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Survey of the Geometric Approach to the Modern Control Theory 
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The geometric approach is a mathematical concept developed to improve the analysis and synthesis of linear 
multivariable systems. In this article we summarized the foundations for the geometric approach to both linear and 
singular systems. A mathematical introduction to the controlled and conditioned invariant subspaces has been 
presented. Additional characteristic subspaces were introduced, such as maximum-controlled and minimum-
conditioned ones, as well as output-null invariant subspaces. The solution of the disturbance localization problem with 
respect to the system stability was described. The mathematical and the geometric tools applied in the control system 
theory were presented. The geometric approach was systematically applied to the controllability analysis and the pole 
assignment procedure. The existence and uniqueness of the solutions for singular systems was separately analyzed 
due to specific system characteristics which are a consequence of the singular matrix in the state space model. The 
purpose of the article was to give a comprehensive overview of the geometric approach to the control theory. 
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Introduction 
HEREVER the classic theory of automatic control is 
not applicable, scientists search for a new technique 

to solve problems. They define new principles and develop 
new mathematical theories. As a result we get new aspects, 
approaches, and theories. In this article we have described 
the genesis of the geometric theory and some of its 
significant results. New results have been introduced as 
well, based on the previous research Buzurovic, Debeljkovic 
(2007). 

What is the geometric theory? Many authors consider the 
notion of geometry in the system theory as mutual 
characteristics of the matrix pencils (A, B) or (A, C) for 
linear systems or (A, E) for singular systems. Other authors 
consider the geometric aspect as a study of characteristic 
subspaces of a system. Some authors accept this notion 
intuitively without adopting any specific definition. In 
Buzurovic (2000) the descriptive definition of the geometric 
approach to linear singular systems was presented. The 
geometric approach (or aspect) should be understood as an 
approach to a study of the singular systems the purpose of 
which is to determine and investigate characteristic 
subspaces which play a crucial role in the analysis of the 
matrix pencils (A, E). 

In the following part, we present the origin and the basic 
principles of the geometric theory for linear and linear 
singular systems as well. To investigate the geometric 
approach to both the linear and the singular systems it is 
necessary to understand the linear algebra and the matrix 
calculus. The basic literature for that is given by 
Gantmacher (1977.a.b) and Gelfand (1950). It is suggested 
to understand the subspaces theory, linear transformations, 
singular linear transformations in variant subspaces, dual 

subspaces as well as generalized pseudo-inversion (Drasin 
and Moore- Penroso inversions), Campbell (1980.a), 
Campbell (1980.b). Moreover, it is recommended to be 
familiar with the mathematical principles of the singular 
decompositions, matrix and norms of subspaces, 
isomorphism and matrix projection in order to analyze 
dynamics of singular systems, Basile, Marro (1992), 
Wonham (1995). Several definitions of the invariant and 
almost invariant subspaces are given in this article, but 
broader understanding of these notions is of benefit. The 
mathematical principles of the geometric concept could be 
found in Debeljkovic, Buzurovic (2007).  

The geometric approach was first discussed in the 
articles published by Basile, Marro (1969.a) and Wonham, 
Morse (1970). They discovered that dynamic behavior of 
the time invariant linear control systems could be 
investigated based on characteristics of the system invariant 
subspace of the matrices. As a result, the system behavior 
could be predicted and the solution of many control 
problems could be tested by investigating characteristics of 
the subspaces described. The basic idea of this approach 
was the application and calculation of subspaces on the 
computers using algorithms developed for that purpose. 
With all this in mind, it was shown in the literature that the 
geometric approach can be used to solve a variety of 
problems, including finding a control law for systems with 
feedback, observability problems, disturbance localization, 
design of the observers, control and tracking, robust 
control, etc.  

It can be concluded that the geometric approach was a 
mathematical concept developed in order get a better 
understanding and to give better insight into the most 
important characteristics of the linear system dynamics. It is 
mostly represented in the state space domain and used to 
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connect characteristics of single and multiple transfer 
systems. In the literature, the geometric approach did not 
always rely on algorithms and computer applications, but it 
should be kept in mind that it was the basic idea when this 
approach first appeared. The geometric approach was partly 
or completely unclear due to different notations and 
definitions of the basic notions. One of the reasons for 
making this approach hardly acceptable was using 
unnecessary complicated mathematics introduced by some 
researchers.  

In the following part the geometric concept was applied 
to investigate the behavior of linear systems. The extension 
of the theory to the linear singular system has been 
presented as well. 

Literature review of the linear systems 
After publishing the first paper on this topic by Basile, 

Marro (1969.a) the same authors together with Laschi 
published further results in five papers (three in Italian, two 
in English) applying the geometric theory of Basile, Marro 
(1969.b.c). They found solutions for disturbance resolving 
and observability with unknown input. The first paper 
published by them introduced controlled and controlled-
invariant subspaces. The same authors developed stability 
criteria using finite and half hidden-condition subspaces 
which make solving stability problems possible. These two 
authors introduced robust controlled subspaces and applied 
the described subspaces in computer science. In the books 
Basile, Marro (1992) and Wonham (1985), new algorithms 
for dual subspaces were introduced. Wonham (1985) is 
probably the most comprehensive material for the 
geometric approach application to the linear control system. 
Unfortunately, this book does not deal with singular 
systems.  Wonham and Morse applied the algorithm for 
calculation of the maximal controlled invariant subspaces to 
determine system motion. They solved the coupling 
problem for mutual independent control, Wonham, Morse 
(1970). In the Wonham (1985) he used term (A, B) invariant 
subspace instead of AB controlled invariant subspace. Until 
that moment, the latter was defined on a different way. 
Because of this, many authors have considered Wonham 
responsible for confusion in the terminology. The condition 
invariant dual object was named AC invariant or CA 
invariant. As a consequence, the system of the matrices 
notation was restricted to (A, B, C). In fact, it is considered 
that the controlled invariant subspace is an element of the 
family the elements of which belong to the controlled 
invariant set. The theory of controlled and almost 
conditioned invariant subspaces appeared in the 80s, 
Willems (1981, 1982). This theory solved control problems 
for systems with high gain.  

Literature review of the singular system 
The application of the concept to the singular system 

started in the beginning of the 80s and reached its peak 
during the 90s. Yip, Sincovec (1981) extended the 
geometric concept given in Wonham (1985) to the singular 
system. The system that they analyzed was not decomposed 
to the linear part and algebraic equations but it was treated 
as a compound system. The authors analyzed the existence 
of solution, controllability and observability of singular 
systems. Grassman (1982) suggested the geometric 
approach to the solution of the optimization problem in the 
singular system. As a result, he determined system 
boundaries where the motion was optimal. An outstanding 
contribution to this field was made by Cobb. His articles 

