary differential equation (14) is accompanied 

by the initial conditions in the form (2) and by the impact 
conditions determined by one side impact limit of the 
elongation caused by the colision with the limiter in form 
(3). The impact conditions are in form (4) or (5). 

The solution of the differential equation (14) of the no-
impact system (for the damping coefficient 1ζ < ) is in the 
form: 

 ( ) ( )2 2
1 1( ) cos 1 sin 1tx t e A t B tζω ω ζ ω ζ− ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

. (15) 

and for the given initial conditions in the form (2) is:  

 ( ) ( )2 20 0
0 2

( ) cos 1 sin 1
1

t x xx t e x t tζω ζωω ζ ω ζ
ω ζ

−
⎡ ⎤+= − + −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (16) 

The solutions of the primary no-impact system on the 
basis of which a vibro-impact impact system is structured 
are used for finding solutions of the systems where each 
period between two followed impacts is determined by 
corresponding integral constants based on the collision 
conditions (3) and (4) or (5).  

The solution of differential equation (14) of the vibro-
impact system for the interval after the first and the i -th 
impact is in the following form: 

 
a* 

 
b* 

 
c* 

 
d* 

 
e* 

Figure 5. 1k = : a* Phase portrait piecewise linear vibro-impact oscillator 
for the linear damped regimes; b* the graphics of kinetic energy 

( )Ek f t= ; c* the graphics of potential energy ( )Ep f t= ; d* the graphics 

of total mechanical energy ( )E f t= ; e* Rayleigh’s function of the 
system energy dissipation. 
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( ) ( )12 2
2

( ) cos 1 sin 1
1

1

iult
i

v
x t e t t

i

ζω ζωδ
δ ω ζ ω ζ

ω ζ
−−

⎡ ⎤− +
= − + −⎢ ⎥

⎢ ⎥−⎣ ⎦

>
 (17) 

The energy analysis is presented in Fig.5 through the 
phase portrait and the curves of kinetic energy changes, the 
potential energy, the vibro-impact system total mechanical 
energy and Rayleigh’s function of the system energy 
dissipation as time functions in the next intervals of the 
motion between two followed impacts. 

Vibroimpact hammer is shown in Fig.1.b* by the 
dynamic model as a vibro-impact system based on forced 
linear oscillations of the damped linear oscillator, in which 
damping force is linearly proportional to the system 
velocity and with one side impact limiter of the elongation 
(limited elongations). 

The differential equation has the form: 

 22 cosx x x h tζω ω+ + = Ω  (18) 

where: 2c
m ω= ,  

2

b
c
m

ζ = , 0Fh m=  and 0F  is the amplitude 

and Ω circular frequency of the external single frequency 
excitation. The ordinary differential equation (18) is 
accompanied by initial conditions in form (2) and by impact 
conditions determined by one side impact limit of the 
elongation caused by the collision with the limiter in form 
(3). The impact conditions are in form (4) or (5). 

The solution of differential equation (18) of the no-
impact system (damping coefficient 1ζ < ) is in the form 
(see reference [44-47] by Račković): 

( ) ( )
( )

2 2
1 1

0

( ) cos 1 sin 1

cos

tx t e A t B t

N t

ζω ω ζ ω ζ

γ

− ⎡ ⎤= − + − +⎢ ⎥⎣ ⎦

+ Ω −
 (19) 

where: 

 
( )2 2 2 2 24

hN
ω ζ ω

=
−Ω + Ω

 (20) 

and 

 0 2 2
2tg ζωγ
ω

Ω=
−Ω

. (21) 

and for the given initial conditions in form (2) the particular 
solution is: 

( ) ( ){
( ) ( )

( )

2
0 0

0 0 0 0 2
2 2

0

( ) cos cos 1

cos sin sin 1
1 1

cos

tx t e x N t

x x N N t

N t

ζω γ ω ζ

ζω γ γ ω ζ
ω ζ ω ζ

γ

−= − −

⎫⎡ ⎤⎛ ⎞+ − Ω ⎪⎜ ⎟+ ⎢ − − ⎥⎬⎜ ⎟⎢ ⎥− − ⎪⎝ ⎠⎣ ⎦⎭

+ Ω −

(22) 

As in previous cases, the solutions of the primary no-
impact system on the basis of which a vibro-impact impact 
system is structured are used for finding solutions of the 
systems where each period between two followed impacts 
is determined by the corresponding integral constants based 
on the collision conditions (3) and (4) or (5). 

 
a* 

 
b* 

 

c* 

 
d 

 

e* 

Figure 6. 1k = : a* Phase portrait piecewise linear vibro-impact oscillator 
for the linear damped and forced regimes; b* the graphics of kinetic 
energy ( )Ek f t= ; c* the graphics of potential energy ( )Ep f t= ; d* the 

graphics of total mechanical energy ( )E f t= ; e* Rayleigh’s function of 
the system energy dissipation. 

The solutions of differential equation (18) for the 
observed vibro-impact system for the followed intervals 
between two impacts are in the following forms: 
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1* in the second interval after the first impact and 
between the first and the second impact, is in the following 
form: 

( ) ( ){
( )( )

( ) ( )

( )

1

1 1

1

1

2
2 0

0

2

0 2
2

0

( ) cos cos 1

cos

1
sin

sin 1
1

cos

t
ul

ul ul

ul

ul

x t e N t t

v N t

N t
t

N t t

ζω δ γ ω ζ

ζω δ γ

ω ζ
γ

ω ζ
ω ζ

γ

−= − Ω − − +⎡ ⎤⎣ ⎦
− + − Ω −

+ +
−

⎫Ω Ω − ⎪+ − ⎬
− ⎪⎭

+ Ω + −

 (23) 

2* in the third interval after the second impact, for the 
interval between the second and the third impact,  is in the 
form: 

( ) ( ){
( )( )

( ) ( )

( )

12

2 12

12

12

2
3 0

0

2

0 2
2

0

( ) cos cos 1

cos

1
sin

sin 1
1

cos

t
ul

ul ul

ul

ul

x t e N t t

v N t

N t
t

N t t

ζω δ γ ω ζ

ζω δ γ

ω ζ
γ

ω ζ
ω ζ

γ

−= − Ω − − +⎡ ⎤⎣ ⎦

⎫− + − Ω −
+ +⎪

⎪− +⎬Ω Ω − ⎪+ − ⎪− ⎭

+ Ω + −

(24) 

where: 12 1 2ul ul ult t t= +  etc. 
The energy analysis is presented in Fig.6 through the 

phase portrait and the graphics of kinetic energy changes, 
potential energy and vibro-impact system total mechanical 
energy as a time function in the next intervals of vibrations 
between two followed impacts. 

Vibroimpact hammer is shown in Fig.1. b* by the 
dynamic model as a vibro-impact system based on the 
forced nonlinear moving oscillator with a damping force 
which is linearly proportional to the system velocity, and 
the vibro-impact oscillator with one side impact limiter of 
the elongations.  

The differential equation for the defined case has the 
following form for the general case: 

 2 ( ) 2 cosx x f x x h tω ε ζω+ + + = Ω  (25) 

where: 2c
m ω= , 2c

m ω= , 2c
m ω= , 

2

b
c
m

ζ = ,  0Fh m= , ε  

small parametre. 
The property of the spring is defined by a nonlinear 

stress-strain constitutive relation in the form of the force-
spring elongation relation cF  and x  expressed by: 

 ( )cF cx f xε= − −  (26) 

The ordinary differential equation (26) is accompanied 
by initial conditions in form (2) and by impact conditions 
determined by one side impact limit of the elongation 
caused by the collision with the limiter in form (3). The 
impact conditions are in form (4) or (5). 

