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This paper offers new, necessary and sufficient conditions for the delay-dependent asymptotic stability of systems of 
the form 0 1( 1) ( ) ( )k A k A k h+ = + −x x x  and 0 1( ) ( ) ( )t A t A t τ= + −x x x� . The time-dependent criteria are derived by 
Lyapunov’s direct method. Two matrix equations have been derived: matrix polynomial equation and continuous 
(discrete) Lyapunov matrix equation. Also, modifications of the existing sufficient conditions of convergence of Traub 
and Bernoilli algorithms for computing the dominant solvent of the matrix polynomial equation are derived. These 
results have been extended to large scale systems as well. Numerical computations are performed to illustrate the 
results obtained. 
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Introduction 
HE problem of investigation of time delay systems has 
been exploited over many years. 

The existence of pure time lag, regardless if it is present 
in the control or/and the state, may cause an undesirable 
system transient response, or even instability. Time delay is 
very often encountered in various technical systems, such 
as electric, pneumatic and hydraulic networks, chemical 
processes, long transmission lines, etc.  

Consequently, the problem of the stability analysis for 
this class of systems has been one of the main interests for 
many researchers. In general, the introduction of time delay 
factors makes the analysis much more complicated.  

In the existing stability criteria, mainly two methods of 
approach have been adopted.  

Namely, one direction is to contrive the stability condition 
which does not include the information on the delay, and the 
other is the method which takes it into account.  

The former case is often called the delay - independent 
criteria and generally provides simple algebraic conditions. 
Numerous reports have been published on this matter, with 
particular emphasis on the application of Lyapunov’s 
second method or on using the concept of the matrix 
measure Mori et al. (1981), Mori (1985), Hmamed (1986), 
Lee et al. (1986), Alastruey, De La Sen (1996). 

The majority of stability conditions in the literature 
available, of both continual and discrete time delay systems, 
are sufficient conditions independent of time delay. 

Only a small number of works provide both necessary 
and sufficient conditions, Lee, Dianat (1981), Xu, et al. 
(2001) and Boutayeb, Darouach (2001), which are in their 
nature mainly dependent on time delay.  

The results concerning Lyapunov stability, for non-delay 
time systems, are well documented in a number of known 

references, and, for the sake of brevity, are omitted here. 
A discussion of the problem of investigation of linear 

discrete time delay systems and their Lyapunov stability 
should point out that there are not too many results dealing 
with this problem so we turn our attention, in the sequel, 
only to this class of systems. 

Namely, Koepcke (1965), was the first who paid 
attention to this class of systems solving a synthesis 
problem of controlling the systems governed by linear 
differential – difference equations. It has been shown, in the 
same paper, that such systems are equivalent to infinite 
dimensional difference equations the matrix elements of 
which can be calculated readily by recursive formulas. 
Some results, concerning stability in the sense of 
Lyapunov, were also derived. The problem of finding an 
optimal control in linear discrete systems with time delays 
in both the state variables and control were studied in 
Chung (1967, 1969). 

The method of orthogonal projection was used to derive the 
equations for optimal estimating the state of a non-stationary 
linear discrete system with multiple delays in Premier, 
Vacroux (1969). A Kalman - type filter with the necessary 
recursive error and cross error matrix equations were also 
derived. The linear – quadratic tracking problem was 
discussed, for the first time, in Pindyck (1972), for a discrete – 
time systems with the time delay incorporating in inputs. 

Several sufficient conditions for asymptotic stability of 
linear discrete – delay systems were presented in the paper of 
Mori et al. (1982). Since these conditions are independent of 
delay and possess simple forms, they provide useful tools to 
check system stability at the first stage. 

The study of stabilization problem for general 
decentralized large - scale linear continuous and discrete 
time delay systems using local feedback controllers were 
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presented by Lee, Radovic (1987). 
The local feedback controls were assumed to be memory 

less. In that sense, the sufficient stabilization conditions 
were established.  

The problem of delays in interconnections, for the same 
class of systems, was studied latter in Lee, Radovic (1988). 

The paper of Trinh, Aldeen (1995) presents some new 
sufficient conditions for robust and D-stability of discrete – 
delay perturbed systems. It has been shown that these 
results are less conservative than those reported in 
literature, particularly to Mori et. al (1982). 

