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New View of the Euler-Bernoulli Equation 

Mirjana Filipović, PhD (Eng)1) 

A special attention is paid to the motion of flexible links in a robotic configuration. The elastic deformation is a 
dynamic value which depends on the total dynamics of the robot system movements. The Euler-Bernoulli equation 
should be expanded according to the requirements of the motion complexity of elastic robotic systems. The Euler-
Bernoulli equation (based on the existing laws of dynamics) should be supplemented with all the forces (inertial 
forces, Coriolis, centrifugal forces, gravity forces, environment forces, disturbance forces as well as coupling forces 
between the present modes) that are participating in the formation of the elasticity moment of the considered mode. 
This yields the difference in the structure of Euler-Bernoulli equations for each mode. The stiffness matrix is a full 
matrix as well as a damping matrix. The mathematical model of the actuators also comprises coupling between 
elasticity forces. A particular integral defined by Daniel Bernoulli should be supplemented with the stationary 
character of elastic deformation of any point of the considered mode, caused by the present forces. The general form 
of the mechanism elastic line is a direct outcome of the system motion dynamics, and cannot be described by one 
scalar equation but by three equations for position and three equations for orientation of every point on that elastic 
line. The simulation results are shown for a selected robotic example involving the simultaneous presence of elasticity 
of the gear and of the link (two modes), as well as the environment force dynamics. 

Key words: robotic, motion dynamics, Euler-Bernoulli equations, process modeling, elastic deformation, coupling, 
stiffness matrix, motion simulation, programmed trajectory. 
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Introduction 
ODELING and control of elastic robotic systems has 
been a challenge to researchers in the last three 

decades. The control of robots with elastic joints in contact 
with dynamic environment [34] is considered. The 
feedback control was formed for the robot with flexible 
links (two-beam, two-joint systems) with distributed 
flexibility [2], robots with flexible links being also dealt 
with [17]. The nonlinear control strategy for tip position 
trajectory tracking of a class of structurally flexible multi-
link manipulators is developed [28]. Authors [25], [26] 
derived dynamic equations of the joint angle, the vibration 
of the flexible arm, and the contact force. 

Author [35] presents an approach to the end point 
control of elastic manipulators based on the nonlinear 
predictive control theory. Author [21] designed a control 
law for local regulation of contact force and position 
vectors to desired constant vectors. Differently from 
conventional approaches, authors [4] focus on the design of 
a rigid part motion control and the selection of bandwidths 
of a rigid subsystem. Author [22] presents the derivation of 
the equations of motion for application to mechanical 
manipulators with flexible links. The equations are derived 
[23] using Hamilton’s principle, and are nonlinear integro-
differential equations. 

Author [31] discusses the force control problem for 
flexible joint manipulators. Authors [16] extend the integral 
manifold approach for the control of flexible joint robot 
manipulators from the known parameter case to the 
adaptive case. 

A mathematical model of a mechanism with one degree 
of freedom (DOF), with one elastic gear was defined [30]. 

Based on the same principle, the elasticity of gears is 
introduced into the mathematical model in this paper, as in 
papers [11]-[15] also. However, when the introduction of 
link flexibility into the mathematical model is concerned, it is 
necessary to point to some essential problems in this domain. 

The LMA (“Lumped-mass approach”) is a method 
which defines motion equation of any point of a considered 
mechanism. If any link of the mechanism is elastic then we 
also can define a motion equation of any point of the 
presented link. We do not know exactly when this approach 
has been stated. It defines a dynamic equation in any point 
of a mechanism during movement. The LMA [2], [3] gives 
the possibility to analyze the motion of the any point of 
each mode. Papers with this research topic (approach) were 
rare in robotics journals in the last two decades. 

The EBA (“Euler-Bernoulli approach”) assumes the use 
of Euler-Bernoulli equations which appeared in 1750. EBA 
[4]-[7], [18]-[20], [24]-[26] etc, gives the possibility to 
analyze a flexible line form of each mode in the course of 
task realization.  The EBA is an approach that is still in the 
focus of researchers’ interest and it was analyzed most 
often in the last decades.  

In the pertinent literature no relationship has been 
established between the LMA and EBA.  

We consider that EBA and LMA, are two comparative 
methods addressing the same problem but from different 
aspects [12]-[15].  

We consider them as two comparable methods 
considering the same problem but from different aspects. 
Using the EBA we obtain the equations of flexible line 
model of each mode and by setting boundary conditions we 
obtain model equations of motion at the point of the tip (or 
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any other point) of each mode, which is in fact the LMA. 
These equations are of different types and cannot be 
combined. As the equation of motion for the mode tip point 
is essentially the LMA and it follows directly from the 
equation of a flexible line obtained via the EBA for the 
preset boundary conditions, it clearly comes out that the 
structures of these equations are the same (whereas the 
content of elements of these structures is not the same). Just 
for this reason, each of the two methods can be used as a 
check of validity of the other (assuming that no crude 
approximations have been made). 

A mathematical model obtained by any of the methods 
should satisfy the elementary structure of the models of 
elastic mechanisms known in the literature [33]. This has 
been treated in detail in our work, but it is not the only 
essential problem existing in the pertinent literature.  

The Euler Bernoulli equation in the original form as well 
as its solution were used in the literature [4]-[7], [18]-[20], 
[24]-[26] etc, published until now as defined [27]. In the 
meantime, from 1750 when the Euler Bernoulli equation 
was published until today, our knowledge, especially in the 
robotics, the oscillation theory and the elasticity theory, has 
progressed significantly. As a consequence, this paper 
points out the necessity of the extension of the Euler 
Bernoulli equation from many aspects. 

 In the previous literature [4]-[7], [18]-[20], [24]-[26] 
etc, the general solution of the motion of an elastic robotic 
system has been obtained by considering flexural 
deformations as transversal oscillations that can be 
determined by the method of particular integrals of D. 
Bernoulli. 