For free oscillations of this oscillator without the 
damping force and the spring nonlinear low restitution 
force, the form of the differential equation is: 

 2 ( ) 0x x f xω ε+ + =  (27) 

The first integral of the previous equation (26) is in the 
form: 

 2 2 2 2 ( )ix C x f x dxω ε= − − ∫  (28) 

where the integral constant is in the following form 

 2 2 2 2 ( )
oi

i oi oi
x x

C x x f x dxω ε
=

⎡ ⎤= + + ⎢ ⎥⎣ ⎦∫  (29) 

The solution of differential equation (27) in the first 
asymptotic approximation of the nonlinear oscillator is 
shown in the following form: 

 ( )( ) ( ) cosx t a t tψ=  (30) 

where the amplitude a(t), the phase ( )tϕ or the full phase 
( )tψ  are the time functions determined through the system 

of the first order of differential equations by the amplitude 
a(t) and the ful phase ( )tψ  in the folowing form:  

1( )da A adt ε=  

 1( ).d B adt
ψ ω ε= +  (31) 

From the system of differential equations of the  first 
approximations for the amplitude a(t) and the ful phase 

( )tψ  (31) corresponding to the first approximation of the 
solution of system dynamics, we conclude that the system 
oscillations are with a constant amplitude equal to the 
amplitude at the initial moment of the motion while the first 
asymptotic approximation of the solution is no isochronous, 
and the system oscillates with a frequency and a period 
depending on the initial amplitude and phase 

0( ) .a t a const= =  (32) 

  ( ) ( )
2

0 0
0

0

1 cos cos2nonlinear a f a da

π

ω ω ε ψ ψ ψ
πω

= + ∫  (33) 

while the period of the nonlinear no-impact oscillation is 
equal to 

  ( )
( )

0 2

0
0

0

2

1 cos cos2

nonlinearT a

f a da

π
π

ω ε ψ ψ ψ
πω

=

+ ∫
 (34). 

The full phase of the nonlinear no-impact oscillation in 
the first approximation is 

 
( )

( )

0 0

2

0 0
0

0

( )

1( ) cos cos2

nonlineart a t

t f a d ta

π

ψ ω ψ

ψ ω ε ψ ψ ψ ψπω

= +

⎡ ⎤
⎢ ⎥= + +
⎢ ⎥⎣ ⎦

∫
(35) 

The solution of the nonlinear differential equation 
describing free nonlinear oscillations in the first asymptotic 
approximation of non-linear oscillator in no-impact regime 
is in the form: 
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 ( )0( ) cosx t a tψ=  (36) 

For the special example of the spring nonlinear 
constitutive relation describing the spring force in the 
nonlinear form by the spring deformation in the form: 

 3 5
cF cx cx cx= − − −  (37) 

the equation of the phase trajectory describing free 
nonlinear oscillations of the defined nonlinear no-impact 
oscillator is in the form: 

 2 2 2 2 4 2 61 1
2 3ix C x x xω ω ω= − − −  (38) 

where: 

 2 2 2 4 2 2 61 1
2 3i oi oi oi oi oiC x x x xω ω ω= + + +  (39) 

The solution of the nonlinear differential equation 
describing a chosen example of the free nonlinear 
oscillations in the first asymptotic approximation of non-
linear oscillator in no-impact regime is in form (36) where 
the full phase ( )tψ  is in the following form: 

 
2 22 4

0 0 0
3 5( ) 8 16t a a tω ωψ ω ψ
ω ω

⎡ ⎤= + + +⎢ ⎥⎣ ⎦
 (40) 

The eigen circular frequency of the free nonlinear no-
impact oscillations in the first approximation is: 

 ( )
2 22 4

0 0 0
3 5
8 16nonlinear a a aω ωω ω
ω ω

= + +  (41) 

 

Figure 7. Amplitude-frequency graph ( )0nonlinear aω  or the skeleton 
amplitude frequency characteristic  

It depends on the initial amplitude and is no-
isochronous, while the corresponding period of free 
nonlinear no-impact oscillations is equal to: 

 ( )0 2 22 2
0 0

2
3 5
8 16

nonlinearT a
a a

π
ω ωω
ω ω

=
+ +

 (42) 

In Fig.7 the amplitude frequency graph ( )0nonlinear aω  or 
the skeleton amplitude frequency characteristic is 
presented. 

We can notice that the considered free nonlinear 
oscillations are not isochronous, and the period of 
oscillations and the circular frequency of the free nonlinear 
no-impact oscillator depend on the initial conditions, initial 
amplitude and the full phase of oscillating. 

For the case of the vibro-impact nonlinear free vibrations 
of the vibro-impact system with one side impact limit of the 
elongations, the vibrations are no isochronous vibrations, 
and for ideal elastic impacts, the system dynamics is 

conservative with a constant period of vibro-impact 
oscillations, depending on initial conditions, initial kinetic and 
potential energies, and with a shorter period in comparison 
with the corresponding no impact dynamics.  This is caused by 
discontinuity and jumps of the alternations of the velocity 
directions during each time interval between two subsequent 
impacts of numerous impacts in very, very short time periods 
approaching to zero. 

The energy analysis is presented in Fig.8 through the 
phase portrait and the history graphs of kinetic energy 
changes, potential energy and vibro-impact system total 
mechanical energy as a time function in the following 
intervals of motion. 

 
a*                                                               b* 

 
c*                                                                d* 

Figure 8. 1k = : a* Phase portrait of the nomlinear vibro-impact 
oscillator; b* the graphics of kinetic energy ( )Ek f t= ; c* the graphics of 

potential energy ( )Ep f t= ; d* the graphics of total mechanical energy 

( )E f t= . 

For forced oscillations of the observed nonlinear 
oscillator with a damping force which is linearly 
proportional to the system velocity and with one side 
impact limiter of the elongations, the differential equation 
has the form (25): 

 2 ( ) 2 cosx x f x x hω ε ζω ϑ+ + + =  (25*) 

where 0tθ θ= Ω + , and 0θ  is the inital phase of the single 
frequency external excitation. The spring is nonlinear 
elastic decribed by the stress-strain constitutive relation in 
the form of the relation between force and spring 
elongation, cF  and x , expressed by (37). The ordinary 
differential equation (25*) is accompanied by the initial 
conditions in form (2) and by the impact conditions 
determined by the one side impact limit of the elongation 
caused by the collision with the limiter in form (3). The 
impact conditions are in form (4) or (5). 

By using the asymptotic method Krilov-Bogoljubov-
Mitropolyski for the case of the principal resonant range 
state ωΩ ≈ , the first asimptotic approxiamtion of the 
solution is in the form: 
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 ( )( ) cosx a t tψ=  (43) 

where: the amplitude ( )a t , the phase ( )tϕ  or the full phase 

( )( )t tψ θ ϕ= +  are time functions determined by the 
system of the first order differential equations in the first 
asymptotic aproximation. This system is expressed by the 
amplitude ( )a t  and the phase ( )tϕ  in the following form of 

1( , )da A adt ε ϕ=  

 1( , ).d B adt
ψ ω ε ϕ= −Ω+  (44) 

For determining the functions ...),(),,( 11 ϕϕ aBaA , we 
differentiate the assumed solution (43) and submit it in the 
nonlinear differential equation (25*) taking into 
consideration the assumed derivations of the amplitude 

)(ta  and the phase )(tϕ  in the appropriate approximation 
by (44) and we obtain: 

( ) cosda hadt t
ζω ϕ

ω
= − −

+Ω
 

 
( ) ( )

( )( )

2

0

1 cos cos2

sin

d t f a ddt a

h
t a

π
ϕ ω ε ψ ψ ψπω

ϕ
ω

= −Ω + +

+
+Ω

∫
 (45) 

For a special considered example of nonlinear 
oscillations, for case (37), the differential equation of the no 
impact system dynamics is in the following form  

 2 2 3 2 5
02 cosx x x x x hω ω ω ζω ϑ+ + + + =  (46) 

where we assumed that the spring force of nonlinear 
elasticity has the form (37). 

In the case of the principal resonant range state ω≈Ω , 
the first asimptotic approximation of the solution is in the 
form (43), where the amplitude ( )a t  and the phase ( )tϕ  or 
the full phase ( )tψ ϑ ϕ= +  are the time functions 
determined by the system of the first order differential 
equations in the first approximation are in the form: 

( )
0 coshda adt t

ζω ϕ
ω

= − −
+Ω

 

 
( )

( )( )

2 22 4

0

3 5
8 16

sin

d t a adt

h
t a

ϕ ω ωω ω ω

ϕ
ω

= −Ω + + +

+
+Ω

 (47) 

In Fig.9 the a* amplitude frequency characteristics of the 
nonlinear oscillator for stationary resonant regimes with 
selection curve are presented. The dotted line presents no 
stable amplitudes, and two resonant jumps of the amplitude 
as well as of the phase appear at boundaries of the 
frequency interval of the unstable amplitude branch. In 
Fig.9 the b* phase frequency characteristic of the nonlinear 
oscillator for stationary resonant regimes is presented. 

 
a*                                                         b* 

Figure 9. a*Amplitude frequency characteristics of the nonlinear oscillator 
for stationary resonant regimes with selection curve; b* phase frequency 
characteristics of the nonlinear oscillator for stationary resonant regimes. 