Based on a derived algebraic inequality a criterion to 
guarantee the robust stabilization and state estimation for 
perturbed discrete - time – delay large scale systems was 
proposed in Wang, Mau (1995).  

That criterion is independent of time delay and does not 
need the solution of Lyapunov or Riccati equation. 

The organization of  this chapter is as follows. 
In Section 2 we present a new, necessary and sufficient 

conditions for delay-dependent asymptotic stability of 
systems of particular class of continuous and discrete time 
delay systems.  

Moreover, we show that in the paper of Lee, Diant 
(1981), where it is asserted that the derivative sign of a 
Lyapunov function (Lemma) and thereby the asymptotic 
stability of the system (Theorems 1 and 2) can be 
determined based on the knowledge of only one or any 
solution of the particular nonlinear matrix equation, those 
statements are incorrect.  

To improve those results we propose new formulations 
of the Lemma and Theorems 1 and 2. 

 Further extensions of these results to the class of 
continuous and discrete large scale time delay are presented 
in Section 3. A particular case of two and more subsystems 
is also investigated.  

All theoretical results are supported by suitably chosen 
numerical examples. 

Section 4 discusses and summarizes contributions.  

Time delay systems 
Throughout this chapter we use the following notation. 
\  and ^ denote real (complex) vector space or the set 

of real (complex) numbers, +T denotes the set of all non-
negative integers, *λ  means conjugate of λ ∈  and 
F∗conjugate transpose of matrix n nF ×∈^ .  

The superscript T denotes transposition. For a real 
matrix F the notation F > 0 means that the matrix F is 
positive definite. ( )i Fλ  is the eigenvalue of the matrix F 

such that ( ){ }| det 0F Iλ λ− = .  
The spectrum of the matrix F is denoted with σ(F) and 

the spectral radius with ρ(F). 

CONTINUOUS TIME DELAY SYSTEMS 

For the sake of completness, we present the following 
result Lee, Dianat (1981). 

Consider the class of continuous time-delay systems 
described by 
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Lemma 1. Lee, Dianat (1981).  

Let the system be (1) and let P1(t), a characteristic matrix 
of dimension ( )n n× , be continuous and differentiable in 
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where *
0 0 0P P= >  is Hermitian and ( ) ( )t tθ θ= +x x , 

[ ], 0θ τ∈ − .  
If 

 ( )( ) ( )( )*0 0 1 0 1 00 0P A P A P P Q+ + + = − , (3) 

 ( ) ( )( ) ( )1 0 1 10 , 0P A P Pκ κ κ τ= + ≤ ≤� , (4) 

where ( )1 1P Aτ =  and * 0Q Q= >  is Hermitian, then  

 ( ) ( ), , 0t t
dV Vdtτ τ= <x x�  (5) 

Eq. (2) defines Lyapunov’s function for the system (1) 
and * denotes conjugate transpose of the matrix.  

In the paper Lee, Dianat (1981) it is emphasized that the 
key to the success in the construction of a Lyapunov 
function corresponding to the system (1) is the existence of 
at least one solution P1(t) of (4) with the boundary 
condition ( )1 1P Aτ = .  

In other words, it is required that the nonlinear algebraic 
matrix equation 

 ( )( ) ( )0 1 0
1 10A Pe P Aτ+

=  (6) 

has at least one solution for P1(0). 
Theorem 1. Lee, Dianat (1981).  
Let the system be described by (1). If for any given 

positive definite Hermitian matrix Q there exists a positive 
definite Hermitian matrix P0, such that   

 ( )( ) ( )( )0 0 1 0 10 0 0TP A P A P P Q+ + + + =  (7) 

where for [ ]0,κ τ∈ , ( )1P κ satisfies 

 ( ) ( )( ) ( )1 0 1 10P A P Pη η= +� , (8) 

with the boundary condition ( )1 1P Aτ =  and ( )1 0P τ =  
elsewhere, then the system is asymptotically stable. 

Theorem 2. Lee, Dianat (1981). 
Let the system be described by (1) and furthermore, let 

(6) has a solution for P1(0), which is nonsingular.  
Then the system is asymptotically stable if (8) of 

Theorem 1 is satisfied.  
The necessary and sufficient conditions for the stability of 

the system are derived by Lyapunov’s direct method through 
construction of the corresponding “energy” function. This 
function is known to exist if a solution P1(0) of the algebraic 
nonlinear matrix equation ( )( ) ( )1 0 1 1exp 0 0A A P P= +  can 
be determined. 