It is known that flexural deformations of a body can be 
caused by: 
- disturbance forces, causing an oscillatory motion, 
- stationary forces, causing a motion of a stationary charac-

ter. 
We consider that any elastic deformation can be 

presented by superimposing D. Bernoulli’s particular 
solutions of the oscillatory character and a stationary 
solution of the forced character. See papers [12]-[15].  

The first detailed presentation of the procedure for 
creating a reference trajectory was given in [1].  

In our work we have synthesized a reference trajectory 
for a robot model including elastic gears and links and the 
presence of an environment force. The reference trajectory 
is calculated from the overall dynamic model, when the 
robot tip is tracking a desired trajectory in a reference 
regime in the absence of disturbances.  

Elastic deformation (of flexible links and elastic gears) is 
a quantity which is at least partly encompassed by the 
reference trajectory. It is assumed that all elasticity 
characteristics in the system (both of stiffness and damping) 
are "known", at least partly and at that level can be included 
into the process of defining the reference motion. The 
reference trajectory thus defined allows the possibility of 
applying very simple control laws via PD local feedback 
loops, which ensures reliable tracking of the robotic tip 
considered in the space of Cartesian coordinates to the level 
of known elasticity parameters, too.  

As far as the working regime of the robot is concerned 
we think that all forces should participate in generating 
elastic deformations and that it is a crude approximation to 
assume that elastic effects are generated only by the 
gravitational force, or only by the environment force as in 
[24] and [26], or that Coriolis and centrifugal forces can be 
neglected altogether that elastic deviations are so small, so 

that the inertia matrix is not dependent on them, as assumed 
in [20].  

The “Assumed modes technique” [27] was used by all 
authors in the last 40 years to form the Euler Bernoulli 
equation of beam. In our paper we form Euler Bernoulli 
equation but we do not use the “assumed modes technique” 
in contrast to our contemporaries.  

We think that the “assumed modes technique” was and 
still can be useful in some other research areas but it is used 
in a wrong way in robotics, theory of oscillations and 
theory of elasticity.  

We assume that the elastic deformation, and also the 
circular frequency of each mode of the elastic element, is a 
consequence of the overall dynamics motion of the robotic 
system. 

Let us emphasize once again that in this paper we 
propose a mathematical model solution that includes in its 
root the possibility for analyzing simultaneously both 
present phenomena – the elasticity of gears and the 
flexibility of links, and the idea originated from [3], but on 
new principles. We show how the continuously present 
environment dynamics force affects the behavior of an 
elastic robot system. 

Our future work should be directed to implementating 
the elasticity of gears and the flexibility of links to any 
model of rigid robots and also to the model of 
reconfigurable rigid robots as given in [9], [10] or any other 
type of mechanisms. The mechanism would be modeled to 
contain elastic elements and to generate vibrations, which 
are used for conveying particulate and granular materials in 
[8].  

Dynamics of Change of Elastic Deformations 
Meirovitch proposed the “modal technique” more than 

40 years ago, in 1967. At that moment it was a big 
contribution to stimulate scientists to consider new 
investigations and new ideas. At that time it was a solution 
of one visionary that explained the Euler-Bernoulli equation 
in a new manner. It should have been a flywheel in the 
evolution of the Theory of elasticity and Theory of 
oscillation as well as Robotics which in this period was in 
expansion. 

The author elaborated a particular application of the 
Euler-Bernoulli equation supposing that elastic deformation 
is a quantity defined in advance with respect to amplitude 
and frequency and, formed in this way, included into a 
dynamic model. Having in mind the state of engineering 
and the technical possibilities for data processing at that 
time and also technical needs at that time, this solution was 
a very significant contribution to science as well as 
engineering. Regulations specifying the permissible 
amplitudes of elastic deformation and the permissible 
oscillating frequencies of constructions are employed even 
today in some areas of the construction theory.  

The allowed values are mostly the result confirmed by 
various experiences, measures and scientific solutions also 
based on [27]. Thus it should be emphasized that such 
solutions as in [27] should not be denied in any case, but 
they should further be applied just in areas where it is not 
possible to form a system model, for example, because of 
its complexity.  

Not finding any other solutions, many researchers in 
robotics [4]-[7], [18]-[20], [24]-[26] etc, applied the 
solution [27] in the description of the real dynamics of the 
robot system elastic deformations, overlooking that the 
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solution [27] was derived under the condition of the elastic 
deformation defined in advance and by the amplitude and 
the frequency, or they used many ways to modify the 
solutions from [27].  

By now the authors implemented the elastic 
deformations as the values on the principles from [27] and 
they did not get any real values as a result of the robot 
system movements. Without any other solutions it is 
obvious that the research in this area was scarce in the last 
10 years.  

However, today’s development of the knowledge about 
the robot system dynamics modeling enables the 
establishing and analyzing of new models which will treat 
the elastic deformation as a dynamic value. Our research 
field is directed in that way, in order to describe this theory 
in the real environment, without assumptions i.e. limitations 
of the elastic deformation that [27] is based on.  

 With new knowledge collected through generations, 
the intensive development of new technical areas such as 
robotics especially strengthened by the development of the 
data computing process, demanded and enabled that elastic 
deformation was considered really as a dynamic value 
which depended on the system parameters. The elastic 
deformation is a dynamic value by both amplitude and 
frequency and it is the result of the total system movement 
i.e. outer and inner, dynamic and static forces. Such elastic 
deformation should exist in the dynamics of the robot 
system movements. The synthesis of the robot system 
dynamics should be processed on the basis of the 
completely new different principles comparing to [27], with 
models based on the known, classic dynamics, the elasticity 
theory and the oscillation theory, where the elastic 
deformations are described as dynamic values of the inner 
and outer load which influence the total dynamics of the 
robot system movements. 

The area which we deal with, the robotics, is very 
important, because the modeling of the robot system 
movement dynamics with both rigid and elastic elements 
comes from it directly. The robotics is the area which can 
offer the solution and it represents the foundation of the 
further research in many other areas. The reason for that is 
quite simple: the robotics progressed significantly in the 
last 40 years. It is important to emphasize the importance of 
the further researches but now based on new principles 
which will be set in this paper. 