For the investigation of the vibro-impact system 
dynamics with one side impact limiter of the system 
elongation, it is necessary to use the first asymptotic 
approximation ( )( ) cosx a t tψ=  according to the system 
(47) of the first order differential equations in the first 
approximation of the amplitude ( )a t  and phase ( )tϕ  or the 
full phase ( )tψ ϑ ϕ= +  and by use numerical integration 
and and taking into account initial conditions as well a 
impact conditions to fined time of the first impact, and 
corresponding velocity of the first impact. Then it is 
necessary to solve the following task: 

Using one side impact limit of the elongation in the 
form: 

 ( )i iul ulx x t δ−= = , ni ,...,3,2,1=  (48) 

for each impact  it is necessary to solve the following task: 
to determine the time of the corresponding impact: ?=−iult  
and other corresponding kinetic parameters.  

 For the first impact time 1 ?ult − = , it is necessary to 
solve numerically the following task: 

 ( )1 1 1( ) cosul ul ulx a t tψ δ− −= = ⇒ 1 ?ult − =  (49) 

simultaneously using the following first order differential 
equations according to the unknown amplitude )(ta  and 
phase ( )tϕ  or the full phase ( )tψ ϑ ϕ= +  and starting with 
the initial conditions (2), 0(0)x x=  and 0(0)x x= : 

( )
0 coshda adt t

ζω ϕ
ω

= − −
+Ω

 

 
( )

( )( )

2 22 4

0

3 5
8 16

sin

d t a adt
h

t a

ϕ ω ωω
ω ω

ϕ
ω

= −Ω + + +

+
+Ω

 (50) 

for determining the amplitude 1( )ula t −  and the phase 

1( )ultϕ −  or the full phase ( ) ( )1 1 1( )ul ul ult t tψ ϑ ϕ− − −= +  at the 
moment of the first impact. After determining the time of 
the first impact −1ult  numerically, it is necessary to 
calculate the velocity of the nonlinear system at the moment 
before and after the first impact in the following form: 

 The impact velocity 1( )ulx t −  before the first impact 
at the start of the first impact: 

( ) ( ) ( )1 1 1 1 1 1( ) cos ( ) sinul ul ul ul ul ulx a t t a t t tψ ψ ψ− − − − −= −  (51) 
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The velocity ( )iulx t + at the moment after the first impact, 
at the moment of the finish of the first impact: 

 ( )

( ) ( )

1 1

1 1 1 1

1 1 1

( )

( ) cos

( ) sin

odl ul

odl ul ul ul

ul ul ul

x x t

x x a t t

a t t t

ψ

ψ ψ

+

− −

− − −

=

= − = − +

+

 (52) 

For the period between the first and the second impact, 
the initial conditions are:  

 ( )1 1 1( ) cosodl ul ulx a t tψ δ+ += =  and ( )i iodl ulx x t += . (53) 

For finding the second impact time 2 ?ult − = , it is 
necessary to solve numerically the following task: 

 ( ) δψ == −− 222
cos)( ululul ttax ⇒ ?

2
=−ult   (54) 

simultaneously by using the following first order 
differential equatins according to the unknown amplitude 

( )a t  and phase ( )tϕ  or the full phase ( )tψ ϑ ϕ= +  and 
starting with the initial conditions (53): 

( )
0 coshda adt t

ζω ϕ
ω

= − −
+Ω

 

 
( )

( )( )

2 22 4

0

3 5
8 16

sin

d t a adt
h

t a

ϕ ω ωω
ω ω

ϕ
ω

= −Ω + + +

+
+Ω

 (50*) 

for determining the amplitude 2( )ula t −  and the phase 

21( )ultϕ −  or the full phase ( ) ( )2 2 2( )ul ul ult t tψ ϑ ϕ− − −= +  at 
the moment of the second impact. After determining the 
time 2 ?ult − = of the second impact 2ult −  numerically, it is 
necessary to calculate the velocity of the nonlinear system 
at the moment before and after the second impact in the 
following form: 

The impact velocity 2( )ulx t −  before the first impact at 
the start of the first impact: 

 ( )
( ) ( )

2 2 2

2 2 2

( ) cos
( ) sin

ul ul ul

ul ul ul

x a t t
a t t t

ψ
ψ ψ

− −

− − −

= −
−

 (55) 

The velocity 2( )ulx t +  at the moment after the first 
impact, at the moment of the finish of the first impact: 

 ( )
( ) ( )

2 2

2 2 2 2

2 2 2

( )
( ) cos

( ) sin

odl ul

odl ul ul ul

ul ul ul

x x t
x x a t t

a t t t
ψ

ψ ψ

+

− −

− − −

=
= − = − +
+

 (56) 

For the period between the first and second impacts, the 
initial conditions are:  

   ( )2 2 2( ) cosodl ul ulx a t tψ δ+ += =  and 2 2( )odl ulx x t +=  (57) 

It is not dificult to use analogy for the next impacts to 
determine times and corresponding impact kinetic 
parameters. 

The impact velocity ( )iulx t −  before the i -th impact at 
the start of the f i -th impact: 

  ( ) ( ) ( )( ) cos ( ) sini i i i i iul ul ul ul ul ulx a t t a t t tψ ψ ψ− − − − −= −  (58) 

The velocity ( )iulx t +  at the moment after the i -th 
impact, at the moment of the finish of the i -th impact: 

 ( )
( ) ( )

( )
( ) cos

( ) sin

i i

i i i i

i i i

odl ul

odl ul ul ul

ul ul ul

x x t
x x a t t

a t t t
ψ

ψ ψ

+

− −

− − −

=
= − = − +
+

 (59) 

For the period between the i -th and 1+i -th impacts, the 
initial conditions are:  

 ( )( ) cosi i iodl ul ulx a t tψ δ+ += =  and )( +=
ii ulodl txx . (60) 

The basic problem is that there are no analytical 
solutions for the nonlinear vibro-impact system, so it is 
necessary to find numerical solutions. 

It is also possible to use the phase plane method and the 
cross sections of the phase trajectory for stationary resonant 
regimes and to determine some necessary kinetic 
parameters of the vibro-impact system oscillations.  

Vibroimpact hammer is shown in Figure 1. c* by the 
dynamic model as a vibro-impact system based on the 
standard hereditary oscillator. 

A standard light hereditary element is formed on the 
basis of the serial, parallel or combined coupling of 
rheological basic elements and springs and also with 
possible modifications. One set of possible standard light 
elements massless is presented in Fig.10 (see References 
[11-30]). 

The basic rheological elements are: 
- a* ideally elastic element represented by the spring; 
- b* viscous element which is schematically presented by a 

damper. 
The integro - differential equation of hereditary 

oscillator dynamics, containing mass m  and standard light 
hereditary element has the following  form:  

 ( ) ( ) ( )
0

t

mx cx c t x d F tτ τ τ+ − ℜ − =∫  (61) 

where: 

Uα  UE  

( )tU

( ) ( ) ( )ttt U,,εσ  

UKE

KU  

( ) ( ) ( )ttt K KK U,,εσ  

UKα  

KE  

Kμ

( ) ( ) ( )ttt MMM U,,εσ  

UME  

UMα

TMα

Mμ

ME  

*b  

*c  

*a  

Kμ  

UKE  

UKα

KU  

KE  

( )tMU  

UME

UMα  

Mμ

ME  

*d  

( ) ( ) ( ) ( )tUtUtt MK ,,,εσ

( )tMU  

 
Figure 10. a* Schematic view of the piezoelastic element; b* Schematic 
view of the piezomodified Maxvell's elasticviscose hereditary element; c* 
Schematic view of the piezomodified Kelvin-Foight's viscoelastic 
hereditory element; d* Schematic view of piezomodified Burgers's 
hereditory element 
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 ( ) 1
t
ncc ct enc
τ

τ
−−ℜ − =  (62) 

is the resolvent or the core of relaxation, 1
nβ =  is the 

relaxation coefficient, 1,c c  are the coefficients of the 
rigidity of the light heredity element for the case of 
momentaneous as well as long-term loading, and n  is the 
time of the element relaxation. 