It is asserted, there, that a derivative sign of a Lyapunov 
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function (Lemma 1) and thereby asymptotic stability of the 
system (Theorem 1 and Theorem 2) can be determined 
based on the knowledge of only one or any solution of the 
particular nonlinear matrix equation.  

We now demonstrate that Lemma 1 should be improved 
since it does not take into account all possible solutions for (6).  

The counter example, based on our approach and 
supported by the Lambert function application, is given in 
Stojanovic, Debeljkovic (2006).  

Remark 1. 
If we introduce a new matrix, 

 ( )1 1 0R A P+�  (9) 

then condition (3) reads  

 *
0 0P R R P Q+ = −  (10) 

which presents a well-known Lyapunov’s equation for the 
system without time delay.  

This condition will be fulfilled if and only if R is a stable 
matrix i.e. if  

 ( )Re 0i Rλ <  (11) 

holds, Stojanovic, Debeljkovic (2005). 
Remark 2. Stojanovic, Debeljkovic (2005) 
Eq. (6) expressed through the matrix R can be written in 

a different form as follows,   

 0 1 0RR A e Aτ−− − =  (12) 

and there follows 

 ( )0 1det 0RR A e Aτ−− − =  (13) 

Substituting the matrix variable R by the scalar variable s 
in (11), the characteristic equation of the system (1) is 
obtained as 

 ( ) ( )0 1det 0sf s sI A e Aτ−= − − =  (14) 

Let us denote 

 ( ){ }| 0s f sΣ =�  (15) 

a set of all characteristic roots of the system (1), Stojanovic, 
Debeljkovic (2005). 

The necessity for the correctness of desired results 
forced us to propose new formulations of Lemma 1 and 
Theorem 1 and Theorem 2. 

Lemma 1.a Stojanovic, Debeljkovic (2006). 
Suppose that there exist(s) the solution(s) P1(0) of (6) 

and let the Lyapunov’s function be (2).  
Then, ( ), 0tV τ <x�  if and only if for any matrix 

* 0Q Q= >  there exists a matrix *
0 0 0P P= >  such that (3) 

holds for all solution(s) P1(0). 
Remark 3. 
The necessary condition of Lemma 1.a follows directly 

from the proof of Theorem 2 in Lee, Dianat (1981), 
Stojanovic, Debeljkovic (2006)  

Theorem1.a Stojanovic, Debeljkovic (2006). 
Suppose that there exist(s) the solution(s) of P1(0) of (6).  
Then, the system (1) is asymptotically stable if for any 

matrix * 0Q Q= >  there exists a matrix *
0 0 0P P= >  such 

that (3) holds for all solutions P1(0) of (6), Stojanovic, 
Debeljkovic (2006).  

Theorem 2.a Stojanovic, Debeljkovic (2006). 
Suppose that there exist (s) the solution(s) P1(0) of (6). If 

the system (1) is asymptotically stable, then the following 
statements are equivalent: 
1. For any matrix * 0Q Q= >  there exists a matrix 

*
0 0 0P P= >  such that the (3) holds for all solutions 

P1(0) of (6). 
2. The condition ( )( )1 1Re 0 0i A Pλ + <  holds for all so-

lutions of P1(0) of (6).  
Remark 4.  
Theorem 1.a contains the sufficient and Theorem 2.a the 

necessary condition of stability.  
The mentioned conditions of stability are formulated 

together in the following Theorem, Stojanovic, Debeljkovic 
(2006). 

Theorem 3. Stojanovic, Debeljkovic (2006).  
Suppose that there exist(s) the solution(s) P1(0) of (6). 
Then, the system (1) is asymptotically stable if and only 

if any of the two following statements holds: 
1. For any matrix * 0Q Q= >  there exists a matrix 

*
0 0 0P P= >  such that (3) holds for all solutions 

( )1 0P  of (6). 