The elastic deformation cannot be defined in advance 
(with both amplitude and frequency) and put in the system 
but completely inversely. The elastic deformation is a 
dynamic value which depends on the total dynamics of the 
robot system movements. That means that the elastic 
deformation amplitude and its frequency change depending 
on the forces (inertial forces, Coriolis, centrifugal forces, 
gravity forces as well as coupling forces between the present 
modes, and the play of the environment forces). It, of course, 
depends on the mechanism configuration, weight, length of 
the segments of the reference trajectory choice, dynamic 
characteristics of the motor movements etc. 

The elastic deformation exists even in the state of 
inaction and then it depends on the gravity forces i.e. 
mechanism configuration. That means that the elastic 
deformation depends on the robot system characteristics 
and it can be calculated in any chosen moment. When we 
conduct the mechanism through the reference trajectory, the 
elastic deformation also exists but now at the reference 
level without the influence of the disturbance. 

The Euler-Bernoulli equation was written in 1750. It was 

written by Bernoulli, physicist and Euler, mathematician, 
his longtime friend and colleague. They did not even dream 
about the robotics and the knowledge we have now at our 
disposal. But, although it was made more than 250 years 
ago, the Euler-Bernoulli equation is still of current interest 
and it can be connected logically with the contemporary 
knowledge from the robotics. 

I especially emphasize the robotics which, as we have 
already written, develops very intensively and in this case it 
imposes the solutions to the other areas such as the 
oscillation theory and the elasticity theory. It could have 
been otherwise. However, that is less important. The most 
important is to see the solution. It is important to establish 
the continuity in the research through years, decades, 
centuries. Moreover, if we analyze the past properly, there 
is hope to build the future. One day our successors will 
make a critical review of our equations, our assumptions 
and our interpretations, and we have to be aware of that 
because we are responsible for what we leave behind 
ourselves. But, we are not only responsible for the 
equations that we write but also for the equations to which 
we „only add“ i.e. which we refer to. In that sense the 
choice is very various. 

Source Equations of the Elastic Line 
The equation of the elastic line of the beam bending is of 

the following form: 
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 is the flexural rigidity.  

The general solution of motion, i.e. the form of 
transversal oscillations of flexible beams can be found by 
the method of particular integrals of D. Bernoulli, that is: 
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Figure 1. Idealized motion of elastic body according to D. Bernoulli 

See Fig.1. By superimposing the particular solutions (2), 
any transversal oscillation can be presented in the following 
form:  
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As already mentioned, Eqs.(1) - (3) were defined under 
the assumption that the elasticity force is opposed only by 
the proper inertial force. Besides, it is supposed by 
definition that the motion in Eq.(1) is caused by an external 
force, suddenly added and then removed. The solution (2) - 
(3) of D. Bernoulli satisfies these assumptions.  

Bernoulli presumed the horizontal position of the 
observed body as its stationary state (in this case it matches 
the position x - axis, see Fig.1). At such presumption, the 
oscillations happen just around the x - axis. If Bernoulli, at 
any case, had included the gravity force in its Eq.(1), the 
situation would have been more real. Then the stationary 
body position would not have matched the x - axis position, 
but the body position would have been little lower and the 
oscillations would have happened around the new 
stationery position (as presented in Fig.2). 

 

Figure 2. The motion of the elastic body in case of gravity force presence 

All marks are the same as in papers [12]-[15]. 
Equations (1) - (3) need a short explanation that, we 

think, should be assumed, but which is missing from the 
original literature [32]. Euler and Bernoulli wrote Eq.(3) 
based on ‘vision’. They did not define the mathematical 
model of a link with an infinite number of modes, which 
has a general form of Eq.(4), but they did define the motion 
solution (shape of elastic line) of such a link, which is 
presented in Eq.(3). They left the task of link modeling with 
an infinite number of modes to their successors. Transversal 
oscillations defined by Eq.(3) describe the motion of elastic 
beam to which we assigned an infinite number of DOFs 
(modes), and which can be described by a mathematical 
model composed of an infinite number of equations, in the 
form: 

 1, 1,
ˆ ˆ 0 1, 2,..., ,...j jM j jε+ = = ∞  (4) 

The dynamics of each mode is described by one 
equation. The equations in the model (4) are not of equal 
structure as our contemporaries, authors of numerous 
works, presently interpret it. We think that the coupling 
between the modes involved leads to structural diversity 
among the equations in the model (4). This explanation is 
of key importance and is necessary for understanding our 
further discussion.  

Under a mode we understand the presence of coupling 
between all the modes present in the system. We analyze 
the system in which the action of coupling forces (inertial, 
Coriolis’, and elasticity forces) exists between the present 
modes. To differentiate it from “mode shape” or “assumed 
mode”, we could call it a coupled mode or, shorter, in the 
text to follow, a mode. This yields the difference in the 
structure of Euler-Bernoulli equations for each mode. 

The Bernoulli solution (2) - (3) describes only partially 
the nature of motion of real elastic beams. More precisely, 
it is only one component of motion. The Euler Bernoulli 
equations (1) - (3) should be expanded from several aspects 
in order to be applicable in a broader analysis of elasticity 
of robot mechanisms. By supplementing these equations 
with the expressions that come out directly from the motion 
dynamics of elastic bodies, they become more complex.  

The motion of the considered robotic system mode is far 
more complex than the motion of the body presented in 
Fig.1. This means that the equations that describe the 
robotic system (its elements) must also be more complex 
than Eqs. (1) - (3), formulated by Euler and Bernoulli. This 
fact is overlooked, and the original equations are widely 
used in the literature to describe the robotic system motion. 
This is very inadequate because valuable pieces of 
information about the complexity of the elastic robotic 
system motion are thus lost. Hence, we should especially 
emphasize the necessity of expanding the source equations 
for the purpose of modeling robotic systems, and this 
should be done in the following way:  

- *based on the known laws of dynamics, Eq.(1) is to be 
supplemented by all the forces that participate in the 
formation of the bending moment of the considered mode. 
It is assumed that the forces of coupling (inertial, Coriolis, 
and elastic) between the present modes are also involved, 
which yields a structural difference between Eqs.(1) in the 
model (4), 

- *Equations (2) - (3) are to be supplemented by the 
stationary character of the elastic deformation caused by the 
forces involved. 