The integro-differential equation (61) in the differential 
form 

 ( ) ( ) ( ) ( ) ( ) ( )nmx t mx t ncx t cy t nF t F t+ + + = +  (63) 

is accompanied by three initial conditions (see Refs. [11-
16]): 

 0(0)x x= ,  0(0)x x= ,   0(0)x x g= =  (64) 

and by the impact conditions determined by one side impact 
limit of the elongation caused by the colision with the 
limiter: 

 ( )i iul ulx x t δ−= = , 1,2,3,...,i n=  (65) 

The impact (collision) conditions are: 
- a* for an ideally elastic impact  

 ( ) ( )i i iodl ul ulx x t x t+ −= = − , (66) 

- b* for an arbitrary case between the ideally elastic and 
the ideally plastic impacts:  

( ) ( )i i iodl ul ulx x t kx t+ −= = − (66) General ssolution of the 
ordinary linear differential equation (63) or integro-
differential equation (61) for no impact system dynamics is 
in the form: 

 ( ) 1 2 3t t tx t Ae Be Deλ λ λ= + +  , (67) 

where , 1,2,3i iλ =  are eigen characteristic numbers and 
the roots of the characteristic equations 

 3 2
1 0nm m nc cλ λ λ+ + + =  (68) 

Let’s present the roots of the previous characteristic 
equation in the complex form 

 0 0λ δ= − ,  1,2 iλ δ ω= − ±  (69) 

and after their introduction in the characteristic eq. (69) we 
obtain: 

 ( )( )( )0 0i iλ δ λ δ ω λ δ ω+ + + + − =  (70) 

or in the form 

 
( ) ( )
( )

3 2 2 2
0 0
2 2

0

2 2
0

λ δ δ λ ω δ δδ λ

δ ω δ

+ + + + + +

+ + =
 (71) 

After comparing the coefficients of equations (68) and 
(71) of the corresponding exponents, we obtain the relations 
between the kinetic parameters of the hereditary oscillator 
in the following forms: 

( )
( )

2 2
0

2 2
02

c
nc

δ ω δ

ω δ δδ

+
=

+ +
, 0

12 nδ δ+ = , ( )2 2
02 c

mω δ δδ+ + =  (72) 

from which it follows: 

0
0 2 2

0

21c
nc

δδδ
ω δ

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

 

 0 0
2 2

0

1
2 2 2

c c c
n nc nc

δ δδδ
ω δ

−= − = −
+

 (73) 

( )02
2
2

1c
m

δ δ δ
ω

ω
+⎡ ⎤= −⎢ ⎥⎣ ⎦

 

In the first approximation, taking into account that ratio 

( )2δ
ω

 is small, the kinetic parameters 0 , ,δ δ ω  of the 

hereditary oscillator  in the first approximation are obtained 
in the forms: 

 0
c
ncδ = ,  

2
c c

ncδ −= ,  2 c
mω =  (74) 

By using expressions (74) of the first approximation and 
putting them in the expressions (73), the kinetic parameters 

0 , ,δ δ ω  of the hereditary oscillator in the second 
approximation are obtained in the forms (see Refs. [11-
16]): 

( )
0 2 2 2

11
c c cc

nc c n
δ

ω
−⎡ ⎤= +⎢ ⎥⎣ ⎦

 

 ( )2

2 2
112

c c c
nc c n

δ
ω

⎡ ⎤−= −⎢ ⎥⎣ ⎦
 (75) 

2
2 2

3 11 4
c c c c c
m c c n

ω
ω

⎡ ⎤− += −⎢ ⎥⎣ ⎦
 

For many visco-elastic hereditary materials, the time of 
the hereditary element relaxation is [ ]~ 50 secn . For the 
frequency of the hereditary oscillator [ ]1f hertz= or 

12 6, 28 secfω π −⎡ ⎤= = ⎣ ⎦  the dimensionless ratio has the 

following value 5
2 2
1 4 10

n ω
−≈ ⋅ . The experimental results 

were obtained by O.A. Goroshko and presented in the 
Monograph Goroshko O.A. and Hedrih (Stevanović) K. 
[11] published in 2001. In this way, the values of the 
hereditary oscillator coefficients 0 ,δ δ  and the circular 
frequency ω  are defined by expressions (75) with a high 
degree of precision. 

By using the previous considerations and the 
approximation of the standard hereditary oscillator 
coefficients 0 ,δ δ  and the circular frequency ω  defined by 
expressions (78), the solution of the equation (61) or (63), 
for the standard hereditary no impact oscillator, can be 
written in the following form (see Ref. [11]): 

 
( ) ( ) 0

2 2 2

1 1 1 cos

3 1 sin2

tt et mg e tc c c c
c c t
c n

δδ ω

ω
ω

−
−⎡= + − − −⎢⎣
⎤−− ⎥⎦

 (76) 

For the initial conditions ( )0 0y = , ( )0 0y = , 

( ) ( )0 0y P mg+ = , where ( ) ( )0 0P cy= , corresponding to 
applied heavy material particle with the weight mg and 
with the zero initial velocity of the hereditary oscillator, the 
material particle corresponds to the unstressed and 
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undeformed natural state of the hereditary element in the 
hereditary oscillator.  

The motion of this considered hereditary oscillator in the 
defined initial conditions represents damped oscillations in 
accordance with the curve of rheology.  

An estimation of precision expressions of values of the 
hereditary oscillator with weak singular rheological 
elements for the coefficients: 0δ  of rheology, δ  for 
decrement and ω  for circular frequency expressed by Γ - 
Euler function leads us to the conclusion, presented in 
reference [4], that these expressions are with a high step of 
precision. 

For the vibro-impact dynamics it is necessary to use 
impact conditions of the impact listed elongations and to 
find the time of the first impacts and the corresponding 
system velocity at the moment of impacts. The procedure 
and the algorithm are same as in the previous examples, but 
hereditary vibro-impact needs new investigations according 
the hereditary element memory of the history of loading 
and according this determinations of the initial conditions 
of each next interval between two subsequent impacts. This 
is a serious task for new investigations, since up to now 
there is not enough knowledge in scientific literature.  

Vibroimpact hammer shown in Fig.1 e* through the 
dynamic model as a vibroimpac system based on the 
fraction order oscillator. 

The basic elements of the fractional order oscillator are: 
* Material particle with mass m , having one degree of 

motion freedom, defined by the following coordinate x ; 
* Standard light fractional order coupling element of 

negligible mass in the form of axially stressed rod without 
bending, with the ability to resist deformation under static 
and dynamic conditions. Standard light creep constraint 
element for which the stress-strain relation for the 
restitution force as the function of element elongation is 
given by fractional order derivatives in the form:  

 ( ) ( ) ( )[ ]{ }0 DtP t c x t c x tα
α= − +  (77) 

where [ ]Dt
α •  is operator of the thα  derivative with respect 

to the time t in the following form: 

 
( )[ ] ( ) ( ) ( )

( )
( )

( )0

D

1
1

t

t

d x t
x t x t

dt
xd ddt t

α
αα

α

α

τ
τ

α τ

= = =

=
Γ − −∫

 (78) 

where ,c cα  are the rigidity coefficients– momentary and 
prolonged one, and α  a rational number between 0 and 1, 
0 1α< < . Here  ( )1 αΓ − - is the Euler’s gama-function. 

The differential equation of the oscillation of the basic 
friction order oscillator on the basis of which this 
vibroimpact system is constructed is  

 ( )[ ] ( )Dtmx cx c x t F tα α+ + =  (79) 

The ordinary fractional order differential equation (77) is 
accompanied by initial conditions in the form (2) and by 
impact conditions determined by one side impact limit of 
the elongation caused by the colision with the limiter in the 
form (3). The impact conditions are in the form (4) or (5). 

The solution of this fractional order differential equation 
(79) is determined by the Laplace transformation, by 

developing into the series (expansion) of Laplace 
transformation and searching the inverse Laplace transform. 