2. The condition ( )( )1 1Re 0 0i A Pλ + <  holds for all so-
lutions P1(0) of (6).  

Remark 5. 
The statements Lemma 1.a and Theorems 1.a and 

Theorems 2.a require that corresponding conditions are 
fulfilled for any solution P1(0) of (6) or R of (12). These 
matrix conditions are analogous to the following known 
scalar condition of asymptotic stability: System (1) is 
asymptotically stable if and only if the condition Re 0s <  
holds for all solutions s of (14), Stojanovic, Debeljkovic 
(2006). 

Remark 6.  
From the preceding theorems, the following practical 

question is imposed: how can all possible solutions P1(0) of 
(6) be numerically computed? This problem cannot be 
directly numerically solved because the number of solutions 
P1(0) is not known beforehand, and can be very large 
(infinite), Stojanovic, Debeljkovic (2006).  

However, in order to examine the stability of the system 
more efficiently, the mentioned numerical problem can be 
replaced by a new, numerically simpler problem that reads:  
a)  (12) is solved instead of (6), and  
b) computations are done for the solution maxR  of (12) 

whose spectrum contains the eigenvalue maxλ ∈Σ  with 
a maximal real part. 
Step b) in the last problem requires investigations of new 

numerical algorithms for direct computations of the matrix 
maxR  from nonlinear (exponential) matrix eq. (12).  
To the authors’ knowledge, such algorithms have not 

been presented in literature so far.  
At present, use is being made of algorithms based on 

various standard optimization methods and they demand 
initial guesses of solution for a given equation. 

On the basis of Remark 6, it is possible to reformulate 
Theorem 3 in the following way:  

Theorem 4. Stojanovic, Debeljkovic (2006). 
Suppose that there exists the solution maxR  of (6). 
Then, the system (1) is asymptotically stable if and only 
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if any of the two following equivalent statements holds: 
1. For any matrix * 0Q Q= >  there exists a matrix 

*
0 0 0P P= >  such that (10) holds for the solution maxR . 

2. ( )maxRe 0i Rλ < . 

DISCRETE TIME DELAY SYSTEMS 
In the sequel we propose new, necessary and sufficient 

conditions for delay-dependent asymptotic stability of 
systems of the form ( ) ( ) ( )0 11k A k A k h+ = + −x x x . The 
time-dependent criteria are derived by Lyapunov’s direct 
method and are exclusively based on the maximal and 
dominant solvents of a particular matrix polynomial 
equation. 

Two matrix equations have been derived: matrix 
polynomial equation and discrete Lyapunov matrix 
equation.  

It has been demonstrated that, if a dominant solvent can 
be computed by Traub or Bernoulli algorithm, a decrease in 
the number of computations is to be expected in favor of 
the derived stability criteria compared with the existing 
ones.  

Modifications of the existing sufficient conditions of 
convergence of Traub and Bernoilli algorithms for 
computing the dominant solvent of the matrix polynomial 
equation are derived as well.  
Introduction 

The stability problem of linear systems with time delays 
has been investigated by many researchers, (see references).  

It is obvious that there are much more published papers 
in the area of continuous than discrete time delay systems.  

Certainly, one of the basic reasons for that lies in the fact 
that discrete time delay systems are of finite dimensions so 
the equivalent systems of considerably high order can be 
easily built, Malek-Zavarei, Jamshidi (1987), Gorecki et al. 
(1989).  

The basic inspiration for our investigation is based on 
paper Lee, Dianat (1981), however, the stability of discrete 
time delay systems is considered herein.  

In this paper, we first propose a modification of the 
existing sufficient condition for non-singularity of the block 
Vandermonde matrix ( )1 1, , hV S S +… .  

This condition has a weaker hypothesis than a similar 
condition from Dennis et al. (1976) and represents the 
generalization of the results presented in Kim (2000).  

It has been then demonstrated that the condition of non-
singularity of the block Vandermonde matrix 
( )2 1, , hV S S +…  is the direct outcome of the non-singularity 

of the block matrix ( )1 1, , hV S S +… . 
Likewise, we have arrived at a new sufficient condition 

for the convergence of Traub and Bernoilli algorithms.  
This condition has a weaker hypothesis than a similar 

condition in Dennis et al. (1978). 
At the end, we propose new necessary and sufficient 

conditions for delay dependent stability of discrete linear 
time delay systems, which, as distinguished from the 
criterion based on the eigenvalues of the equivalent system 
matrix Gantmacher (1960), use matrices of considerably 
lower dimensions. 
Preliminaries 

A linear, discrete time-delay system can be represented 
by the difference equation 

 ( ) ( ) ( )0 11k A k A k h+ = + −x x x  (16) 

with an associated function of the initial state 

 ( ) ( ) { }, , 1, ... , 0h hθ θ θ= ∈ − − +x ψ  (17) 

Eq. (16) is referred to as homogenous or the unforced 
state equation.  