(1983.a), (1984.b) became a milestone for the geometric 
approach to the singular systems. The author investigated 
optimal control problems for singular systems without 
constraints to the initial conditions. As a result he 
introduced an algorithm for the system gains which 
eliminated impulse behavior. Also, he investigated the 
influence of the initial conditions on system dynamics. 
Cobb (1984) is maybe the most important article in the 
geometric theory. He investigated controllability and 
observability. As a result, he presented the mutual analysis 
of the qualitative and the geometric approach to the singular 
system with non-consistent initial conditions. Lewis (1984) 
discussed the geometric approach to digital singular system 
decomposition. He mathematically described subspaces for 
initial and finite distributed systems of the matrix pencils. 
The article Malabre, Kucera (1984) introduced geometric 
characteristics of the system with infinite zeros. The authors 
investigated the existence of solutions for the linear 
systems. Malabre (1987) used the previous results to extend 
analyses to singular systems. He defined its invariant 
subspaces. Malabre, Bonilla (1993) showed geometric 
characteristics of the matrix triple (E, A, B). It means that 
they analyzed system with non-zero initial conditions. 
Furthermore, they defined the minimal dimension of the 
system. Garcia, Malabre (1995) showed that the coupling 
problem column by column and stability system problem 
with disturbances analyzed on the same system implied a 
general solution if and only if each system has an 
independent solution itself. The result was obtained by the 
geometrical approach. In the article Malabre et al. (1998) 
the new methodology for pole assignment for singular 
systems was developed using the geometric method. The 
same method was applied later to the linear system. Perdon 
(1989) analyzed the influence of the condition invariant 
sub-module of the singular system with time delay to the 
observer design problem. Wyman et al. (1989) introduced 
controllability indices together with observability of 
singular systems. Both techniques, algebraic and geometric 
one, were applied. As a result, they gave the geometric 
algorithm for the observability subspace calculation. 
Schrader, Wyman (1995) continued with investigation of 
the controllability for singular systems. They presented the 
geometric condition for system controllability. In the 
Shyman, Zhou (1987) and Zhou, Shyman et al. (1987) the 
authors presented the methodology for linear singular 
system synthesis using proportional and differential 
feedback with constant gain. The second article analyzed 
geometric conditions for the controllability and 
observability of the systems. Their analyses included 
procedure of the pole assignment. Undoubtedly, an 
outstanding contribution to the geometry of the singular 
system was performed by authors Ozcaldiran, Lewis, 
Syrmos and Karamancioglu. They published most of their 
articles during the 80s and 90s. The article Ozcaldiran, 
Lewis (1987) introduced the extension of the pole 
assignment concept to the linear singular systems using the 
geometric approach. The method for the system eigenvector 
calculation was introduced. In the Lewis, Ozcaldiran (1989) 
a definition of the output-null subspace was introduced. The 
relationship between the subspaces mentioned to the other 
subspaces of the singular systems was defined. The 
invariant subspaces definitions together with the existence 
of the solutions were described in the Karamancioglu, 
Lewis (1990). Ozcaldiran, Lewis (1990) analyzed the 
observability problem for the singular systems. They 
derived geometric conditions for the three observability 
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classes: effective observability, observability with full and 
initial conditions, and state trajectory observability. Lewis, 
Syrmos (1991) analyzed the effect of the feedback using the 
geometric approach. The authors solved the problem of the 
assignment for finite and infinite zeros. They concluded 
equivalency between pole assignment for the reachable 
systems and the systems with feedback. Decomposition of 
the singular systems using direct sums was introduced in 
Ozcaldiran (1991).  

In the following part the latest articles in this field will 
be discussed briefly. Dam et al. (1997) applied the 
geometric approach to the constraint systems where the 
disturbances influenced singularity of the mathematical 
models. The article Ishihara, Terra (2001) introduced 
controllability and observability analyses for the singular 
systems with rectangular matrices. The necessary and 
sufficient conditions for the feedback design were 
presented, the suggested feedback eliminated the influence 
of the impulse to the dynamic behavior of the system. Yu, 
Wang (2002) analyzed geometric characteristics of 
decentralized singular systems under the influence of local 
feedback. The authors used the geometric approach for 
controllability and observability investigation. He (2003) 
introduced the geometric decomposition of the singular 
systems and the structure and dynamical behavior of 
redundant systems. The geometric approach was applied to 
the singular stochastic system, Germani et al. (2004). Xie, 
Wang (2004).  They presented several criteria for the 
investigation of different controllability types. The new 
reachability conditions for the special classes of the 
singular systems were presented in Meng, Zhang (2006).  

Results in the field of the linear systems 

Preliminaries 
For the linear transformation it is not always possible to 

introduce restrictions of the vector spaces ℜ and ℜ1 
because the vectors from ℜ1 can be defined only under 
specific conditions. That characteristic is described by the 
following definition.  

Definition 1: Denote A as a linear transformation 
defined under the vector subspace ℜ. Subspace ℜ1 of the 
space ℜ is called invariant subspace in relation to A if  x∈ 
ℜ1 leads to Ax∈ ℜ1. 
Gantmacher (1977.b). 

A similar way to express the previous definition is given 
below. 

Definition 2: The subspace S of vector space ℜ is called 
invariant space of the linear transformation A over S if and 
only if AS ⊆ S. 
Gantmacher (1977.b) 

Definition 3: For the subspace v of X = ℜn is said to be 
A invariant if AV ⊂ V. 
Gantmacher (1977.b) 

The A-invariant subspace plays an important role in 
analyses of linear systems with zero input. Consider the 
system: 

 0( ) ( ), (0)t A t= =x x x x� , (1) 

Where the vector space is x(t) ∈ X = ℜn, x0 ∈ X, X and X is 
the column subspace of the space vector. A je n × n is the real 
matrix. Assume that V is the A-invariant subspace. If the x(t) 
∈ V it means that speed )(tx� ∈ V, which implies that the 

state space of the system remains in the subspace V. 
Lemma 1: Let the V  ⊂ X. If for the system (1) with 

null input  x0 ∈ V is fulfilled, it implies that x(t) ∈ V, for 
each t ≥ 0 if and only if V is A-invariant subspace. 
Buzurović (2000) 

Denote by V an A-invariant subspace and denote by this 
1{ , , }ne e" , base of any vector subspace which fulfils the 

following 

 span 1{ , , }ve e" = V, v ≤ n, (2)  

with the coordinate transformation defined by rule 3.3: 

 1
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Now it can be concluded that with respect to new base, 
the system can be described as  
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It is clear if 20 0x =� , then 2 ( ) 0x t =�  for any t ≥ 0, that is 
x0 ∈ V which implies x(t)∈V for any t ≥ 0, which is the 
statement at Lemma 1. 

Let V be an A-invariant subspace in X. 
Definition 4: Restriction A⎟V of the linear 

transformation A: X → X (or n × n real matrix A) on the 
subspace V is the linear transformation from V to V 
denoted by v → A v for each v ∈ V. 
Gantmacher (1977.b) 

Definition 5: For any x ∈ X,  x + V = {x + v : v ∈ V} is 
called difference (coset) of x modulo V. 
Gantmacher (1977.b) 

Coset represents a hyper plane with the point x on it. The 
set of the differences by modulo V is the vector subspace 
so-called factorized subspace (or denoted subspace) and it 
is written as X /V.  
Definition 6: Inductive transformation A⎟X /V is a linear 
transformation defined as: x + V → Ax + V, x ∈ X. 
Basile, Marro (1992). 

Definition 7: A-invariant subspace V is internally stabile 
if 11

~A  from the equation (4) is stabile, (all eigenvalues have 
a negative real part) or equivalent if A⎟ V is stabile.  
Basile, Marro (1992). 

Consequently, x(t) converges to the null state when t→∞ 
whenever x0 ∈ V if and only if V is internally stabile. 

Definition 8: A- invariant subspace V is externally 
stabile if 22

~A  from equation (4) is stabile, or equivalently, 
if A⎟X /V is stabile.  
Basile, Marro (1992). 

It means that x2(t) converges to zero as t→ ∞, that is x(t) 
converges to V when t→ ∞, if and only if V is externally 
stabile. It means that eigenvalues of the matrices 11

~A  and 

22
~A are independent on specific choice of the coordinates as 

long as equation (2) is satisfied. 
Now let us consider a continual invariant linear system 

described as ∑ = ],,[: CBA  where  
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 0( ) ( ) ( ), (0)
( ) ( )i

t A t B t
t C t

= + =
=

x x u x x
x x
� , (5) 

where x(t) ∈ X := ℜn, u(t) ∈ ℜm and xi(t) ∈ ℜp are the 
column system state input and the system output during the 
time respectively, and t ≥ 0, a x0(t) ∈ ℜ is initial state. The 
matrices A, B and C are system matrices of the constant 
dimensions. Assume that the function u(t) is a continual 
function. The system with feedback is investigated. The 
equation of feedback is given by:  

 u(t)=Fx(t), (6) 

so eq. (5) becomes 

 0( ) ( ) ( ), (0)t A BF t x x= + =x x�  (7) 

where F m× n is real matrix.  
Some invariant subspaces are responsible for the system 

reachability, controllability and observability. 
Definition 9: It is said that the state x~ of system (5) is 

reachable (controllable) if there is a control which drives 
the system zero state to the state x~  ( x~ to the zero state) at 
the finite time i.e. if  control u(t), 0 ≤ t ≤ tf  exists so that is  
x(0) = 0 (or respectively, x~ ) and if x(tf) = x~  (or 
respectively 0) for any 0 < tf < ∞.  

The set of the reachable (or controllable) states forms the 
subspace which is called reachable (controllable) subspace 
denoted by Vdost (Vupr). For n × n real matrix M and 
subspace I ⊂ X it can be written: 

 R (M, I):= I + M I + … + Mn-1 I. (8) 

In the following part, the characteristics of reachable 
(controllable) subspaces are presented.  

Theorem 1: For the continuous time system 
: [ , , ]A B C=∑  it is satisfied  

 Vdost=R (A, R(B))=R[B AB… A n-1B]=Vupr. (9) 

Corollary 1: Subspace Vdost= R(A, R(B)) is an A-
invariant. Also, it is (A+BF)-invariant subspace for any m × 
n real matrix F. 
Basile, Marro (1992). 