It is possible to starts with the fractional order 
differential equation (79) in the following form: 

 ( ) ( ) ( ) ( )2 2
0 0x t x t x tα

αω ω± + =  (80) 

This fractional order differential equation (89) for the 
observed vibro-impact system on the basis of the fraction 
order oscillator for the generalized coordinate ( )x t  could 
be solved by using the Laplace transform. Thus we obtain 
(for detail see References by Gorenflo, R., Mainardi, F., 
[10], by Bačlić, B. S., Atanacković, T. M., [5] or by Hedrih 
(Stevanović) K. and Filipovski A. [26])  

 ( ) ( )[ ] ( ) ( )

( )
2

2 2
0 2

0

0 0
D

1

px x
x p x t

p pαωω
ω

+
= =

⎡ ⎤
+ ±⎢ ⎥

⎣ ⎦
R

 (81) 

where ( )[ ] ( ) ( )[ ]tt x t p xα⎡ ⎤ =⎣ ⎦ RL D L  is the Laplace 

transform of the friction order ( )d x t
dt

α

α  for 0 1α≤ ≤ .For 

creep rheological material these Laplace transforms of the 
initial conditions are in the form: 

( )[ ] ( ) ( )[ ] ( )

( )[ ] ( )

1

1

1

1

L D L 0

L 0

t
dx t p x t x
dt

dp x t x
dt

αα
α
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α

−

−

−

−

⎡ ⎤ = − =⎣ ⎦

= −

R
(82) 

where the initial value is equal to 

 ( )1

1
0

0
t

d x t
dt

α

α

−

−
=

=  (83) 

so, in that case the Laplace transform of time-function is 
given by the following expression:  

 ( ){ } 0 0
2 2 2

0
L px xT t

p pααω ω
+=

⎡ ⎤± +⎣ ⎦
 (84) 

For the boundary cases, when material parameters α  
have the following values: 0α =  i 1α = , we have two 
special simple cases with known corresponding fractional-
differential equations and solutions. In these cases the 
fractional-differential equations are:  

1*  ( ) ( ) ( ) ( )02 2
0 0 0x t x t x tαω ω± + =  for 0α =  (85) 

where: ( ) ( ) ( )0x t x t= , and 

2*  ( ) ( ) ( ) ( )12 2
1 0 0x t x t x tαω ω± + =  for 1α =  (86) 

where: ( ) ( ) ( )1x t x t= . 
The solutions of the differential equations (85) and (86) 

are: 

2.1.* 
( ) 2 2

0 0 0

2 20
0 02 2

0 0

cos

sin

x t x t

x t

α

α
α

ω ω

ω ω
ω ω

= ± +

+ ±
±

 

 for 0α = . (87) 
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2.1.* 
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for 1α =  and for 2
0 1

1
2 αω ω>  (for soft creep properties)  (88) 

or for strong creep. 
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 for 1α =  and for 2
0 1

1
2 αω ω< . (89) 

For critical cases: 

 2.3.* ( )
2
1

02
0 2

1

2t xx t e x t
αω

αω
⎧ ⎫

= +⎨ ⎬
⎩ ⎭

∓  (90) 

for 1α =  and for 2
0 1

1
2 αω ω= . 

The fractional-differential equation (80) for the general 
case, when α  is a real number from the interval 0 1α< < , 
 can be solved by the Laplace transform. Using this, we 
obtain:  

 ( ) ( ){ } ( ) ( ){ }
1

1
0

L L L
t

d x t d x t
p x t p x t

dt dt

α α
α α

α α

−

−
=

⎧ ⎫
= − =⎨ ⎬

⎩ ⎭
(91) 

and by introducing for initial conditions of fractional 
derivatives in the form (91), and after taking the Laplace 
transform of the equation (80), we obtain the corresponding 
 equation according Laplace transform ( ){ }txL . By anlysing 
the previous Laplace transform of equation (90) of the 
solution, we can conclude that we can consider two cases. 

For the case when 2
0 0ω ≠ , the Laplace transform 

solution can be developed into series by the following way: 
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xx t x pp p p
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ω ω
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In (94) it is assumed that the expansion leads to the 

convergent series (for detail see References by Gorenflo, 
R., Mainardi, F.,[10], by Bačlić, B. S., Atanacković, T. M., 
[5] or by Hedrih (Stevanović) K. and Filipovski A. [26]). 
The inverse Laplace transform ( ){ }L x t  of the previous 
Laplace transform of solution (94) in term-by-term steps is 
based on the known theorem, and yields the following 
solution of differential equation (80) of the time function in 
the following form of time series: 
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 (95) 

Using the initial conditions of the motion and impact 
conditions we can get the analysis of the vibro-impact 
system on the basis of the fraction order oscillator. 

In the previous expression (95), there are two constants 
determined by the initial conditions, the initial coordinate 

0x , and the initial velocity 0x . For each impact it is 
necessary to determine time ?iult − =  of the i -th impact 
into the elongation limiter and to solve numerically the 
following equation:  

 ( )i iul ulx x t δ−= = ,  1,2,3,...,i n=  (96) 

The velocity )( +iultx at the moment after the i -th 
impact, i.e. at the moment of the finish of the i -th impact, 
is: 

 ( )i i i iodl ul odl ulx x t x x+= = = −  (97) 

Or in the developed form: 
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 (98) 

For the period between the i -th and the 1i + -th impacts, 
the initial conditions are:  

 ( )i iodl ulx x t δ+= =  and ( )i i iodl ul ulx x t x+= = − . (99) 

 The basic problem is that, for the fractional order, 
the vibro-impact system analytical solutions are presented 
by time series expansion, but it is necessary to solve 
numerical roots of the expansion equal to the constant. 
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Manual stroke - rotary hammer  
The manual stroke-rotary effect machine based on the 

vibro-impact model with three degrees of freedom, noted 
by the coordinate , 1,2,3ix i = , is used for drilling 
channels in rocks, concrete, asphalt, etc. The construction 
scheme is shown in Fig.11.a *, and a model in 1.b*. 

The principle of operation of this machine consists of the 
following: 

 
a* 

 
b* 

Figure 11. a* Manual stroke-rotary hammer, and b* the scheme of the 
dynamic model [32] 

The device patron (1) receives a drive through the 
redactor (2) of the electro-starter (7). The operating device 
is located in the patron. The cabinet of the machine is 
connected to the electric motor (4) where the anchorless is 
located (8) and has the role of the striker. When the 
electromagnets are plugged, the striker starts the 
oscillatory- transactional motion. During the direct motion, 
the striker strikes the repulsion mass - an element which is 
used to alleviate the effect of the stroke (5), which is 
connected to the cabinet through a spring. The repulsion 
interface is set to reduce the effect of the strokes on the 
handle (6) of the machine. The dynamic model of this 
machine is shown in Fig.11.b *. 

The dynamic model consists of three material particles 
with the following masses 1m , 2m  and 3m . The mass 3m  
is connected by the spring with the rigidity c , and 
connected to the real support, while the mass 1m  performs 
strike action on the processed element. 

The link between the dynamic model and the manual 
machine with a strike - rotary effect can be shown in the 
following way: the moving restrictor imitates the mutual 
effect of the operating device of the mass 1m  and external 
environment (the processed element). The mass

2m is 
activated due to the oscillatory motion. The repulsion 
mass 3m  and the hardness spring c form an oscillatory 
system.  

This model is based on the presented facts represents a 
one-dimensional multimass vibroimpact system of the type 
"chain", which, in a general case, may have different 
masses, and these masses form stroke pairs with different 
restitution coefficients during collisions (impacts). 

Analyses of this type of vibro-impact systems are 
undertaken by Koбринский А.E., Koбринский А.А [32], 
through the adjustment method, by the statistical method of 
Бабицкий В.И. [1-3] and others. 

The observed dynamic model on the basis of vibro-
impact action-dynamics has three degrees of freedom. For 
the generalized coordinates we use: 1 2,x x  and 3x . The 
kinetic energy of the system is 

 2 2 2
1 1 2 2 3 3

1 1 1
2 2 2Ek m x m x m x= + +  (101) 

 Potential energy of the system is 

 2
3

1
2Ep cx=  (102) 

By using Lagrange’s second order differential equations 
or the material system dynamics, we get to the differential 
equations of the observed vibro-impact system dynamics in 
the following forms: 

3 3 3 0m x cx+ =  

or 2
3 3 3 0x xω+ =  (103) 

 2 2 0m x =  (104) 

 1 1 0m x =  (105) 

where: 2
3

3

c
m ω= .  

We join the initial conditions and corresponding impact 
(collision-clearance) conditions to these differential 
equations. 

 The initial conditions are: 

( ) ( ) ( )1 2 3 300 0, 0 0, 0x x x x= = = −  

 ( ) ( ) ( )1 2 3 300 0, 0 0, 0x x x x= = =  (106) 

First we determine under what conditions the material 
particle of the mass 3m  would strike the material particle 
of the mass 2m . 

 The general solution of the first differential equation 
(103) is 

 ( )3 3 3 3 3cos sinx t A t B tω ω= +  (107) 

 By using the initial conditions (106) we determine 
the integrating constants 3A  and 3B , so the particular law 
of motion of the material particle of the mass 3m  in the 
motion interval until the first collision (impact or clearance) 
 is as follows: 

 ( ) 30
3 30 3 3

3
cos sinxx t x t tω ω

ω
= − +  (107*) 

In order to determine the velocity of the impact between 
the subsequent material particle of the system, it is 
necessary to determine the time period in which the 
material particle of the mass 3m  would strike the material 
particle of the mass m2. That time point before the first 
impact contact between the masses is determined from the 
condition 
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 ( )1 1 1
30

3 23 30 3 3
3

cos sinul ul ul
xx t x t tδ ω ω
ω

= = − +  (108) 

The time 1ult  is determined by the numerical procedure 
or by using the existing programs for solving equations for 
root determination. 