The vector ( ) nk ∈x \  is a state vector and 0 1, n nA A ×∈\  
are constant matrices of appropriate dimensions, and pure 
system time delay is expressed by the integers h∈ +T .  

System (16) can be expressed with the following 
representation without delay, Malek-Zavarei, Jamshidi 
(1987), Gorecki et al. (1989).  
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The system defined by (18) is called the equivalent 
system, while the matrix Aeq, is the matrix of the equivalent 
system. 

The characteristic polynomial of system (16) is given 
with: 
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Denote with 

 ( ){ } ( )| 0ˆ eqf Aλ λ λΩ = = =  (20) 

the set of all characteristic roots of system (16).  
The number of these roots amounts to ( 1)n h + .  
A root mλ  of Ω with the maximal module: 

 ( ): maxm m eqAλ λ λ∈Ω =  (21) 

let us call the maximal root (eigenvalue). Note that there 
can exist a number of maximal roots of Ω. 

If the scalar variable λ in the characteristic polynomial is 
replaced by the matrix n nX ×∈^  the two following monic 
matrix polynomials are obtained 

 ( ) 1
0 1

h hM X X A X A+= − −  (22) 

 ( ) 1
0 1

h hF X X X A A+= − −  (23) 

It is obvious that ( ) ( )F Mλ λ= .  
For the matrix polynomial M(X), the matrix of the 

equivalent system Aeq represents the block companion 
matrix. 

A matrix n nS ×∈^  is a right solvent of M(X), Dennis et 
al. (1976) if 

 ( ) 0M S =  (24) 
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If 

 ( ) 0F R =  (25) 

then n nR ×∈^  is a left solvent of M(X), Dennis et al. 
(1976).  

We will further use the matrix S to denote the right 
solvent and the matrix R to denote the left solvent of M(X). 

In the present paper the majority of presented results 
start from the left solvents of M(X).  

In contrast, in the existing literature the right solvents of 
M(X) were mainly studied.  

The mentioned discrepancy can be overcome by the 
following Lemma. 

Lemma 2. The conjugate transpose value of the left 
solvent of M(X) is also, at the same time, the right solvent 
of the following matrix polynomial 

 ( ) 1
0 1

h T h TX X A X A+= − −M  (26) 

Proof. Let R be the right solvent of M(X).  
Then it holds 
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so *R  is the right solvent of ( )XM  Q.E.D 
Conclusion 1. Based on Lemma 2, all characteristics of 

the left solvents of M(X) can be obtained by the analysis of 
the conjugate transpose value of the right solvents of 

( )XM .  
The following proposed factorization of the matrix 
( )M λ  will help us to understand better the relationship 

between the eigenvalues of left and right solvents and the 
roots of the system. 

Lemma 3. The matrix ( )M λ  can be factorized in the 
following way 
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If S is a right solvent of M(X), from (19) follows (28). 
Similarly, if R is a left solvent of M(X), from 
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follows (28). Q.E.D 
Conclusion 2 From (19) and (28) follows 
( ) ( ) 0f S f R= = , e.g. the characteristic polynomial ( )f λ  

is an annihilating polynomial for the right and left solvents 
of M(X).  

Therefore, ( )Sλ ⊂ Ω  and ( )Rλ ⊂ Ω  hold. 
The eigenvalues and the eigenvectors of the matrix have 

a crucial influence on the existence, enumeration and 
characterization of solvents of the matrix equation (24), 
Dennis et al. (1976), Pereira (2003). 

Definition 1. Dennis et al. (1976), Pereira (2003).  
Let ( )M λ  be a matrix polynomial in λ.   

If iλ ∈^  is such that ( )det 0iM λ = , then we say that 

λi is a latent root or an eigenvalue of ( )M λ .  