Euler-Bernoulli equation of a complex robotic 
system 

The Bernoulli solution (2) - (3) describes only partially 
the nature of motion of real elastic beams. More precisely, 
it is only one component of motion. The Euler-Bernoulli 
equations (1) - (4) should be expanded from several aspects 
in order to be applicable in a broader analysis of elasticity 
of robot mechanisms. By supplementing these equations 
with the expressions that come out directly from the motion 
dynamics of elastic bodies, they become more complex.  

As already mentioned, Eqs.(1) - (4) were defined under 
the assumption that the elasticity force is opposed only by 
the proper inertial force. Besides, it is supposed by 
definition that the motion in Eq (1) is caused by an external 
force, suddenly added and then removed. The solution (2) - 
(3) of D. Bernoulli satisfies these assumptions.  

Let us consider the motion of the first mode of the given 
link. The link has in all 1n  modes. The first mode is the 
bracket (support) of uniformly distributed mass along the 
mode, loaded by the moment 1,1M̂ . The load moment 1,1M̂  
is composed of all the forces acting on the first mode of the 
link, and these are inertial forces (own and coupled inertia 
forces of other modes), centrifugal, gravitational, Coriolis 
forces (own and coupled), forces due to relative motion of 
one mode with respect to the other, coupled elasticity forces 
of other modes, as well as the force of the environment 
dynamics, which is via the Jacobian matrix transferred to 
the motion of the first mode. This means that all these 
forces participate in generating a bending moment i.e. in 
forming elastic deformation as well as the elasticity line of 
the first mode. In that case the model of elastic line of the 
first mode of the elastic link is of the form: 
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j - ordinal number of the considered mode, j =1, … 1n . 
Vectors in Eq.(5) are: 

1 1
1,

ˆ x n
jH R∈  - the vector characterizing the inertia of the 

first mode. 
1 1

1,1
ˆ xh R∈ - centrifugal, gravitational and Coriolis forces 

of the first mode. 
6 1

1,1
xj R∈ , first row of the Jacobian matrix serving to 

map the impact of the dynamic force of contact 6 1x
ukF R∈  

on the behavior of the first mode. 

The vector 1 11,
x n

jz R∈  characterizing the effect of 
elasticity forces of the other modes on the first mode. The 

1, jz  obtained by modeling different link structures (with 
one, two, three modes). 

The moment of bending defined for the tip of any mode 
of the considered link is: 

 1, 1, 1, 1, 1, 1, 1, 1, 1,j j j s j j j s j j jF l C r l B r lε += ⋅ = ⋅ ⋅ ⋅ ⋅&  (6) 

The rigidity and damping characteristic for the tip of any 
mode is designated as 1, [N/m]s jC  and 1, [Ns/m]s jB  
respectively, the maximal deflection is 1, jr  and the mode 
length is 1, jl . The vector of bending moments is 1ε . 
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The force acting on the formation of the elastic line of an 
arbitrary mode of the considered link is 1,

ˆ
jF . The load 

moment 1,1M̂  from Eq. (5) is defined as: 
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Thus Eq. (5) can be now written in a simpler form: 

 1,1 1,1
ˆ ˆ 0M ε+ =  (8) 

Eq. (8) represents the Euler-Bernoulli’s equation of the 
first mode. The same equation was defined under the 
assumption that the elasticity moment 1,1ε̂  is opposed by 

the load moment 1,1M̂ , which, among the other forces, 
encompasses also the coupled elasticity of the other modes. 
In a stationary regime of robotic task realization, the 
mentioned moments that oppose the elasticity moment 1,1ε̂  
continuously change during the robotic task realization. 
This system can be also influenced by disturbance forces, 
which may be of an instant or permanent character.  

Therefore, elastic deformations of a given body can be 
generated by:  
- disturbance forces, causing oscillatory motion,  

- stationary forces, causing stationary motion.  
By superimposing the particular solutions of oscillatory 

character and the stationary solution of forced character, 
any elastic deformation can be presented in the following 
general form: 

 0
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1,1
ˆ ( )stT t  is the stationary part of elastic deformation 

caused by stationary forces that may continuously change 
in time.  

In the case when the robot is in state of inaction, then 
stationary forces are gravity forces. In case when the robot 
is in the state of motion, then stationary forces are gravity, 
inertial, centrifugal, Coriolis and of course coupled forces 
of all forces and environment force (if it is continuous). 
This means that stationary forces are all forces which 
change continuously in time. 

01,
ˆ ( )t jT t  is the oscillatory part of elastic deformation as 

in (2) or (3). This component of elastic deformation is 
caused by a disturbance force (which acts instantaneously) 
and can appear in the state of robot inaction and also in 
state of robot motion. 

An environment force can be of: 
- disturbing character (for example when the robot is mov-

ing without limitation and only in one moment enters into 
the contact with environment), or 

- stationary character (for example when the robot is con-
tinuously under the influence of the environment force). 
Total motion of the considered mode, defined by the sum 

of stationary and oscillatory motion, is given by Eq. (9). 
Orientation of any point of the first mode is defined by: 

 0ˆ , ,1,1 1,1 1,1 1,1 1,1
ˆ ˆ ˆˆ( , )st td x T T tψ =  (10) 

Like we defined the elastic line model of the first mode 
by Eq. (5) we can also define the model of the elastic line 
of the second, third … 1n -th mode of the elastic link. The 
elastic line model of the first link that has 1n  modes is 
given in a matrix form by the following equation: 
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Matrices and vectors in Eq. (11) are:  
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1
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impact of the dynamic force of the contact ukF  on the 
behavior of each mode. 
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of elasticity forces of the presented modes on each mode.  