Definition 10: For the matrix pencil (A, B) or the system 
∑ = ],,[: CBA  is said to be reachable (controllable) if and 
only if Vdost=X(Vupr=X).  

Set Λ:={λ1 … λn} of the complex numbers is called a 
symmetric set for any λi which is not a real number, λj = λi

* 
for any j=1,…, n where λi

* is complex conjugate value of λi 
. Denoting σ(A+BF) as a spectrum i.e. eigenvalues set of 
the (A+BF), the following theorem can be introduced: 

Theorem 2: For any symmetric set Λ:={λ1, …, λn} of the 
complex numbers λ1, …, λn, exists m × n real matrix F with 
characteristics σ(A+BF) = Λ if and only if the matrix pencil 
(A, B) is reachable (or controllable). 

Corollary 2: Let the Vdost = r ≤ n . For any symmetric set 
Λ:={λ1, …, λn} of the complex numbers λ1, …, λn, exists m 
× n matrix F with the characteristics σ(A+BF⎟ Vdost) = Λ.  
Proof: The previous equation can be understood as a coor-
dinate transformation using A-invariant subspace of Vdost, 
equation (4). 

The matrix pencil (A, B) is said to be potentially stabile 
if the real matrix F exists with the characteristics that the 
pencil (A+BF) has negative real parts.  

Consequence 1:  Matrix pencil (A, B) is potentially 
stabile if and only if Vdost is externally stabile. 

Definition 10: The state x~  of system (6) is said to be 
unobservable if it produces zero output of the system 
without input that is if x(0) = x~ and u(t) = 0 for any t ≥ 0.  

The set of the unobservable state forms subspace called 
unobservable subspace. This subspace is denoted by Vneos. 

Theorem 3: The unobservable subspace has the 
following characteristic: 
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( ) ( )
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⎢ ⎥
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∩ ∩

#

…

N N

N N

. (10) 

Basile, Marro (1992). 
Corollary 3: The subspace Vneos is A-invariant. It is also 

(A+GC)-invariant for any n × p real matrix G.  
The matrix pencil (A, C) is said to be observable if it is 

Vneos =0. The matrix pencil (A, C) is said to be detectable if 
(A+GC) is stabile for the real matrix G. The following 
theorem is applied to observability and detectability 
investigation. 

Theorem 4: For any symmetric set Λ:={λ1 … λn} of the 
complex numbers  λ1, …, λn, there exists  n × p real matrix 
G with the characteristics σ(A+GC) = Λ if and only if the 
matrix pencil (A, C) is observable.  
Basile, Marro (1992). 

Consequence 2: The matrix pencil (A, C) is detectable if 
and only if Vneos is internally stabile. 

For the calculation of the subspaces it is convenient to 
use the following formulas:  

Lemma 2: Let V, V1, V2, V3 ⊂ X. Then,V ⊥:={x∈ X: 
x’v = 0, ∀  v∈V }. 
- (V ⊥)⊥= V, 
- (V1 +V2)⊥= V1

⊥ ∩V2
⊥, 

- (V1 ∩V2)⊥= V1
⊥ + V2

⊥, 
- A(V1 +V2)= AV1

 + AV2, 
- A(V1  ∩V2) ⊂ AV1

 ∩ AV2, 
- (A1

 ∩ A2) V = A1V + A2V, where A1
 and A2 are n×n ma-

trices, 
- (AV ⊥) =A-1 V ⊥, 
- V1 + (V2 ∩ V3)⊂ (V1 +V2) ∩ (V1 +V3), 
- V1 ∩ (V2 + V3)⊃ (V1 ∩V2) + (V1 ∩V3), 
- V1∩(V2+V3)=V2 +V1 ∩ V3, uz V1 ⊃ V2. 
Hamano (1996). 

(A, R(B)) - controlled and (A,N(C)) - conditioned 
invariant subspaces and duality  

In this part, the new subspaces with relation to system 
(5) and their characteristics are investigated. According to 
Lemma 1, for linear system (1) with zero input A-invariant 
subspace there is a subspace with a characteristic that if any 
system trajectory starts from that subspace it stays there. 
However, for linear systems with non-zero input A-
invariability does not guarantee the previous characteristic. 
Let V ⊂ X. Based on the previous, the new result can be 
presented. 

Theorem 5: The motion of the system is constrained in 
the subspace V, if and only if )(tx� ∈V. 
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Proof: To be fulfilled )(tx� ∈V for any x(t) ∈ V, it is 
necessary that )()()()( tvtBtAt =+= uxx� ∈V, and that  

)()()( tBtvtA ux −=  for some u(t) and v(t), which implies 
AV⊂V+R(B). The opposite is fulfilled as well. The similar 
result is presented in the following lemma. 

Lemma 3: Consider the system given by equation (5). 
For every system state x0 ∈V, allowable control u(t) exists, 
t ≥ 0, for the corresponding system state x(t) ∈V for each  t 
≥ 0 if and only if AV ⊂V + R(B).(11)  
Basile, Marro (1992). 

The subspaces which fulfill equation (11) play important 
roles in the geometric approach and they will be analyzed 
further on. 

Definition 11: The subspace V is said to be (A,R(B))-
controlled invariant (subspace) (term (A, B)-invariant 
subspace is also used), if and only if it is A-invariant 
modulo R(B), i.e. if and only if equation  (11) is satisfied. 
Wonham (1985), Wonham, Morse (1970). 

Important characteristics of the previously described 
subspace are given in the following theorem. 
Theorem 6: Let V  ⊂ X. Then m× n real matrix F exists 
with the characteristic 

 (A+BF)V ⊂V (12) 

if and only if the subspace V is (A,R(B))-controlled 
invariant subspace. 
Wonham, Morse (1970). 

Corollary 4: If the control law (6) applies to system (5) 
with the corresponding state equation (7), having Lemma 1 
in mind, it can be concluded that if subspace V is (A, 
R(B))-controlled invariant, then matrix F exists, so x(t) ∈ 
V, for every t ≥ 0, which ensures x0 ∈V.  

Definition 12: The subspace S of X is said to be (A, 
N(C))-conditioned invariant (subspace) if and only if: 

 A(S + N(C)) ⊂S. (13) 

Basile, Marro (1969). 
Between controlled-invariant and conditioned-invariant 

subspaces the duality relation exists in the following sense. 
The calculation of the orthogonal complement from both 
sides of equation (13) leads to the conclusion that the 
equation is equivalent to { A(S + N(C))}⊥ ⊃ S ⊥, which is 
further equivalent to A’-1(S⊥ + R(C’)) ⊃ S⊥, that is also 
equivalent to A’S⊥ ⊂ S⊥ + R(C’). Similarly, equation (11) 
is fulfilled, if and only if A’(V ⊥∩ N(B)’) ⊂ V ⊥. Based on 
that, it can be stated: 

Lemma 4: Subspace S is (A, N(C))-conditioned 
invariant if and only if subspace S⊥ is (A’, N(C)’)-
controlled invariant. Also, the subspace V is (A, R(C))-
controlled invariant if and only if V ⊥  is (A’, N(C)’)-
conditioned invariant. 
Basile, Marro (1992). 

Having the previous lemma in mind, Theorem 6 can be 
expressed in the following way. 

Theorem 7: Let S  ⊂ X. Then, n× p real matrix G exists 

 (A+GC)S ⊂S (14) 

if the subspace S is (A, N(C))-conditioned invariant 
subspace. 
Basile, Marro (1969). 

The subspace can be both controlled and conditioned at 
the same time. 

Lemma 5: Let K  be m× p real matrix fulfilling (15): 
(A+BKC)V ⊂V.(15) 

The subspace V is both (A, R(B))-controlled invariant 
and (A, N(C))-conditioned  invariant subspace, if and only 
if (15) is satisfied. 
Basile, Marro (1992), Hamano (1996). 

Algebraic properties of controlled- and conditioned-
invariant subspaces 

The details of algebraic properties of subspaces can be 
found in Basile, Marro (1992).  

Lemma 6: If V1 and V2 are (A, R(B))-controlled 
invariants, then V1 + V2 is (A, R(B))-controlled invariant. 
Basile, Marro (1992). 

Corollary 5: Intersection of the two (A, R(B))-controlled 
invariant subspaces does not have to be  (A, R(B))-
controlled invariant.  