In MatchCad we can require for zero functions 

 ( )1 1 1
30

3 23 30 3 3
3

cos sin 0ul ul ul
xf t x t tδ ω ω
ω

= + − =  (109) 

After determing 1ult  (numeric value is determined from 
the first section of the zero line with the function graphic) 
we get the value of the velocity of the material particle just 
before the imapact (stroke): 

 ( )1 1 1 13 30 3 3 30 3sin cosul ul ul ulv x t x t x tω ω ω−= = +  (110) 

Under the assumption that the impact contact (stroke) is 
completely elastic ( 1)k =  and that the velocity just before 
the impact contact (stroke) is the same as the velocity 
immediately after the impact contact (stroke) with the 
opposite sign direction, we obtain 

 1 1odl ulv v= . (111) 

The second system motion interval (after the impact 
contact (stroke, collision) of the material particle of the 
mass 3m  with the material particle of the mass 2m   is 
formed under the initial conditions 

1 1 1 12 23 2( ) ( )ul ul odl ulx t i x t v vδ+ += = = , where the time after 
each impact contact (stroke) runs from zero to the next 
impact contact (stroke). 

By solving the second differential equation (105), we 
obtain the general law of the system motion in another time 
interval 

 2 2 2( )x t C t B= +   

By using the initial conditions and the impact contact 
(stroke) conditions, we get the law of motion of the material 
particle of 2m  in the second movement interval. 

 
1

2 ( )
ul

x t v t= ` (112) 

The time when the material particle of the mass 2m  
contacts (strikes) the material particle of the mass 1m  can 
be calculated from the following conditions: 

 2 1 22 12( )ul ul ulx t v tδ= =  (113) 

where  

 2
1

12
ul

ul
t v

δ=  (114) 

 After the determination of the time interval when the 
material particle of the mass 2m  contacts (strikes) the 
material particle of the mass 1m , we can also determine the 
velocity of the impact contact (stroke) in this time interval. 

 2 2 1odl ul odlv v v= =  (115) 

According to this observation, we can notice that the 
velocity of the material particle of the mass 1m  which 
strikes the processed element or in our case so-called 

elongation restrictor is equal to the outgoing speed after the 
impact contact (stroke) of the material particle of the 
mass 2m  with the particle of the mass 1m . In this idealized 
case when the impact contact (stroke) is ideally elastic 
( )1k =  and when there is no notion friction, the incoming 
velocity during the first impact contact (stroke) is 
completely transferred to the processed element. After the 
impact contact (stroke) with the processed element the 
material particle of the mass 1m  is moving in the opposite 
direction and now it strikes the material particle of the mass 

2m . A further analysis of this multi-mass vibro-impact 
system can be presented in some particular cases. 

Printer 
An application of the vibro-impact action is 

characteristic for the printer on the basis of accumulated 
energy (Fig.12 a*). The armature of the strike writing 
hammer is represented as a heavy mass connected to the 
left fixed wall by a spring and a damper. The spring is 
previously loaded and has a linear characteristic. The 
negative loss is characterized by the effect of the permanent 
magnet (for details see reference by Tung P.C., Shaw S. 
W.: [50] presented as a method for the improvement of the 
impact printer performance. 

The position of the heavy material particle is limited 
with a simulated beam on the printer armature. The periodic 
sinus pulsing moving force removes the hammer so that it 
strikes the tape and the paper on the typing machine, which 
are related to the linear elastic spring and the linear 
damping force. A corresponding simple one-dimensional 
single-mass vibro-impact system is shown on the dynamic 
model (Fig.12 b*). A moving limiter (as a one side 
restrictor of elongation) is characteristic for this model. 
This model was studied by Tung P.C. and Shaw S.W. [50]. 

    

    
 

a* 

  
b* 

Figure 12. Printer, a* sheme [50], b* the dynamc model 

This vibro-impact system is specific because it has one 
(out of two) degree of freedom from the moment when the 
material particle of the mass 1m  (the hammer) strikes the 
paper of negligible mass but of non-negligible high 
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elasticity. Until that moment there are two coordinates of 
the movement taken: 1x  elongation of the hammer and 2x  
elongation of the paper. 

The kinetic energy of the system 

 2 2
1 2

1 1
2 2 pEk mx m x= +  (116) 

where 0pm = . 
The potential energy of the system 

 2 2
1 2

1 1
2 2Ep c c= +  (117) 

The Rayleigh function of the system energy dissipation  

 2 2
1 1 2 2

1 1
2 2b x b xΦ = +  (118) 

By using the Lagrange’s equation of the second kind, we 
can write the differential equations of the system dynamics 
in the following form: 

 1 1 1 1 1 1 0m x b x c x+ + =  (119) 

 2 2 2 2 0b x c x+ =  (120) 

This system of differential equations can be applied until 
the system dynamics when 1 2x x<  

In the moment when 1 2x x= , the observed vibro-impact 
system has one degree of freedom of motion and the 
appropriate differential equation has the form: 

 ( ) ( )1 3 1 2 3 1 2 3 0m x b b x c c x+ + + + =  (121) 

where 3x  is the coordinate from the moment when the 
hammer and the paper are in coupled contact.  

In order to reach the velocity immediately before the 
impact contact (stroke) of the material particle of the mass 
m (the hammer) with the paper, it is necessary to solve the 
differential equations (119) and (120). 

The general law of the system dynamics of the hammer 
before the coupled impact contact (stroke) by solving the 
differential equation (119) has the form 

 ( ) ( )1 1 1cos sint
p px t e A t B tκ ω ω−= +  (122) 

where: 1
2
b
mκ = , 2 1

1
c
mω = , 2 2 2

1 1pω ω κ= −  

By using the initial conditions of the motion of the 
hammer ( )1 0 0x =  and ( )1 100x x= , we determine the 

integral constants 10
1 1

1
0,

p

xA B
ω

= =  on the basis of which 

we get the law of the motion of the hammer before the 
coupled impact contact (stroke) on the paper. 

 ( ) 10
1 1

1
sint

p
p

xx t e tδ ω
ω

−=  (123) 

By solving the differential equation (121) we get the 
expression of the law of the motion of the paper just before 
the impact contact (stroke). 

 ( )
2
2

2

c tbx t e
−

=  (124) 

We consider that at the initial moment of time the paper 
did not move which means the coordinate is equal to zero, 

2 0x = . 
After determinating the expression for the law of 

motions of the material particle of the mass m (the hammer) 
and the paper and according to the impact contact (stroke) 
conditions, we can determine the time of the impact contact 
(stroke) and the impact contact (stroke) incoming velocity. 

The impact contact (stroke) conditions are 1 2x xδ+ = . 
Since the paper does not move, 2 0x =  and the time that 
passes before the first impact contact (stroke) is derived 
from the relation 

 ( ) 1
1 1

10
1 1

1
sinult

ul p ul
p

xx t e tκδ ω
ω

−= =  (125) 

Time 1ult  is determined by a numeric procedure or by 
using the existing programs for equations solving in order 
to obtain corresponding roots. 

In MatchCad we require the zero roots of the functions 

 ( ) 1
1 1

10
1 1

1
sin 0ult

ul p ul
p

xf t e tκδ ω
ω

−= − =  (126) 

After determining 1ult  (numeric value is determined 
from the first section of the zero line with the function 
graphic), we get the velocity of the material body 
immediately before the stroke 
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The expression determining time of the law of the 
motion of the observed vibroimpact system dynamics in a 
time interval after the coupling impact contact (stroke) 
when the hammer and the paper continue moving together 
until the moment when the mutual moving velocity is equal 
to zero 3 0x =  can be defined by solving the differential 
equation (121): 

 ( ) ( )1
3 3 3 3 3cos sint

p px t e A t B tκ ω ω−= +  (128) 

where: 

 1 2
1 2

b b
mκ += , 2 1 2

3
c c

mω += , 2 2 2
3 3 1pω ω κ= −  (129) 

According to the impact contact (stroke) conditions 
( ) ( ) ( )1 113 0 3 0, ul ulx x v x tδ −= = =  we determine the 

integrational constants in the form: 

 3A δ= , 
( )11 1

3
3

ul

p

x t
B

κ δ
ω

+
=  (130) 

and the expression for the functional time depenent 
coordinate of the motion of the observed one-dimensional 
single-mass vibro-impact system equals to 

 ( ) ( )11 1 1
3 3 3

3
cos sinult

p p
p

x t
x t e t tκ κ δ

δ ω ω
ω

− +⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (131) 

 This expression for the functional time dependent 
coordinate of the motion of the observed one-dimensional 
single-mass vibro-impact system can be apllied until the 
velocity is ( )3 0x t = . After that moment the further motion 
and dynamics of the hammer and the paper are 
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questionable. Furter analyses can be given only for special 
cases. 