1 1

1

1

22
1, 1, 1,1, 1 1, 1 1, 1 1

1 1, 1 1,2 2
1, 1 1,

ˆ ˆ( )ˆ ˆ( )
ˆ ...

ˆ ˆ

T

n n n

n

n

y yy y

x x

ηη
ε β β

⎡ ⎤∂ + ⋅∂ + ⋅⎢ ⎥= ⋅ ⋅⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

&&
 

The load moment 1M̂  is defined by: 
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 1,
1 1 1 1

2

12 1

ˆ ˆˆ ˆ j T
uke

d y
M H h j F z

dt
ε= ⋅ + + ⋅ + ⋅  (12) 

Eq. (11) can be written in a simpler form as:  

 1 1
ˆ ˆ 0M ε+ =  (13) 

Equation (13) represents the Euler-Bernoulli’s equation 
of the first link.  

To describe the behavior of the one-link robotic system 
having 1n  modes, the vector Eq. (13) should be 
supplemented by the mathematical model of the motor. The 
motor mathematical model can be defined by writing the 
equation of motion of all the moments that act on the motor 
shaft. In the case of a rigid robotic system the motor 
moment is opposed by the mechanism moment. With 
elastic robotic systems we have a somewhat different 
situation: the motor moment is opposed by the bending 
moment of the first elastic mode that comes after the motor 
and, partly, by the bending moments of the other elastic 
modes that are connected in series after the motor. All the 
modes that come after the motor, due to their position, exert 
certain influence on the motor dynamics.  

The effect of the first mode bending moment is defined 
by the factor 01/ 2+ , of the second by 11/ 2− , of the third 
by 21/ 2+ , of the fourth by 31/ 2− , of the fifth by 41/ 2+  
etc. 

We add all these elasticity moments to the motor model 
because they are just to oppose the rotation moment of the 
motor shaft. The mathematical model of motor is of the 
following form: 

 1 1 1 1 1

1 1 1 1 1 1 1 1

E

M u m

u R i C
C i I B S

θ
θ θ ε

= ⋅ + ⋅

⋅ = ⋅ + ⋅ − ⋅

&

&& &
 (14) 

[ ]1R Ω  is the rotor circuit resistance; [ ]1 Ai  is the rotor 

current; 1EC [ ]/(rad/s)V and 1MC [ ]Nm/A  are the 
proportionality constants of the electromotive force and 
moment, respectively; 1uB  [ ]Nm/(rad/s)  is the coefficient 

of viscous friction; 1I 2[kgm ]  is the inertia moments of the 
rotor and the reducer; 1S  is the expression defining the 
reducer geometry; 1mε  is the equivalent elasticity moment 
that opposes the rotation moment of the motor shaft.  

1 11,m m jzε ε= ⋅ . 

( )( )
( )

1
1

1
1, 0 1 2 3 1

1 1 1 1 1... 1
2 2 2 2 2

n
m j nz −

−
⎡ ⎤= + − + − −⎢ ⎥⎣ ⎦

. 

The vector 1,m jz  characterizes the influence of the 
elasticity moment of each mode on the motor dynamics.  

It will not be explained how we have obtained expression 

1 1MC i⋅ , 1 1I θ⋅ && , 1 1uB θ⋅ &  in Eq. (14), because this is already 
known from the literature. We will explain the procedure of 
obtaining the equivalent elasticity moment 1mε . 

The potential energy in top of j - th mode of the first 

link is 2 2
1, 1,1, 1,

1
2 j jpels j s jE C lϑ⋅ ⋅= , while the dissipative 

energy is: 2 2
1, 1, 1, 1,

1
2els j s j j jB lϑ⋅ ⋅Φ = & .  

All quantities should be expressed in dependence of 
generalized coordinates.  

One of them is also the rotation angle of the motor shaft 
1θ . 

By applying Lagrange’s equations on the expressions 
1,1pelsE , 1,2pelsE , … 1,pels jE , … 11,pels nE  and 1,1elsΦ , 

1,2elsΦ , … 1,els jΦ , … 11,els nΦ  with respect to the 

generalized coordinate 1θ , we obtain the equivalent 
elasticity moment 1mε , that opposes to the rotation moment 
of the first motor shaft.  

(In case of presence of the elastic gear behind the motor, 
we have its potential energy: 21

2pelE Cξ ξ ξ= ⋅ ⋅  and 

dissipative: 21
2el Bξ ξ ξΦ = ⋅ ⋅ &  energy. These quantities 

should also be expressed in dependence of generalized 
coordinates and Lagrange’s equation should be applied.) 

All this is explained in detail at modeling of considered 
example in paper [13] (chapter 4.A). 

The overall order of the system (13) - (14) is 1 1n + . 
Like we defined the motion of any point on the first 

mode elastic line by Eqs. (13) - (14), we can also define the 
motion of any point on the elastic line of the second, third 

1n -th mode of the elastic link. 
By superimposing the solution (9) - (10) for all the 

present modes of the first link and adding to it the dynamics 
of motor motion that drives it, we obtain the total solution 
of the system (13) - (14) in the form: 

 1 1 ,1, 1, 01, 1
ˆ ˆˆ ˆ ˆ( , , , )j st j t jy a x T T tθ=  (15) 

 

Figure 3. Possible positions of the tip of the elastic line with 1n modes. 

On considering Fig.3 we can see that the position 1̂x  

should also be defined, which is not only 1

1,
1

ˆ j

n

j
x

=
∑  (because 

the directions of the axes 1,1x̂ , 1,2x̂ … 11,ˆ nx  most often do not 
coincide with the direction of the axis 1̂x ), but also includes 
to a significant extent the geometry and characteristics of 
the mechanism bending, i.e. the mechanism dynamics. 
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 01 1 ,1, 1, 1, 1
ˆ ˆ ˆˆ ˆ( , , , )j st j t jx b x T T tθ=  (16) 

Any form of the elastic line and the pertinent transversal 
oscillations, as well as the motor motion, can be presented 
by Eqs. (15) - (16). To this equation one should add also the 
equation defining the orientation of each point on the elastic 
line of the link. 