Lemma 7: Let V1 and V2 be (A, R(B))-controlled 
invariant. Then the m× n real matrix F exists, which 
fulfills: 

 (A+BF)Vi ⊂Vi,  i = 1,2 (16) 

if and only if V1 ∩ V2 is (A, R(B))-controlled invariant.  
Basile, Marro (1992). 

Because of duality the following can be stated.  
Lemma 8: If S1 and S2 are (A, N(C))-conditioned 

invariants, then it is S1 ∩ S2. 
Basile, Marro (1992). 

Corollary 6: Addition of the two (A, N(C))-conditioned 
invariant subspaces does not have to be (A, N(C))-
conditioned invariant.  

Lemma 9: Let S1 and S2 be (A, N(C))-conditioned 
invariants. Then the n× p real matrix G exists, which 
fulfills 

 (A+BC)Si ⊂Si,  i = 1,2 (17) 

if and only if S1 + S 2  is (A, N(C))-conditioned invariant.  
Basile, Marro (1992). 

Maximum-controlled and minimum-conditioned invariant 
subspaces 

Let K ⊂ X and let the set of (A, R(B))-controlled 
invariant subspaces is contained in K. According to Lemma 
6 the set of (A, R(B))- controlled invariant subspaces is 
closed to addition. As a result, the set of (A, R(B))- 
controlled invariant subspaces contained in K has the 
maximum element i.e supremum. This element is a unique 
subspace which contains any other (A, R(B))- controlled 
invariant subspace inside K. That subspace is called 
maximum (A, R(B))-controlled invariant subspace. That 
subspace is denoted by Vmax (A, R(B), K).  

Similarly, let I ⊂ X . Taking Lemma 8 into account, the 
set of (A, N(C))-conditioned invariant subspaces which 
contain I has a minimum element i.e infinum. This unique 
element contained in all (A, N(C))-conditioned invariant 
subspaces is called minimum (A,N(C))-conditioned 
invariant subspace. This subspace is denoted by 
Smin(A,N(C),I).  

The subspaces Vmax(A,R(B),K) and Smin(A,N(C), I) 
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can be calculated in the finite number of iterations n. The 
problem of solution existence can be solved by 
investigating existence and by calculating these subspaces. 
In the following part, the algorithm for calculation of 
subspaces is given, Basile, Marro (1992). 

The algorithm for the calculation of Vmax(A,R(B),K): 

 Vmax (A, R(B), K) = VdimK
  (18) 

Where 

 V0 := K (19) 

 Vi :=K∩ A-1(Vi-1 + R(B)), i =1, ..., dimK. (20) 

Both the proof of the presented algorithm and the algorithm 
for the matrix F calculation can be found in Basile, Marro 
(1992), Wonham (1985).  

Corollary 7: Consecutive subspaces have the following 
properties: 

V1 ⊃ V2 ⊃ ... ⊃VdimK
 . 

1. If Vl  = Vl+1, then Vl  = Vl+1, = ... VdimK
 . 

The algorithm for the calculation of Smin(A,N(C), I): 

 Smin (A, N(C), I) = Sn – dim (21) 

where 

 S0 := I (22) 

 Si := I+A(Si - 1∩N(C)),  i =1, ...,n – dim I. (23) 

Corollary 8: Consecutive subspaces have the following 
properties: 
2. S1 ⊂ S2 ⊂ ... ⊂ Sn – dim I. 
3. If  Sl  = Sl+1, then Sl  = Sl+1, = ... Sn – dim I. 

Hamano (1996). 

Self-constrained (A, R(B)) - controlled invariant and (A, 
N(C)) - conditioned invariant subspaces. Constrained 
reachability and observability 

Let the subspace V0 beV0 ⊃(A, R(B))- controlled 
invariant subspace contained in the subspace K. Let us 
consider all possible system (5) trajectories with the 
variable control vector. State trajectories started from x0 ∈ 
V0 and they belong to the subspace K. There exists at 
least one control for which state trajectories stay into 
the V0 during the system motions. The question is if there 
is control which influences the system n such a way that all 
trajectories leave subspaceV0, but in the same time stay 
inside K. Now, we analyze (A, R(B))-controlled invariant 
subspace, which is contained in the K. Assume that it is not 
possible to find control which transforms any system state 
from V out of that subspace. If the state trajectory for any 
particular case leaves the subspace V, then it can be 
assumed that the state has to leave the subspace K. The 
subspace which is (A, R(B))-invariant contained in K has 
the following property: 

 Vmax(A, R(B), K) ∩ R(B)⊂ V. (24) 

Definition 13: The (A, R(B))- controlled invariant 
subspace V, contained in K is said to be self-constrained 
with respect to K if and only if for that subspace equation 
(24) is satisfied. 

Basile, Marro (1992). 
Corollary 9: The left side of equation (24) represents the 

influence of the control on the system at any specific time 
when the system state stays inside the subspace K. 

An important property of the subspaces defined in the 
described way is that for each K at least one control low 
can be found which will guarantee existence of the self-
constrained (A, R(B))- controlled invariant subspaces with 
respect to K. More precisely:  

Lemma 10: Let F be m × n real matrix which satisfied 
the following  

 (A+BF)Vmax(A,R(B),K)⊂Vmax(A,R(B),K). (25) 

Then, any self-constrained (A, R(B))- controlled 
invariant subspace V with respect to K satisfied the 
equation 

 (A+BF)V ⊂ V. (26) 

It can be proved that the set of the self-constrained (A, 
R(B))-controlled invariant subspaces in K is closed with 
respect to the space intersection. Furthermore, if the V1 are 
V2 self-constrained (A, R(B))-controlled invariant 
subspaces  with respect to K , than it is also V1 ∩ V2. 
Because of the previous fact, V has a minimum element 
which is called minimum self-constrained (A, R(B))- 
controlled invariant subspaces, denoted by Vog,min(A, R(B), 
K). The relation which connects subspace 
Vog,min(A,R(B),K) with subspaces Vmax (A,R(B),K) and 
Smin (A,K,R(B)) is given in the following lemma.  

Theorem 8:  

Vog,min(A, R(B), K)= 

 Vmax(A,R(B),K)∩Smin(A,K ,R(B)) (27) 

The proof can be found in Basile, Marro (1992). 
The minimum self-constrained (A, R(B))- controlled 

invariant subspace is closely related to the characteristic of 
constrained reachability.  

Definition 14: The set of all state trajectories which can 
be reached from the initial state using the system 
trajectories constrained in K is said to be reachable (or 
reachable subspace; because a set forms a subspace) inside 
the subspace K or the maximum (A, R(B))- reachable 
subspace K. 

This subspace is denoted by Vdost(K). It is (A, R(B))-
control invariant. 

Lema 11:  

 Vdost(K) ⊂ Vmax (A, R(B), K) ⊂ K (28) 

 Vdost(Vmax(A, R(B), K)) = Vdost(K). (29) 

Basile, Marro (1992).  
Theorem 9: Let F be the real matrix which satisfies (A 

BF)Vmax⊂Vmax, where Vmax:=Vmax (A,R(B),K). Then 
Vdost(K)=Vog,min(A,R(B),K)= 

 R(A+BF,R(B)∩ Vmax). (30) 

Corollary 10: The expression given by equation (30) 
represents the minimum A + BF invariant subspace which 
contains R(B)∩Vmax.  
Basile, Marro (1992). 
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Definition 15: The (A, N(C))-conditioned invariant 
subspace S, which contains I, is called self-hidden subspace 
with respect to I, if and only if 

 S ⊂ Smin (A, N(C), I)+N(C). (31) 

Lema 12: Let G be n×p real matrix which satisfies  

 (A+GC)Smin(A,N(C),I)⊂Smin(A,N(C),I). (32) 

Then, any(A,N(C))-conditioned invariant subspace S, 
which contains I, is self-hidden with respect to I, if it is 
fulfilled 

 (A+GC)S ⊂ S .  (33) 

Basile, Marro (1992). 
If the subspaces S1 and S2 are (A, N(C))-conditioned 

invariants and contain I and if they are self-hidden with 
respect to I, then the subspace S1+S2 is self-hidden. 
Consequently, the described set has its own maximum 
element which is called maximum (A, N(C))conditioned 
invariant self-hidden subspace, with respect to I and it is 
denoted as Sss,max(A, N(C),I). The subspace 
Sss,max(A,N(C),I) is in relation to subspaces Vmax 
(A,I,N(C)) and Smin(A,N(C),I)  in the following way.  