Vibro-rammer (mechanical vibrators) 
Mechanical vibratorsa re used for strong induction of 

vibratory and vibroimpact effects machines. Fig.13 a* gives 
a kinematics scheme of the vibrohammer for implementing 
pillars and other building elements. 

  

   

( )t1ϕ  ( )t2ϕ  

1x

2x

1m  

2m  

    

a*                                                               b* 

Figure 13. Vibro-rammer, a* scheme, b* dynamical model [44] 

The principle of the vibro-rammer operation is as 
follows. The vibrohammer consists of two parts: vibromass 
(1) with vibrators (2) and the ramrod (3), and the lower 
plate which stands in hard connection with the 
column/pillar that is being rammed. The vibromass is 
connected to the plates by springs (5). Depending on the 
hardness and the initial regulation of the springs, the 
rammer and the anvil can be placed with a certain gap.  Due 
to the spinning of the non-balance – vibrator (2), a linear 
oscillatory motion of the vibromass is obtained, which is 
followed by the periodical compact contacts of the 
ramrod/rammer (3) and the anvil (6). 

A rough approximation of the vibro-rammer suitable for 
testing the vibroimpact process is a dynamical model 
shown in Fig.13.b* which represents a double-mass 
vibroimpact system with two striking pairs. This issue was 
studied by Регльскене В.Л. [44]. 

A double-mass vibroimpact system on the basis of 
forced oscillations has two degrees of movement freedom. 
The generalized coordinates are 1x  i 2x . 

The kinetic energy of the vibroimpact system is 

 2 2
1 1 2 2

1 1
2 2Ek m x m x= +  (132) 

The potential energy of the vibroimpact system has the 
form: 

 ( )2 2
1 2 1 2 2

1 122 2Ep c x x c x= − +  (133) 

Periodic two frequency force that initiates the impact 
contact of the rammer and the anvil is determined through 
the excitation: 

  ( ) ( ) ( )[ ]1 2 01 1 02 2cos cosF t X t X t F t F t= + = Ω + Ω  (134) 

 By using Lagrange’s equation of the second kind for 
the case of forced undamped oscillations of the double-
mass vibro-impact system, we get the differential equations 
of motion: 

( )1 1 1 1 2 01 1 02 22 cos cosm x c x x F t F t+ − = Ω + Ω   

 ( )2 2 2 1 2 2 22 0m x c x x c x− − + =  (135) 

Free oscillations of the double-mass vibroimpact action 
are solved first. 

The solution of the differential equations system is 
derived through the first and second particular integrals, 
e.g. 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
1 1 1 2 21 1 1 1cos cosx x x A t A tω α ω α= + = − + −  

 

( ) ( )

( ) ( ) ( ) ( )

1 2
2 2 2

1 2
1 1 2 22 2cos cos

x x x

A t A tω α ω α

= + =

= − + −
 (136) 

The frequency equation of differential equations system 
(135) has the form 

 ( ) ( )
( )

2
1 1 12

2
1 1 2 2

2 2
0

2 2
c m c

f
c c c m
ω

ω
ω

− −
= =

− + −
 (137) 

or by developing the determinant we get 

  ( )[ ]4 2
1 2 1 1 2 2 1 1 22 2 2 0m m m c c m c c cω ω− + + − =  (137*) 

The roots of the previous frequency equation are the 
square of the eigen frequency of free vibrations: 

( ) ( )[ ]

2
1,2

2
1 1 2 1 2 1 1 2 1 2 1 2 1 2

1 2

2 2 2 2 8
2

m c c c m m c c c m m m c c
m m

ω =

+ + ± + + +
=

(138) 

with the note that 1 2ω ω< . In order to determine the eigen 

amplitudes ( )1
1A  and ( )2

1A  we have to find the coefficients 
( )1
21η  and ( )2

21η . 

 ( )1 21
121

1
1 2

m
cη ω= −  and ( )2 21

221
1

1 2
m
cη ω= −  (139) 

In this way the particular integrals (80) from the 
homogeneous part of the differential equations have the 
form 

 ( ) ( ) ( ) ( ) ( )1 2
1 1 1 2 21 1cos cosx t A t A tω α ω α= − + −   

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2
2 1 1 2 221 1 21 1cos cosx t A t A tη ω α η ω α= − + − (140) 

By using the initial conditions of motion of the double-
mass vibro-impact system dynamics ( )1 0 0,x =  ( )2 0 0,x =  

( )1 100x x=  and ( )1 0 0x =  we get the integrational 

constants - eigen amplitudes ( )1
1A  and ( )2

1A  for the first and 
the second eigen circular frequency in the following form: 

    ( )
( )

( ) ( )

2
1 1021

1 2 1
1 21 21

xA η
ω η η

=
⎡ ⎤−⎣ ⎦

, ( )
( )

( ) ( )

1
2 1021

1 2 1
2 21 21

xA η
ω η η

=
⎡ ⎤−⎣ ⎦

 (141) 

while the angles of the phase difference are 1 2 2
πα α= =  

because 1 2tan tanα α= = ∞ . 
The expressions of the generalized coordinate of free 

oscillations of the observed double-mass vibro-impact 
system have the form 
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( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

2
1021

1 12 1
1 21 21

1
1021

22 1
2 21 21

cos 2

cos 2

h
xx t t

x t

η πω
ω η η

η πω
ω η η

= − +
⎡ ⎤−⎣ ⎦

+ −
⎡ ⎤−⎣ ⎦

 

 

( ) ( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

2
1 1021

2 121 2 1
1 21 21

1
2 1021

221 2 1
2 21 21

cos 2

cos 2

h
xx t t

x t

η πη ω
ω η η

η πη ω
ω η η

= − +
⎡ ⎤−⎣ ⎦

+ −
⎡ ⎤−⎣ ⎦

 (142) 

Forced oscillations of the observed double-mass vibro-
impact system. 

The expressions of the generalized coordinate of the 
forced oscillations of the observed double-mass vibro-
impact system have the form: 

1 1 1 2 2cos cosPx D t D t= Ω + Ω  

 2 1 1 2 2cos cosPx E t E t= Ω + Ω  (143) 

where the unknown coefficients - integrational constants 
1D , 2D , 1E , 2E , have the following forms: 

( )
( )( )

2
1 2 2 1 01

1 2 2 2
1 2 2 1 1 1 1 1

2

2 2 4

c c m F
D

c c m c m c

+ − Ω
=

+ − Ω − Ω −
 

( )
( )( )

2
1 2 2 2 02

2 2 2 2
1 2 2 2 1 1 2 1

2

2 2 4

c c m F
D

c c m c m c

+ − Ω
=

+ − Ω − Ω −
 

 
( )( )

1 01
1 2 2 2

1 2 2 1 1 1 1 1

2
2 2 4

c FE
c c m c m c

=
+ − Ω − Ω −

 (144) 

( )( )
1 02

2 2 2 2
1 2 2 2 1 1 2 1

2
2 2 4

c FE
c c m c m c

=
+ − Ω − Ω −

 

so the particular solutions of the two frequency forced 
oscillations of the observed double-mass vibro-impact 
system are: 

( )
( )( )

( )
( ) ( )

2
1 2 2 1 01

1 12 2 2
1 2 2 1 1 1 1 1

2
1 2 2 2 02

22 2 2
1 2 2 2 1 1 2 1

2
cos

2 2 4
2

cos
2 2 4

P
c c m F

x t
c c m c m c

c c m F
t

c c m c m c

+ − Ω
= Ω +

+ − Ω − Ω −

+ − Ω
+ Ω

+ − Ω − Ω −

 

  
( ) ( )

( )( )

1 01
2 12 2 2

1 2 2 1 1 1 1 1

1 02
22 2 2

1 2 2 2 1 1 2 1

2 cos
2 2 4

2 cos
2 2 4

P
c Fx t

c c m c m c
c F t

c c m c m c

= Ω +
+ − Ω − Ω −

+ Ω
+ − Ω − Ω −

 (145) 

The principle of movement of the observed double-mass 
vibroimpact system is: 
 

( ) ( ) ( )1 1 1h px t x t x t= +  

 ( ) ( ) ( )2 2 2h px t x t x t= +  (146) 

The impact contact condition is 

 ( ) ( )2 1x t x t=  (147) 

According to this condition the time 1ult  when the first 
impact contact (collision) will occur is determined by: 

 ( ) ( )1 12 1 0ul ulx t x t− = . (148) 

The speed just before the first stroke is determined when 
we put the time 1ult  in the pattern of the speed of the firs 
material particle of the mass 1m . 