 ˆ ,1 1 1, 1, 1, 1
ˆ ˆ ˆˆ( , , , )j st j to jd x T T tψ θ=  (17) 

In Fig.3 we sketched the possible forms of elastic line of 
the i -th link having in  modes that appear in the plane ix -

iy . The plane ix - iy  is rotated by the angle α , 
characterizing in the figure the position of the link base 
with respect to the main coordinate frame x - y - z . In the 
same figure we presented only some of the possible forms 
of the elastic line. The link tip can assume very different 
positions in the plane ix - iy . 

Let us consider a robotic system with m  links, whereby 
the first link contains 1n  modes, second link contains 2n  
modes, … m -th link contains mn  modes. See Fig.4. Model 
of the elastic line of this complex elastic robotic system is 
given in the matrix form by the following equation: 

 
2

2
ˆ ˆˆ ˆ 0uk

T
e

d yH h j F z
dt

ε ε⋅ + + ⋅ + ⋅Θ ⋅ + =  (18) 

If we define 
1

m

i
i

k n
=

= ∑  then we have that  

ˆ kxkH R∈ - matrix characterizing the inertia,  
1ˆ kxh R∈ - vector of the centrifugal, gravitational and 

Coriolis forces, 6T xk
ej R∈ - Jacobian matrix mapping the 

effect of the dynamic contact force ukF ,  
k kR ×Θ∈ - matrix characterizing the robot 

configuration,  
k kz R ×∈  matrix characterizing the mutual influence of 

the forces of elastic modes of all the links, 

2
1

1,1 1,2 2,1 2,2 2, ,
1,

... ... ..... m

T

n m n
n

ε ε ε ε ε ε ε ε⎡ ⎤= ⎢ ⎥⎣ ⎦
. 

 

Figure 4. The elastic line of the complex robotic system with m  links.  

1,1 ,

22 ˆ ˆˆ ˆ ( )( ) , , ,1,1 1,1 1,1
2 2ˆ ˆ1,1 ,

ˆ ... m ml m ml m ml

m ml

m ml

T

n n n n n n
n n

n n

y yy y

x x

ηη
ε β β ⋅

⎡ ⎤∂ + ⋅∂ + ⋅
⎢ ⎥⋅⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

=
&& .  

If we define from (18) the load moment M̂  as: 

 
2

2
ˆ ˆˆ

uk
T
e

d yM H h j F z
dt

ε= ⋅ + + ⋅ + ⋅Θ ⋅  (19) 

Eq. (18) can be written in the form: 

 ˆ ˆ 0M ε+ =  (20) 

Equation (20) represents the Euler-Bernoulli’s equation 
of the overall robotic system. In order to describe the 
behavior of a robotic system having m  links (each of them 
containing in  modes), we have to add to the vector Eq. (20) 
the mathematical model of all the motors written in a vector 
form. Let us define it by setting for each motor the equation 
of motion of all the moments acting about the rotation axis 
of the given motor. It has the form of the mathematical 
model of the motor of a rigid robotic system, but the 
difference being in that the moment of the i -th motor is not 
opposed by the mechanism moment (as with rigid robotic 
systems).  

The motor moment is opposed by the bending moment 
of the first elastic mode that comes after the motor, and also 
in part, by the bending moments of the other elastic modes 
that are connected in series after the given motor. All the 
modes after the motor, due to their position, influence the 
dynamics of the motor motion.  

The mathematical model of all m  motors can be written 
in a vector form as: 

 
u m

Eu R i C
C i I B SM

θ
θ θ ε

= ⋅ + ⋅

⋅ = ⋅ + ⋅ − ⋅

&

&& &  (21) 

In Eq. (21) we have m  equations of motors. 

 m mzε ε= ⋅Θ ⋅  (22) 

m
mxkz R∈  is the matrix characterizing the effect of the 

elasticity moment of each mode on the motor motion 
dynamic.  

The potential energy in the top of j - th mode of the i  - 

th link is 2 2
, , , ,

1
2pels i j s i j i j i jE C lϑ⋅ ⋅= , while dissipative 

energy is: 2 2
, , , ,

1
2els i j s i j i j i jB lϑ⋅ ⋅Φ = & .  

All quantities should be expressed in dependence of 
generalized coordinates.  

Some of them are also the rotation angles of the motor 
shaft iθ . 

By applying Lagrange’s equations on the expressions 
1,1pelsE , 1,2pelsE , …, ,pels i jE , … , 1,pels m nE  and 1,1elsΦ , 

1,2elsΦ , … , ,els i jΦ , … , 1,els m nΦ  with respect to the 

generalized coordinate iθ , we obtain the equivalent 
elasticity moment m iε , that opposes to the rotation moment 

of the i -th motor shaft. 1 2 ... ...m
T

m m m i m mε ε ε ε ε⎡ ⎤= ⎣ ⎦ .  

The overall order of the system (20) - (21) is k m+ . 
The full model is planned on classical principles of the 

mechanics [33]. 
It is known that the robot configuration can substantially 

influence the mutual position and orientation of elastic lines 
of particular links (see Fig. 4).  

The solution of the system (20) - (21), i.e. the form of its 
elastic line, can be obtained by superimposing the solutions 
(15) - (17) for all the links involved in the presence of the 
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dynamics (angle) of rotation of each motor, as well as by 
taking into account the robotic configuration, i.e. the angle 
between the axes 1iz −  and iz .  