Theorem 10: 

Sss,max(A,N(C),I)= 

 Smin(A,N(C),I)+Vmax(A,I,N(C)) (34) 

Basile, Marro (1992). 
Theorem 11: 

Sss, max(A,N(C),I)=(N(C)+Smin)∩(A+GC)-1 

 (N(C)+Smin)∩ ... ∩(A+GC)-(n-1)(N(C)+Smin) (35) 

where Smin:= Smin (A, N(C), I), and matrix G has the 
property  (A+GC)Smin ⊂ Smin. 
Basile, Marro (1992). 

Corollary 11: The right side of equation (35) represents 
the maximum A+GC invariant subspace which is contained 
in N(C)+Smin. 

Internal and external stability 
In this part, the system stability which is connected with 

control and conditioned invariant subspaces is investigated.  
Definition 16: The (A, R(B))-controlled invariant 

subspace V  is said to be internal potentially stabile if and 
only if for any initial state x0∈V control u(t) exists. In that 
case, x(t)∈V for any t ≥ 0, when  x(t) converges to zero 
state as t →∞ or equivalently if and only if m × n real 
matrix F exists satisfying (A+BF)V ⊂V and (A+BF)|V  is 
stabile. 

Definition 17: The (A, R(B))-controlled invariant 
subspace V is said to be externally potentially stabile, if 
and only if for any initial state x0 ∈ X, there is a control u(t) 
such that  x(t) converges to V as t →∞, or equivalently, if 
and only if  m × n real matrix F exists satisfying (A+BF)V 
⊂V and  (A+BF)|X/V is stabile. 

External and internal potential stability can be 
investigated by applying appropriate coordinate 
transformation. For that purpose it is necessary to define n 

× n and m × m nonsingular set of the matrices T = [ T1  T2  T3 

 T4] and U = [ U1  U2], respectively. Let V be (A, R(B))-
controlled invariant subspace. T1 and T2 are chosen so that 
R(T1)=Vdost(V), and R[ T1  T2]=V. Then 
Vdost(V)=V∩Smin(A,V,R(B)). T3 is chosen to satisfy R[ T1 

 T2] = Smin (A, V, R(B)). Also, U1 is chosen to satisfy 
R(BU1)= V ∩ R(B). Then it can be written: 
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A null block matrix in the equation for A~  in the second 
row appears because Vdost (V) is (A+BF) invariant 
subspace of F which satisfies (A+BF)V⊂V. Because of the 
same reason the second row of matrix B~  has zero 
elements. The forth row of the matrix A~  has zero elements 
because V is (A+BF) invariant for some F. Similar can be 
concluded for the matrix B~ . Let F be chosen to satisfy 
(A+BF)V⊂V. Then, together with 0~~~

213231 =+ FBA  and 

0~~~
223232 =+ FBA , it can be written: 
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Together with the 2 × 4 block matrix F~ . 
It can be noticed that 22

~A  could be substituted by any 
element using state feedback with control law which 
(A+BF)V ⊂V .  

Lemma 13:  

 σ((A+BF) | V /Vdost(V))= σ( 22
~A ) (39) 

for any  F which satisfies (A+BF)V ⊂V . 
Hamano (1996). 

Here (A+BF)|V/Vdost(V) is induced transformation 
A+BF to V /Vdost(V). With the previous analysis in mind, 
it can be noticed that the matrix pencil )~,~( 1111 BA  is 
reachable. The analysis of the statement for Theorem 2 
leads to the conclusion:  

Lemma 14: The eigenvalues of σ((A+BF)|V /Vdost(V)) 
= σ( 111111

~~~ FBA + ) could be freely assigned by choosing the 
matrix F appropriately. The matrix F fulfills (A+BF)V ⊂V  

The eigenvalues of (A+BF)|V/Vdost(V) are called 
internally unassignable eigenvalues of the subspace V. The 
internally unassignable eigenvalues of Vmax(A,R(B),N(C)) 
are called the invariant zero of system (5), or the matrix 
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triple (A,B,C).  
Hamano (1996). 

Theorem 12: The (A,R(B))-controlled invariant 
subspace V  is internally potentially stabile , if and only if 
all internal unassigned eigenvalues have negative real part. 
Basile, Marro (1992). 

Theorem 13: The (A,R(B))-controlled invariant 
subspace V  is externally potentially stabile , if and only if 
V +Vdost is internally potentially stabile.  
Basile, Marro (1992). 

Lemma 15: If the matrix pencil (A, B) is potentially 
stabile, then all (A, R(B))-controlled invariant subspaces 
are externally stabile.  
Basile, Marro (1992). 

Corollary 12: The matrix F could be defined 
independently of V  or X/V. 

Dual objects to internally and externally stabilizabilities 
for controlled invariant subspaces are external and internal 
stabilizabilities for conditioned invariant subspaces, 
respectively.  

Definition 18: The (A, N(C))-conditioned invariant 
subspace S is said to be externally potentially stabile, if and 
only if n × p real matrix G exists satisfying (A+GC)S ⊂S 
and  (A+GC)|X/S  is stabile.  

Definition 19: The (A, N(C))-conditioned invariant 
subspace S is said to be internally potentially stabile, if and 
only if n × p real matrix G exists satisfying (A+GC)S ⊂S 
and (A+GC)|S is stabile. 

Choosing eigenvalues for (A+GC) is analog to the 
described procedure for (A+BF) and can be found in Basile, 
Marro (1992). 

Disturbance localization problem 
The disturbance localization problem was one of the first 

problems which were solved by the geometric approach.  
When the geometric approach was used to solve this 

problem, the solution was easily obtained. The time 
invariant linear system ∑ = ],,,[: DCBAd  described by 
equation (40) is considered: 
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where values x(t) ∈ X := ℜn, u(t) ∈ ℜm, xi(t) ∈ ℜp and 
w(t) ∈ dmℜ  are respectively the system state, the input and 
output of the system, the disturbance vector in time t ≥ 0, 
and x0(t) ∈ ℜn is the initial state, where the matrices A, B, 
C and D have constant dimensions. Assume that the 
function u(t) is continual in the parts, and disturbance 
cannot be measured. The state feedback (41) is applied to 
the system:  

 u(t)=Fx(t), (41) 

then equation (40) becomes  

 0)0(),()()()( xxtDtBFAt =++= wxx�  (42) 

where F  is the m × n real matrix. The problem which has to 
be solved is to choose control law (41) with property that 
disturbance does not influence the dynamical behavior of 
the system with feedback (40). Mathematically described, it 
is necessary that xi(t)=0, for some t ≥ 0, and for any w(t), t 
≥ 0, when x(0)=x0=0. If we go back to Theorem 1, it can be 

seen that for any t ≥ 0 all possible system states are 
described by equation (43), with disturbance w(τ), 0 ≤ τ ≤ t 
to system (40). 

 R(A+BF, R(D))=R(D)+(A+BF)R(D)+...  

 +(A+BF)n-1R(D). (43) 

This problem is called the disturbance localization 
problem or the decupling problem, Basile, Marro (1992), 
Wonham (1985).  In the algebraic terms it is defined as 
follows: for given n × n, n × n, n × m’ and p × n real 
matrices A, B, D and C, find real m × n matrix F, which 
fulfills equation 

 R (A + BF,R(D)) ⊂ N(C). (44)  

It is always possible to find the matrix F which satisfied 
equation (44). The following theorem gives sufficient and 
necessary conditions for the existence of the matrix F.  

Theorem 14: A real m × n matrix F which satisfied (44) 
exists if and only if 

 R(D) ⊂ Vmax(A, R(B), N(C)). (45) 

The proof of the Theorem 14 can be found in Basile, 
Marro (1992), and the proof of the sufficient conditions in 
Hamano (1996). 

Corollary 13: Let  n*=dimVmax(A, R(B), N(C)) and let  
T  be a real nonsingular matrix for which the first n* 
columns forms a basis of the subspace 
Vmax(A,R(B),N(C)). In that case, condition (45) means 
that the transformation of the coordinates using the real m × 
n matrix F can be established. The matrix F fulfills the 
equation (A+BF) Vmax (A, R(B), N(C))⊂ Vmax(A, R(B), 
N(C)). The coordinate transformation is of the form x(t)= 
T )(~ tx . Including equations (40) and (42), it can be derived: 
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where FTFF =]~
1

~[ 2 . 

Disturbance localization and stability 
At the previous part, disturbance localization is solved 

without any constrains to the system. In this part, together 
with the described problem, the system stability is 
investigated. A new problem can be defined for system 
(40). It is necessary to find, if the solution exists,  the m × n 
real matrix F, with the property that equation (44) is 
satisfied , but the matrix pencil (A+BF) should be stabile, 
i.e. the eigenvalues of the (A+BF) have negative real parts. 
In the trivial case, the latter condition is fulfilled if the 
matrix pencil (A, B) is potentially stabile, Basile, Marro 
(1992). 

Theorem 15: The system matrices A, B, C, D are defined 
similarly to those in part 2.7. Assume that the matrix pencil 
(A, B) is potentially stabile. Disturbance localization with 
the stability condition problem has a solution if and only if 
equation (45) is fulfilled and if the subspace Vog, 

min(A,R(B)+R(D),N(C)) is externally potentially stabile. 
Basile, Marro (1992). 
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Further stability conditions for investigated the problem 
can be found in Wonham (1985).  

Corollary 14: Using the defined values from the 
Corollary 13, n*=dim Vog,min(A, R(B)+ R(D),N(C)) can 
be defined in a similar way. Replacing Vmax(A,R(B), 
N(C)) with Vog,min(A, R(B) + R(D), N(C)) it can be 
calculated that σ(A+ BF |Vog,min(A,R(B)+R(D),N(C))) = 
σ( 1111