If a nonzero n
i ∈v ^  is such that 

 ( )i iM λ =v 0   (31) 

then we say that vi is a (right) latent vector or a (right) 
eigenvector of ( )M λ , corresponding to the eigenvalue λi.  

The eigenvalues of the matrix ( )M λ  correspond to the 
characteristic roots of the system, i.e. eigenvalues of its 
block companion matrix Aeq, Dennis et al. (1976). Their 
number is ( )1n h⋅ + .  

Since ( ) ( )* *F λ λ=M  holds, it is not difficult to show 

that matrices ( )M λ  and ( )λM  have the same spectrum. 
In the papers Dennis et al. (1976, 1978), Kim (2000) and 

Pereira (2003) some sufficient conditions for the existence, 
enumeration and characterization of the right solvents of 
M(X) were derived.  

They show that the number of solvents can be zero, finite 
or infinite.  

For the needs of system stability (16) only the so-called 
maximal solvents are usable, the spectrums of which 
contain the maximal eigenvalue mλ . A special case of the 
maximal solvent is a so-called dominant solvent, Dennis et 
al. (1976), Kim (2000), which, unlike maximal solvents, 
can be computed in a simple way. 

Definition 2. Every solvent mS  of M(X), the spectrum 

( )mSσ  of which contains the maximal eigenvalue mλ  of Ω 
is a maximal solvent. 

Definition 3. Dennis et al. (1976), Kim (2000).  
The matrix A dominates the matrix B if all the 

eigenvalues of A are greater, in modulus, than those of B.  
In particular, if the solvent 1S  of M(X) dominates the 

solvents 2 , , lS S…  we say it is a dominant solvent. (Note 
that a dominant solvent cannot be singular.)  

Conclusion 3. The number of maximal solvents can be 
greater than one. A dominant solvent is at the same time the 
maximal solvent, too. 

The dominant solvent S1 of M(X), under certain 
conditions, can be determined by the Traub, Dennis et al. 
(1978) and Bernoulli iteration Dennis et al. (1976), Kim 
(2000). 
Main results 

We will further provide improvements for some existing 
sufficient conditions related to non-singularity of the block 
Vandermonde matrix and the existence of a dominant 
solvent. 

The following Lemma gives a sufficient condition for the 
regularity of the block Vandermonde matrix and has a 
weaker hypothesis than Theorem 6.1 in Dennis et al. 
(1976).  

This Lemma represents the generalization of the 
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corresponding result presented in Kim (2000). 
Lemma 4. If 1 1, , hS S +…  are solvents of M(X) with 
( ) ( )1 1hS Sσ σ +∩ ∩ = ∅…  then ( )1 1, , hV S S +…  is 

nonsingular. 
Proof. It is derived by the generalization of the proof 

given in  Kim (2000), for the case h=1.  Q.E.D. 
It is demonstrated by the following Lemma that the 

condition of the non-singularity of the matrix 
( )2 1, , hV S S +…  is superfluous, since it results directly from 

the non-singularity of the matrix ( )1 1, , hV S S +… . 
Lemma 5 If the block Vandermonde matrix 
( )1 1, , hV S S +…  is nonsingular, then ( )2 1, , hV S S +…  is also 

nonsingular. 
Proof. If the block Vandermonde matrix ( )2 1, , hV S S +…  

is nonsingular, then  

 

( ) ( )

( )

1 2 1

1 2 1

2 1

1
1 2 1 2 1

1

det 1 det , ,

det , ,

h

h h h
h

nh
h

h h h
h h

h

I I I
S S S

S S S

V S S

I
S S S V S S

S

+

+

+

−
+ +

⎡ ⎤
⎢ ⎥

= − ×⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎡ ⎤× −⎨ ⎬⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

"
"

# # % #
"

…

" … #

 (32) 

From ( )1 1det ,..., 0hV S S + ≠ , follows ( )2 1,..., 0hV S S + ≠ , 

so ( )2 1,..., hV S S +  is nonsingula, when ( )1 1,..., hV S S +  is 
regular. Q.E.D. 

By combining Lemma 4 - 5 one can modify some 
existing conditions for convergence of Traub and Bernoulli 
algorithms presented in Dennis et al. (1978).  

These conditions have a weaker hypothesis than the 
conditions given in Dennis et al. (1978). 