 

,, , 0 ,

,, , 0 ,

,, , 0 ,

,, , 0 ,

,, , 0 ,

,, , 0 ,

ˆ ˆˆ ˆ ˆ( , , , , )
ˆ ˆ ˆˆ ˆ( , , , , )
ˆ ˆˆ ( , , , , )
ˆ ˆ ˆˆ ˆ( , , , , )

ˆ ˆ ˆˆ ˆ( , , , , )
ˆ ˆ ˆˆ ˆ( , , , ,

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

i j sti j t i j

y a x T T t
x b x T T t
z c x T T t

d x T T t
e x T T t
f x T T

θ α
θ α
θ α

ψ θ α
ξ θ α
ϕ θ α

=

=
=

=

=

= )t

 (23) 

Thus we defined the position and orientation of each 
point of the elastic line in the space of the Cartesian 
coordinates. It should be pointed out that the form of elastic 
line comes directly out from the dynamics of the system 
motion. 

Simulation Example 
Robot starts from point "A" (Fig.5) and moves toward 

point "B" in the predicted time 2[s]T = . The same 
example was analyzed as in paper [13] where all 
mechanisms characteristics were given. 
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Figure 5. The robotic mechanism. 
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Figure 6. Tip coordinates and the deviation of the position from the 
reference level. 

The dynamics of the environment force [29] is included into 
the dynamics of system’s motion. The adopted velocity profile is 

trapezoidal [ ]( )o
max 0.9817 rad sq =& , with the acceleration / 

deceleration period of 0.2 T⋅ ( )2o
max 2.4544 rad sq ⎡ ⎤= ± ⎣ ⎦&& . 

The same example analyzed as in paper [13] only with 
somewhat different parameters flexibility.  

Elastic deformation is a quantity which is at least partly 
encompassed by the reference trajectory as explained in 
[13] (2.1 under 2). 
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Figure 7. Dynamic force of the environment. 

All other characteristics of the system and environment 
are the same as in paper [13]. 
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Figure 8. The elastic deformations. 
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The characteristics of stiffness and damping of the gear 
in the real and reference regimes are not the same and 
neither are the stiffness and damping characteristics of the 
link. 02C Cξ ξ

= ⋅ ⋅ , 02B Bξ ξ
= ⋅ , 0

1,1 1, 1
0.99s s

C C= ⋅ , 

0
1,1 1, 1

0.99s s
B B= ⋅ , 0

1,2 1, 2
0.99s s

C C= ⋅ , 0
1,2 1, 2

0.99s s
B B= ⋅ . 

As it can be seen from Fig.6 in its motion from point 
“A” to point “B”, the robot tip tracks well the reference 
trajectory in the space of the Cartesian coordinates.  

As the position control law for controlling local feedback 
was applied, the tracking of the reference force was directly 
dependent on the deviation of the position from the 
reference level (see Fig.7). 

The elastic deformations that are taking place in the 
vertical plane angle of bending of the lower part of the link 
(first mode) mϑ  and the angle of bending of the upper part 
of the link (second mode) eϑ , as well as elastic 
deformations taking place in the horizontal plane:, the angle 
of bending of the lower part of the link (first mode) qϑ , the 
angle of bending of the upper part of the link (second 
mode) δϑ  and the deflection angle of the gear ξ  are given 
in Fig.8. 

The rigidity of the second mode is about ten times lower 
compared with that of the first mode, it is then logical that 
the bending angle for the second mode is about ten times 
larger compared to that of the first mode. 

The Fig.8a exhibits the wealth of different amplitudes 
and circular frequencies of the present modes of elastic 
elements. 

Conclusion 
It is pointed out that the elastic deformation is the 

consequence of the total robot system dynamics which is 
essentially different from, until now, widely used method 
that implies the adaptation of the “assumed modes 
technique”.  

Based on the EBA, we defined the general form of the 
Euler-Bernoulli equation of the elastic line of complex 
elastic robotic system with m  segments, and each segment 
has in modes and also the mathematical model of motors 
which move each link.  

The Euler-Bernoulli equation has been expanded from 
several aspects:  
1. Euler-Bernoulli equation (based on the known laws of 

dynamics) should be supplemented with all the forces 
that are participating in the formation of the bending 
moment of the considered mode, which causes the dif-
ference in the structure of these equations for each 
mode.  

2. Structure of the stiffness and damping matrix must also 
have the elements outside the diagonal, because of the 
existence of strong coupling between the elasticity 
forces involved.  

3. Damping is an omnipresent elasticity characteristic of 
real systems, so that it is naturally included in the Euler-
Bernoulli equation. 

4. General form of the transversal elastic deformation is 
defined by superimposing particular solutions of the os-
cillatory character (solution of Daniel Bernoulli) and a 
stationary solution of the forced character (which is a 
consequence of the forces involved). 

1. General form of the elastic line is a direct outcome of 
the dynamics of system motion-it must be significantly 
expanded and cannot be represented by one scalar 
equation but three equations are needed to define the 
position and three equations to define the orientation 
of each point on the elastic line. 

With elastic robotic systems, the actuator torque is 
opposed by the bending moment of the first elastic mode, 
which comes after the motor, and partly by the bending 
moments of other modes, which are connected in series 
after the motor considered. All modes coming after the 
motor, because of their position, exert influence on the 
dynamics of motor motion. The mathematical model of 
motor in our paper is connected to the rest of the 
mechanism via the equivalent elasticity moment. 