~~~ FBA + ) and σ(A + BF |X/Vog,min(A, R(B)+ R(D), 

N(C)))  = σ( 2222
~~~ FBA + ). Consequently, the matrices 1

~F  

are 2
~F  chosen to fulfill stability conditions for 1111

~~~ FBA +  

and 2222
~~~ FBA +  and to fulfill 0~~~

1221 =+ FBA . In that case, 
the desired value for the matrix F is given as F= 

]~~[ 21 FF T-1. 
The proof for a necessary condition can be found in 

Hamano (1996). To prove the previous statement, the 
following lemma is used. 

Lemma 16: If the externally stabile (A, R(B))-controlled 
invariant subspace V  which satisfied V ⊂ N(C) and 
R(D)⊂V exists, then the subspace Vog,min(A, R(B)+R(D), 
N(C)) is externally potentially stabile i.e. it is (A+BF) 
invariant and the subspace  A + BF |Vog,min(A, R(B)+ R(D), 
N(C)) is stabile for some matrix F. 
Basile, Marro (1969.b) 

Disturbance localization and the dynamic control method 
For disturbance localization using the dynamic control 

method, it is necessary to measure the output values. 
Furthermore, feedback with the dynamic controller in the 
forward direction Σc should be applied. The goal of the 
method is the same as in the previous part.   

In this case, the system ∑ = ],,,,[: merdm CDCBA  
described by equation (48) is investigated 
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where ymer(t)∈Ymer:= mpℜ  is the measured system output, 
Cmer is the pm×n real matrix. The dynamic controller 
∑ = ],,,[: ccccc KCBA is defined as follows  
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where xc(t), xc0 ∈ Xc := cnℜ . The real matrices Ac, Bc, Cc 
and Kc have the dimensions nc × nc , nc × pm , m × nc and m 
× pm  respectively. Ac, Bc, Cc and Kc are defined in the sense 
that y(t) = 0, for t ≥ 0 and any w(t), t ≥ 0, when x0 = 0 and 
xc0 = 0. The state values x(t) and x c(t) converge to zero 
when t→∞, for any x0∈X and xc0∈Xc with w(t)=0, for any t 
≥0. Due to convenience, extended state is introduced as 

 ∈⎥
⎦

⎤
⎢
⎣

⎡
=

cx
x

x̂ Xc := cnn+ℜ  (50) 

where x∈X, and xc∈Xc. Then, the whole system, including 
∑ dm  and ∑ c can be represented as 

 
)(ˆˆ)(ˆ

ˆ)0(ˆ),(ˆ)(ˆˆ)(ˆ 0

tCt

tDtAt

i xx

xxwxx

=

=+=�
, (51) 

where ]'''[ˆ 00 cxx=x . The matrices are defined on the 
following way: 
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If it is adopted 
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it can be calculated 

 0 0
ˆ ˆ ˆˆ ˆ

c merA A B K C= +  (54) 

Basile, Marro (1992). 
Corollary 15: A special case of the controller ∑ c  is an 

observer which has a task to estimate the state space of the 
system. If the new feedback is applied with the properties 
given in Basile, Marro (1992), the described approach can 
be considered as a system with the asymptotic observer and 
the state estimation. This approach will be considered now.  

The disturbance localization problem using the dynamic 
disturbance method can be defined as: Find, if any, nc = 
dim Xc, as well as the matrices Ac, Bc, Cc and Kc with 
appropriate dimensions so that 

 R ( Â , R( D̂ )) ⊂ N( Ĉ ), (55) 

is fulfilled with the stabile matrix Â . 
Corollary 16: It can be seen that R ( Â ,R( D̂ )) is the 

minimum Â -invariant subspace which contained R( D̂ ). 
The first condition given by equation (55) can be 
transformed as 

 R( D̂ )⊂ V̂ ⊂ N( Ĉ ). (56) 

The conditions for the described problem to have 
solutions are given in the following theorem.  

Theorem 16: Let the matrix pencil (A, B) be potentially 
stabile and assume that it is possible to determine (A, Cmer). 
The disturbance localization problem using the dynamic 
control method together with the system stability problem 
can be solved if and only if the externally potentially stabile 
(A, R(B))-controlled invariant subspace V exists, and the 
externally potentially stabile (A, N(Cmer))-conditioned 
subspace S exists, which satisfied equation (57) 
R(D)⊂ S ⊂V⊂ N(C).(57) 

The proof of this theorem and the extension for the 
conditions presented can be found in Willems, Commault 
(1982). 

Theorem 17: Assume that the matrix pencil (A, B) is 
potentially stabile and assume that (A, Cmer) can be found. 
The disturbance localization problem using the dynamic 
control method together with the system stability problem 
can be solved if and only if the following conditions are 
fulfilled: 
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 Smin(A, N(Cmer), R(D))⊂Vmax(A, R(B), N(C))  (58) 

 Smin(A, N(Cmer), R(D))+Vmax(A, R(D), N(C)∩N(Cmer))  

 is externally stabile  (59) 

 Vog,min(A, R(B)+R(D), N(C))+V max(A, R(D), N(C)∩   

 N(Cmer)) is internally stabile  (60) 

The proof of the theorem and the conditions for the 
calculations of the of the matrices Ac, Bc, Cc and Kc can be 
found in Hamano (1996) 

Results for the singular systems 
In this part we investigate the linear singular system with 

the zero input. A general case which will be investigated 
after the system is described by (61) with non-zero input. 

 0)0(),()()( xxuxx =+= tBtAtE� , (61) 

with the square matrix E which is always singular,  and E, 
A ∈ ℜn×n are the constant of the matrices, B∈ ℜn×m, with  
x∈ ℜn and u∈ ℜm.  

Invariant subspaces and singular systems 
Problem 1: Subspace Vc, of the vector space nℜ  is 

investigated. Several questions arise: 
(i) Does the control u(t) exist with the property that equa-

tion (61) for any x0∈Vc  has at least one solution? 
(ii) Does the control u(t) exists so that for every x0∈ Vc  

equation (61) has a set of the solutions, so that all solu-
tions have the property x(t)∈Vc  for any 0≥t ? 

In the following part, the definitions of the 
corresponding subspaces for singular systems are given. 

Definition 20: The subspace Vc which satisfied 
conditions (i) and (ii) described in Problem 1, is called 
controlled invariant subspace .  
Buzurović (2000). 

Problem 2: The subspace Vfc of the vector space nℜ is 
given. Does the real n×m matrix K exists, together with the 
control u(t) =Kx(t) which as a result has the existence of the 
controlled invariant subspace Vfc?  

Definition 21: The subspace Vfc which satisfied 
conditions from the Problem 2 is called feedback controlled 
invariant subspace.  
Buzurović (2000). 

It is of interest to present the description of the 
subspaces. The following method of the system analysis is 
a typical geometric method. 

Theorem 18:  Assume that V is subspace of the vector 
space nℜ , which satisfied the relation V ⊃ N (E), where 

 ( ) { | 0}
def

nE E= ∈ℜ =x xN  (62) 

The following three statements are equivalent: 
1. V is feedback controlled invariant subspace 
2. V is controlled invariant subspace 
3. AV ⊂ EV + R(B) 

Buzurović (2000). 
Theorem 19: Assume that V is subspace of the vector 

space nℜ . Define )()( 2 tKt xu −=  and let V* be the 

maximum subspace in the nℜ which satisfied 

 * *
2( )A BK E− ⊂V V  (63)  

The following two statements are equivalent: 
1.  V is feedback controlled invariant subspace with the 

control )()( 2 tKt xu −=  

2. VV EBKA ⊂− )( 2 , VVN ⊂∩ *)(E  
It is clear that when the matrix E  is nonsingular, the 

conditions are different. The proof of the given 
consequences can be found in Buzurović (2000). 

Consequence 1: Assume that V  is the subspace of the 
vector space nℜ  and that is IE = . The following two 
statements are equivalent 
1. V is feedback controlled invariant subspace  
2. V is controlled invariant subspace  
3. )(A BR+⊂ VV  

Buzurović (2000). 
Considering Theorem 2 the following can be concluded 