 ( ) ( ) ( )1 1 1 11 1 1ul ul h ul P ulv x t x t x t= = +  (149) 

After the determination of the principle of system motion 
of the observed double-mass vibro-impact system, the time 
when the first impact contact (collision) occurs and the 
velocity just before the first impact contact (collision) can 
be individually derived for some particular examples as 
well as a more detailed analysis of the motion of the 
previously mentioned system dynamics after the impact 
contact (collision).  

Concluding remarks 
In the monograph [44] written by Ragulskene V. L.: 

stereo mechanical metods are presented applied to the 
solutions of the vibroimpact system dynamics. 

In references [4] and [6] writen by Bapat, C. N., 
Popplewell N. we can see a model of the helicopter 
presented in Fig.14. The title Several similar vibroimpact 
systems  also indicates that there are possibilities for 
considering mathematical analogy and phenomenological 
mapping of identification of same models applied in the 
different technological processes and principles of 
vibroimpact machine works. 

 

       

c  cb  b  

m  m

Mz  

1z  2z  

 

a*                                                            b* 

Figure 14. Helicopter a* and model of the rolling systems for airplane 
landing gears b*. 

Fig.14 represents a helicopter a* and a model of the 
rolling systems for airplane landing gears. The abstracted 
model of the vibro-impact dynamics of the landing gear 
rolling system (b*) is partly possible to be investigated as 
the models presented in Part 2.3. as well as in Part 2.4. or as 
two subsystems coupled. 



70 STEVANOVIĆ-HEDRIH,K., JOVIĆ S.: MODELS OF TECHNOLOGICAL PROCESSES ON THE BASIS OF VIBRO-IMPACT DYNAMICS  

 

     

          

c  

1m  

2m  

2z  

1z  

 

Figure 15. Vibroimpact platform a* and a model of the abstracted real 
system of the vibroimpact platform b*. 

In reference [32] written by Kobrinskii A.E. And 
Kobrinskii A.A., a vibroimpact platform presented in 
Fig.15.a* and a model of the abstracted real system of the 
vibroimpact platform b* are considered. We can see that 
the presented model is similar to an example presented in 
Part 2.1. with modifications enabling the motion of the 
impact limiter.  

It can be concluded that for the investigation of the 
vibro-impact system dynamics, it is very important to 
identify all dynamic singular processes in the no impact 
system dynamics which is a basis for the vibro-impact 
dynamics in civil engineering. It can be also seen that 
impacts introduce into system dynamics discontinuity 
expressed as alternations of the velocity directions and this 
jumps is strong nonlinearity of the vibro-impact system 
dynamics. 
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Modeli tehnoloških procesa na bazi vibroudarne dinamike 
U radu je predstavljena serija modela tehnoloških procesa, na kojima se baziraju realno izvedene inženjerske 
konstrukcije sa odgovarajućim modelima vibroudarne dinamike, koje su u osnovi njihovog funkcionisanja. Izabrani 
su karakteristični modeli, koji se javljaju u naučnim monografijama vodećih naučnika i istraživača iz oblasti 
vibroudarne dinamike i za svaki model su data osnovna analitička rešenja za bazne sisteme na kojima se zasniva 
odgovarajući model vibroudarne dinamike. Autori ovog rada sistematizovali su moguća analitička rešenja sa 
odgovarajućim početnim uslovima i uslovima udara, odnosno sudara za izabrane primere i obogatili ih nizom 
sopstvenih doprinosa vizuelizacijom u vidu faznih portreta, grafika kinetičke, potencijalne i totalne mehaničke 
energije sistema, kao i amplitudno-frekventnim i fazno’frekventnim krivim. Kao primeri za analizu karakteristične 
vibroudarne diname izabrani su modeli: vibroudarni čekić, ručno rotacioni čekić, štampač, vibronabijač. mehanizam 
točkova za sletanje aviona ili helikoptera i slično. Za svaki od apstrahovanih modela napisana je odgovorajuća 
diferencijalna jednačina, integro-differencijalna jednačina ili diferencijalna jednačina necelog (frakcionog) reda, 
odnosno sistem diferencijalnih jednačina, kojima su pridruženi početni uslovi i uslovi udara i prikazana metodologija 
odredjivanja kinetičkih parametara udara u trenutku, neposredno pre i posle, udara i prikazana vizuelizacija istih u 
faznoj ravni.  

Ključne reči: udar, udarno dejstvo, vibracije, vibroudarna dinamika, dinamika procesa, diferencijalne jednačine. 
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Модели технологических процессов на основе виброударной 
динамики 

В настоящей работе представлена серия моделей технологических процессов, на которых базируются реально 
выведённые инженерные конструкции со соответствующими моделями виброударной динамики, 
находящиеся в основании их функционирования. Избраны характерные модели, появляющиеся в научных 
монографиях ведущих-передовых учёных и исследователей из области виброударной динамики и для каждой 
модели даны основные аналитические решения для базисной системы, на которых обосновывается 
соответствующая модель виброударной динамики. Авторы настоящей работы систематизировали возможные 
аналитические решения со соответствующими начальными условиями и условиями удара, т.е. столкновения 
за избраные примеры и обогащали их рядом собственных выходов визуализацией в виде фазовых портретов, 
графиков кинетической, потенциальной и совокупной механической энергии системы, подобно и 
амплитудно-частотным и фазово- частотным кривым.  Примерами для анализа характерной виброударной 
динамики избраны модели: виброударный молоток, ручной вращающийся молоток, вибротрамбовка, 
типограф, механизм колёс для посадки самолёта или вертолёта и.т.п. Для каждой из  отвлечённых моделей 
написано соответствующее дифференциальное уравнение, интегродифференциальное уравнение или 
дифференциальное уравнение неполного (фракционного) порядка, т.е. система дифференциальных 
уравнений, к которым присоединены исходные условия и условия удара и показана методология определения 
кинетических параметров удара в моменте непосредственно перед и после удара и показана их визуализация 
в фазовой плоскости. 

Kly~evwe slova: Удар, ударное действие, колебания (вибрации), виброударная динамика, динамика 
процесса, дифференциальные уравнения.  

Modèles des processus technologiques basés sur la dynamique 
vibratoire impact 

Une série de modèles des processus technologiques servant de base pour les constructions réelles faites avec les 
modèles correspondants de la dynamique vibratoire impact qui sont à la base de leur fonctionnement sont présentés 
dans ce papier. On a choisi les modèles caractéristiques qui figurent dans les monographies des savants renommés et 
des chercheurs dans le domaine de la dynamique vibratoire impact et on a donné les solutions analytiques de base 
pour les systèmes basiques sur lesquels est fondé le modèle correspondant de la dynamique citée. Les auteurs de cette 
étude ont systématisé les solutions analytiques possibles avec les correspondantes conditions initiales d’impact, 
concernant la collision pour les exemples choisis, et les ont enrichis par une série de propres contributions à l’aide de 
la visualisation en forme des portraits de phase , de graphique de cinétique potentielle et totale de l’énergie mécanique 
du système, ainsi que par les courbes amplitude fréquence et courbes phase fréquence. Comme exemples pour 
l’analyse des propriétés de la dynamique vibratoire impact  on a choisi les modèles suivants : marteau vibratoire 
impact, marteau rotatif à main, le train d’atterrissage des avions et des hélicoptères, etc. Pour chaque modèle cité on a 
écrit l’équation différentielle correspondante ou l’équation différentielle fractionnelle où l’on a ajouté les conditions 
initiales  et d’impact et on a exposé la méthodologie pour la détermination des paramètres cinétiques de l’impact juste 
avant, pendant et après l’impact et on a présenté leur visualisation dans le plan de phase. 

Mots clés: impact, effet d’impact, dynamique vibratoire impact, dynamique de processus, équations différentielles. 

 
 