New structures of the stiffness (and damping) matrix and 
the mathematical model of actuators appear as a 
consequence of the coupling between the modes of 
particular links.  
All this has been presented for a relatively simple robotic 
system that offered the possibility of analyzing the 
phenomena involved. Through the analysis and modeling of 
an elastic mechanism we made an attempt to give a 
contribution to the development of this area. 
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Novo viđenje Euler-Bernoulli jednačine 
Posebna pažnja je posvećena kretanju elastičnih linkova u robotskoj konfiguraciji. Elastična deformacija je 
dinamička veličina koja zavisi od ukupne dinamike kretanja robotskog sistema. Euler-Bernoulli jednačinu (koja je 
dugi niz godina korišćena u literaturi) treba proširiti prema zahtevima složenosti kretanja elastičnih robotskih 
sistema. Euler-Bernoulli jednačini (zasnovano na postojećim zakonima dinamike) treba dodati sve sile (inercijalne, 
Coriolisove, centrifugalne, gravitacione, sile okoline, poremećajne kao i sile sprezanja između prisutnih modova) koje 
učestvuju u formiranju momenta elastičnosti posmatranog moda. To uslovljava različitost u strukturi Euler-
Bernoullijevih jednačina za svaki mod. Matrica krutosti je puna matrica kao i matrica prigušenja. Matematički 
model motora takodje obuhvata kuplovanje izmedju sila elastičnosti. Partikularni integral koji je definisao Daniel 
Bernoulli treba proširiti stacionarnim karakterom elastične deformacije za bilo koju tačku posmatranog moda 
uzrokovano prisutnim silama. Opšta forma elastične linije mehanizma direktno proističe iz dinamike kretanja 
sistema i ne može biti opisana sa jednom skalarnom jednačinom već sa tri jednačine za poziciju i tri jednačine za 
orjentaciju svake tačke na toj elastičnoj liniji. Simulacioni rezultati su predstavljeni za odabrani primer robota 
uvodeći simulaciono prisustvo elastičnosti prenosnika i linka (dva moda) kao i dinamiku sila okoline. 

Ključne reči: robotika, dinamika kretanja, Ojler-Bernulijeve jednačine, modelovanje procesa, elastična deformacija, 
kuplovanje, matrica krutosti, simulacija kretanja, programirana trajektorija. 

Novoe predstavlenie uravneni}  $jler-Bernulli 

Osoboe vnimanie posv}|ëno dvi`eniy &lasti~nwh kanalov sv}zi v robototehni~eskih konfiguraci}h. 
$lasti~na} deformaci} predstavl}et dinami~eskuy veli~inu, kotora} zavisit ot sovokupnoj dinamiki 
dvi`eni} robototehni~eskoj sistemw. Uravnenie  $jler-Bernulli (dolgie godw polxzovano v literature) 
nado ras{iritx  v sootvetstvii s trebovani}mi slo`nosti dvi`enij &lasti~nwh robototehni~eskih 
sistem. Uravneniy  $jler-Bernulli (obosnovanoj na u`e su|estvuy|ih zakonah dinamiki) nado 
pribavitx vse silw (inercionnwe, Koriolisa, centrifugalxnwe, gravitacionnwe, vne{nwe silw, 
naru{ay|ie silw, a v tom ~isle i silw sopr}`eni} me`du prisutstvuy|imi modami), u~astvuy|ie v 
formirovanii momenta &lasti~nosti rassmatrivanogo moda. A &to obuslavlivaet raznoobrazie v 
strukture uravnenij  $jler-Bernulli dl} ka`dogo moda. Matrica `ëstkosti }vl}ets} polnoj matricej, 
kak i matrica dempfirovani}. Matemati~eska} modelx dvigatel} to`e ohvatwvaet sv}zwvanie me`du 
silami &lasti~nosti. ^asti~nwj integral, kotorwj opredelil Daniel Bernulli, nado ras{iritx  
stacionarnwm harakterom &lasti~noj deformacii dl} lyboj to~ki rassmatrivannogo moda, ~to bwvaet 
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pri~inoj prisutstvuy|ih sil. Ob|a} forma &lasti~noj linii mehanizma  pr}mo ishodit  iz dinamiki 
dvi`eni} sistemw i ne mo`et bwtx opisana tolxko odnim skal}rnwm uravneniem, no tremx} uravneni}mi 
dl} pozicii i tremx} uravneni}mi dl} orientacii ka`doj to~ki na &toj &lasti~noj linii. Imitiruy|ie 
rezulxtatw predstavlenw dl} otobrannogo primera intellektualxnogo robota, s vvedeniem imitiruy|ego 
prisutstvi} &lasti~nosti peredato~nogo mehanizma i kanala sv}zi (dva moda), a v tom ~isle i dinamiki 
vne{nih sil. 

Kly~evwe slova: Robototehnika, dinamika dvi`eni}, uravneni} $jler-Bernulli, modelirovanie processa, 
&lasti~na} deformaci}, sv}zwvanie, matrica `ëstkosti, imitaci} dvi`eni}, programmirovana} 
traektori}. 

Nouvelle vue sur les équations Euler-Bernoulli 
L’attention particulière a été portée au mouvement des liens élastiques chez la configuration robotique. La 
déformation élastique représente une valeur dynamique dépendante de la dynamique totale de mouvement du 
système robotique. L’équation Euler-Bernoulli (employée pendant longtemps dans la littérature) est à élargir selon les 
exigences de la complexité du mouvement des systèmes robotiques élastiques. A l’équation Euler-Bernoulli (basée sur 
les lois existantes de la dynamique) il faut ajouter toutes les forces (initiales, de Corolis, centrifuges, de gravitation, 
ambiantes, perturbantes ainsi que les force d’attelage entre les modes présents) qui participent à la formation du 
moment d’élasticité chez le mode observé. Cela conditionne la différence dans la structure des équations Euler-
Bernoulli pour chaque mode. La matrice de rigidité est la matrice pleine ainsi  que la matrice d’étouffement. Le 
modèle mathématique du moteur comprend aussi l’attelage entre les forces d’élasticité. L’intégrale particulière 
définie par Daniel Bernoulli est à élargir par le caractère stationnaire de la déformation élastique pour n’importe quel 
point du mode observé causé par les forces en présence. La forme générale de la ligne élastique du mécanisme 
provient directement de la dynamique du mouvement du système et ne peut pas être décrite par une équation scalaire 
mais par trois équations pour la position et trois équations pour l’orientation de chaque point sur cette ligne élastique. 
Les résultats de la simulation sont représentés pour le modèle choisi de robot introduisant la présence simulatrice de 
l’élasticité de transducteur et la liaison (deux modes) ainsi que la dynamique des forces ambiantes.  

Mots clés: robotique, dynamique du mouvement, équations Euler-Bernoulli, modélisation du procédé, déformation 
élastique, attelage, matrice de rigidité, simulation du mouvement, trajectoire programmée. 
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