Consequence 2: V*is the feedback maximum controlled 

invariant subspace with the control )()( 2 tKt xu −=  if and 
only if V * is a maximum subspace which satisfied (63). It 
is clear that in the case of the nonsingular matrix E the 
subspace nℜ≡*V . 

Output-null subspace 
To denote subspace, italic letters are used, for instance 

M, and a corresponding matrix is denoted by M. The range 
of the matrix M is denoted by R(M). The null subspace of 
the matrix M is denoted by N(M). The upper index -1 
denotes the inverse range of the linear operator, and the 
inverse for the matrices. 

The generalized linear dynamic system is considered 

 E A B
C D

= +
= +

x x u
y x u
�

 (64) 

where x∈ℜn, u∈ ℜm  and  y∈ ℜp are corresponding 
vectors. If detE=0, the system can be transformed to have 
the matrix D=0 because the influence of the D can be 
included into the matrix E. However, because of the 
symmetry, we will precede with D≠0. 

The subspace S ⊂ ℜn can be defined as the output-null 
(A, E, B)-invariant subspace of system (64) if it is fulfilled 

 ⎥
⎦

⎤
⎢
⎣

⎡
C
A

S ⎥
⎦

⎤
⎢
⎣

⎡
⊂

0
E

 S ⎥
⎦

⎤
⎢
⎣

⎡
+

D
B

R  (65) 

The following result clarifies the meaning of the 
subspace S, given by the generalized Lyapunov (or 
Sylvester) equation 

 ⎥
⎦

⎤
⎢
⎣

⎡
C
A

S ⎥
⎦

⎤
⎢
⎣

⎡
⊂

0
E

 S F G
D
B

⎥
⎦

⎤
⎢
⎣

⎡
−  (66) 

Theorem 20: S ⊂ ℜn is the output-null (A, E, B) 
invariant subspace of system (64) if and only if, for any 
x(0-)∈S , input u(t) exists so that the following is fulfilled: 
(i) y(t)=0 
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(ii) x(t) ⊂ S za  t ≥ 0 and  
(iii) (3) u(t) and x(t) have Laplace transformation 
Ozcaldiran, Lewis (1987) 

Theorem 4: S satisfies (65) if and only if the subspace K 
exists so that   

 (A+BK)S ⊂ ES  (67) 

 (C+DK)S =0  (68) 

Ozcaldiran, Lewis (1987). 

Existence and uniqueness of the solutions 
In this part, we analyzed the existence and the 

uniqueness of the solutions for system (61). The details can 
be found in Buzurović (2000) and Debeljković, Buzurović 
(2007). 

It is shown in Buzurović (2000) that 
when 0)det( ≠− AsE , then the existence of the solutions 
implies uniqueness. In addition, we analyzed the non-
uniqueness of the solutions. Before that, new properties will 
be introduced. They are causal and strict causal property of 
the dynamic system with possible non-unique solutions.  

Let Ω  be set of the allowable control functions which 
transform the set ],[ 10 tt  to nℜ . Usually, ∞=1t . Let the 
correspondence of the solutions be the transformation of the 
set function S  from Ω  to the trajectories set, where each 
function )(u ⋅  from Ω  is in the relation with the set 

))(u( ⋅S . Equation (61) is satisfied.  Let ))(u( ⋅τS  be the 
restriction of the elements ))(u( ⋅S  with respect to the set 

],[ 0 τt . 
Definition 22: Correspondence S  is called strict causal 

if for given )(u1 ⋅  and  )(u 2 ⋅  from Ω  it is fulfilled 

 )(u1 ⋅ = )(u2 ⋅ , τ<∀t ⇒ ))(u( 1 ⋅τS = ))(u( 2 ⋅τS  (69) 

For the subspace S  is said to be causal if equation (64) 
is satisfied for any τ≤t . In addition, the strict causal 
property could be exchanged with the causal property. The 
set of the strict causal solutions of the system is the 
maximum strict causal correspondence from the union S .  

For the given )(u ⋅  from Ω , the trajectory )(x ⋅  is called 

the strict causal solution if it belongs to ))(u( ⋅S . The strict 
causal characteristic of the solutions is: system (61) for any 
t or for any ),( 10 tt∈τ  starting the motion from )(x τ  has 
strict causal solutions for any }),(u{ τ≥tt . In the following 
part, the non-uniqueness of the solutions is analyzed. 
However, the impulse modes which can appear will be 
neglected. 

Let )(ER  and )(BR  be the ranges of matrices E  and 

B , given in the subspace rℜ=Y . Consider the following 
relation, which is satisfied for the linear subspace V  from 
Y . 

 A E⊂V V  (70) 

Definition 23: Characteristic subspace of the matrix 
pencil  ( E , B ) is the maximum subspace V * which 
satisfied  relation (65). 
Buzurović (2000). 

The defined subspace exists because {0} satisfies (65), 

and this relation is stabile with respect to subspace addition. 
In the special case of Definition 4, the subspaceV * could 
be trivial. This subspace is uniquely connected to the 
solution of equation (61) with zero input. 

Theorem 5: In order for the system described by 
equation (61) to have strict causal solution on the interval 
with the arbitrary length for any control sequences )(u ⋅ , it is 
necessary and sufficient that the following equations are 
fulfilled: 

 *( )B E⊂R V  (71) 

 *x(0) ∈V  (72) 

Buzurović (2000). 
The proof of the theorem and more detailed explanations 

can be found in Buzurović (2000) and Debeljković, 
Buzurović (2007). 

Definition 24: The characteristic null subspace of the 
matrix pencil (E, A) is called the subspace N defined by the 
expression 

 N = N (E)∩V * (73)  

Let dim N =q. 
Malabre (1987). 

Definition 25: The matrix pencil (E, A) is C-regular 
(regular by columns), if q=0, i.e. 

 N = {0}. (74) 

Malabre (1987). 
Theorem 21: Under conditions (66) and (67), the 

solution of system (61) is unique for any u(t) if and only if 
the matrix pencil (E, A) is C-regular. 
Buzurović (2000). 

Controllability 
Let (E,A,B) be a regular system and let R(E,A,B) be a 

controlled subspace. R(E,A,B) consists of the system states 
from ℜn which are reachable in positive time from the 
initial condition x(0-) ≅ 0.  

Definition 26: If R(E, A, B) = ℜn, then the system 
(E,A,B) is called the controllable system.  
Buzurović (2000). 

If P is the linear transformation on ℜn and S is the 
subspace in ℜn, SP |  denotes the subspace S+P(S) + ... 
+Pn-1(S), i.e. the minimum P invariant subspace which 
contains S.  

Lemma 16: If (E, A, B) ∈ ( )mn,∑  and α is real number 
which satisfies det (αE-A) ≠ 0, then 

 R(E ,A, B) = ( ) ( )BAEEAE 11 | −− −− αα R  (75) 

Theorem 22: The generalized system (E, A, B) is 
controllable if and only if the regular system (I, (αE-A)-1E, 
(αE-A)-1B) is controllable. 

Theorem 10: (E, A, B) ∈ ( )mn,θ∑  is controllable if and 
only if the regular system Rθ (E, A, B) is controllable. 
Buzurović (2000). 

Indefinite eigenvalues assignments 
It is shown in Gantmacher (1977.a) that the nonsingular 
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matrices M and N exist with the following property 

 ( ) 0
0

sI LM sE A N sJ I
−⎡ ⎤− = ⎢ ⎥−⎣ ⎦

, (76) 

where dimL = r and dimJ = n - r. The eigenvalues of the 
matrix L are the same as the eigenvalues of (sE-A), and the 
matrix J is nilpotent and has null eigenvalues.  

Let p be a number of the Jordan blocks for the matrix J 
with the dimensions greater than 1. Let ni+1, i∈(1, 2, ..., p) 
be the dimension of i the Jordan block, ni≥1. Therefore, the 
regular pencil (sE-A) has p indefinite eigenvalues of the 
order ni, i∈(1, 2, ..., p), respectively. 

Let xNx 1ˆ −=  and let x̂  be the partition ( )T
w

T
v

T xxx =ˆ  
where xv∈ ℜr and xw∈ ℜn-r. Consequently,  

 }
}

v

w

B rMB B n r
⎡ ⎤= ⎢ ⎥ −⎣ ⎦

 (77) 

Moreover, together with equation (77), it is possible to 
decompose (76) in the following way 

 v v vx Lx B u= +�  (78) 

 w w wJx x B u= +�  (79) 

Considering J as a transformation from W to W, i.e. J: 
W → W, with the nilpotent matrix J, it follows that 
decomposition (80) exists 

 W = W1 ⊕ W 2 (80) 

such as 

 
2

0 0
0J J

⎡ ⎤= ⎢ ⎥⎣ ⎦
, 1

2
w

BB B
⎡ ⎤= ⎢ ⎥⎣ ⎦

, (81) 

where J2 contains all elementary dividers of the matrix J of 
the order greater than 1. From (81) it can be concluded that 
the controllability for definite eigenvalues of the matrix 
pencil (sE-A) is equivalent to the existence of the matrix F, 
such as that eigenvalues of L+Bv are predefined symmetric 
complex numbers. The modal criterion for controllability of 
the indefinite eigenvalues for the matrix pencil (sE-A) says 
that eigenvalues are controllable if the matrix pencil 

][ BAsE −  does not have indefinite eigenvalues.  
The following theorem presents sufficient and necessary 

conditions for the controllability of the indefinite 
eigenvalues. It is denoted B=R (B). 

Theorem 23: System (76) is indefinite controllable if one 
of the conditions is fulfilled: 
(i) R(J2) + B2 = W2, 
(ii) 〈J2 ⎜B2〉 = B2 + J2B2 + ... + 1

2
−qJ B2 = W2, 

(iii) R(J ) + N(J ) + Bw = W , 
(iv) R(E ) + AN(E ) + B = H   
where q is index of nilpotency for the matrix J2, and 
consequently for J,  

Let γ = rang J = rang J2 and let us denote ∑ ∈= pi inγ , 

where γ is the number of the indefinite eigenvalues. The 
following result shows the consequence of the conversion 
from indefinite to definite zeros using state feedback.  

Theorem 24: Transformation F: W → U exists and det 
(sJ-I-BwF) = γ if and only if system (76) is infinite 
controllable. 
Buzurović (2000). 

Let iΛ be the set of n symmetric complex numbers and 

let i
q
iU Λ=Λ =1 . The following result can be obtained. 

Theorem 25: The transformation F: W → U exists and 
the subspace of det (sJ-I-BwF) = 0 is equal to Λ if and only 
if system (76) is controllable u infinity. 
Buzurović (2000). 

Further results and more details about the geometric 
approach can be found in Buzurović (2000), Buzurović, 
Debeljković (2004), and Debeljković, Buzurović (2007), as 
well as in the articles from the reference list. 

Conclusion 
An overview of the geometric approach to the modern 

control theory was presented. A comprehensive 
chronological literature review for both linear and singular 
systems was given at the beginning of the article. The 
subspaces which play an important role in the application of 
the geometric approach were described. The geometric 
conditions for internal and external stability are described. 
A solution of the stability problem using the disturbance 
localization method for the linear system using the 
geometric approach was introduced. Invariant spaces for 
singular systems are defined in a different way due to the 
singular matrix in the state space model. Their 
characteristics and basic problems of the uniqueness and 
solutions existence for singular systems were presented. 
Finally, the directions for eigenstructure assignments are 
given. However, some proofs of the theorems are omitted 
on purpose. They can be found in the literature listed. 
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Geomtetrijski prilaz u modernoj teoriji upravljanja: 
Pregled rezultata 

Geometrijski prilaz predstavlja matematički koncept razvijen kako bi se unapredila analiza i sinteza linearnih 
višestruko prenosnih sistema. U ovom radu sumarno je dat pregled osnova geometrijskog prilaza u primeni kako na 
obične linearne tako in a linearne singularne sisteme. Izložen je matematički uvod ka upravljivim i uslovno 
invarjantnim potprostorima. Uvedene su i dodatne osobine potprostora, kao što su maksimalno upravljani i 
minimalno-upravljani, kao i izlazno-nulti potprostori. Opisano je rešenje problema lokalizacije poremećaja u odnosu 
na stabilnost sistema. Izloženi su i matematički i geometrijski alati koji se danas koriste u teoriji upravljanja. 
Geometrijski prilaz sistematski se primenjuje za potrebe analize upravljivosti i u podešavanju polova sistema. 
Postojanje i jedinstvenost rešenja singularnih sistema bile su posebno analizirane imajući u vidu specifične 
karakteristike koje su neosporne posledica postojanja singularne matrice u modelu tih sistema u prostoru stanja. 
Osnovni cilj ovog rada je bio da se da jedan opširan pregled dosadašnjih rezultata u okviru teorije geometrijskog 
prilaza u savremenoj teoriji upravljanja 

Ključne reći: teorija upravljanja, upravljanje sistemom, singularni sistem, stabilnost sistema, analiza sistema, 
goemetrijski prilaz. 

Геометрический подход в современной теории управления: 
Осмотр результатов 

Геометрический подход собой представляет математическую концепцию, при помощи которой возможно 
усовершенствовать анализ и синтез линейных многократно передаточных систем.  В  настоящей работе 
суммировано представлен осмотр оснований геометрического подхода в применении как  на обычных 
линейных, так и на линейных сингулярных системах. Здесь показан математический ввод к управляемым и 
к условным инвариантным подпространствам.  Введены и добавочные свойства подпространств, подобно 
максимально управляемым и минимально управляемым, а в том качестве и выходно-нулевым 
подпространствам.  Здесь тоже описано решение проблемы локализации возмущения относительно к 
устойчивости системы. Тоже представлены и математические и геометрические оборудования, сегодня 
пользующие в теории управления.  Геометрический подход систематически применяется для потребности 
анализа управляемости и в предназначении полюсов системы. Существование и уникальность решений 
сингулярных систем были особо анализированы имея в виду специфические характеристики, которые 
являются бесспорными последствиями наличия сингулярной матрицы в модели этих систем в пространстве 
состояния.  Основной целью настоящей работы было представление одного подробного осмотра прежних 
результатов в рамках теории геометрического подхода в современной теории управления. 

Kly~evwe slova: теория управления, управление системой, сингулярная система, устойчивость системы, 
анализ системы, геометрический подход.  

Approche géométrique dans la théorie moderne de contrôle:  
tableaux des résultats 

L’approche géométrique représente un concept mathématique développé pour améliorer l’analyse et la synthèse des 
systèmes linéaires multiples. Dans ce papier on a donné un aperçu sommaire des bases de l’approche géométrique 
dans l’application pour les systèmes linéaires et les systèmes linéaires singuliers. On a exposé l’introduction 
mathématique vers les sous- espaces contrôlables et variables conditionnellement. On a introduit aussi les 
caractéristiques supplémentaires des sous-espaces, tels les sous-espaces contrôlés au maximum et minimum ainsi que 
les sous-espaces zéro de sortie. On a décrit la solution du problème de la localisation de la distribution par rapport à 
la stabilité du système. Les outils mathématiques et géométriques utilisés actuellement dans la théorie de contrôle ont 
été présentés. L’approche géométrique est systématiquement appliquée pour les besoins de l’analyse de contrôle et 
dans l’adaptation des pôles du système. L’existence et l’unité de la solution des systèmes singuliers ont été analysés à 
part, ayant en vue les caractéristiques spécifiques qui sont conséquence de l’existence d’une matrice singulière dans le 
modèle de ces systèmes dans l’espace de l’état. Le but principal de ce travail est de donner un compte-rendu détaillée 
des résultats existants dans le cadre de la théorie de l’approche géométrique de la théorie moderne de contrôle. 

Mots clés: théorie de contrôle, contrôle du système, système singulier, stabilité du système, analyse du système, 
approche géométrique. 