Lemma 6. If M(X) is a matrix polynomial of a degree 
(h+1) such that  
(i) it has the solvents 1 1, , hS S +…  
(ii) 1S  is a dominant solvent 

(iii) ( ) ( )1 1hS Sσ σ +∩ ∩ = ∅…  
then Traub and Bernoulli algorithms Dennis et al. (1978) 
converge. 

Proof. The first two conditions of this Lemma are 
identical with conditions (i)-(ii) of Theorem 2.1 and 
Theorem 3.2 in Dennis et al. (1978).  

From Lemmas 4 - 5 follows that ( )1 1, , hV S S +…  and 

( )2 1, , hV S S +…  are nonsingular, whereby the third 
condition of Theorem 2.1 and Theorem 3.2 in Dennis et al. 
(1978) has been fulfilled too. 

So, Traub and Bernoulli algorithms converge to a 
dominant solvent. Q.E.D. 

Similarly to the definition of the right solvents Sm and S1 
of M(X), the definitions of both the maximal left solvent, 
Rm, and the dominant left solvent, R1, of M(X)can be 
provided.  

These left solvents of M(X) are used in a number of 
theorems to follow.  

Owing to Lemma 2, they can be determined by proper 
right solvents of ( )XM .  

Generally, all aforementioned about the existence, 
enumeration and characterization of the right solvents of 

M(X), holds also for the right solvents of ( )XM , therefore 
for the left solvents of M(X), too.  

Necessary and sufficient conditions for asymptotic 
stability of linear discrete time-delay systems (16) are to 
follow.  

Theorem 5. Stojanovic, Debeljkovic (2008.b).  
Suppose that there exists at least one left solvent of M(X) 

and let Rm denote one of them.  
Then, linear discrete time delay system (16) is 

asymptotically stable if and only if for any matrix 
* 0Q Q= >  there exists a Hermitian matrix * 0P P= >  

such that  

 *
m mR PR P Q− = −  (33) 

Proof. Define the following vector discrete functions 

 ( ) { }, , 1, ... , 0k k h hθ θ= + ∈ − − +x x  (34) 

 ( ) ( ) ( ) ( )
1

h

k
j

k T j k j
=

= + −∑z x x x  (35) 

where ( ) n nT k ×∈^  is, in general, a time varying discrete 
matrix function.  

The conclusion of the theorem follows immediately by 
defining the Lyapunov functional for system (16) as 

 ( ) ( ) ( )* *, 0k k kV P P P= = >x z x z x  (36) 

It is obvious that ( ) 0k =z x  if and only if 0k =x , so it 

follows that ( ) 0kV >x  for 0k∀ ≠x .  
The forward difference of (36), along the solutions of 

system (16) is  

 ( ) ( ) ( )
( ) ( ) ( ) ( )

*

* *
k k

k k k k

V P k
P P

∆ = ∆
+ ∆ + ∆ ∆

x z x z
z x z x z x z x

 (37) 

A difference of ( )k∆z x can be determined in the 
following manner 

 ( ) ( ) ( ) ( )
1

h

k
j

k T j k j
=

∆ = ∆ + ∆ −∑z x x x  (38) 

with 

 ( ) ( ) ( ) ( )0 1nk A I k A k h∆ = − + −x x x  (39) 

and 

 
( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
1

1 1

1

h

j

T j k j T k k

T h k h k h
=

∆ − = − − +

+ − + − −

∑ x x x

x x
 (40) 

Then simple manipulations lead to 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )
( )

1

1

2 1 1 1
1

h

j

T j k j T k T h k h

T T k T h T h
k h

=

∆ − = − − +

− − + − − ⋅
− +

∑ x x x

x
x

(41) 

Define a new matrix R by  
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 ( )0 1R A T= +  (42) 

If 

 ( ) ( )1T h A T h∆ = −  (43) 

then ( )k∆z x  has a form 

 ( ) ( ) ( ) ( ) ( )
1

h

k n
j

R I k T j k j
=

∆ = − + ∆ ⋅ −⎡ ⎤⎣ ⎦∑z x x x (44) 

If one adopts ( ) ( ) ( ) , 1, 2, ... ,nT j R I T j j h∆ = − = (45) 

then ( )k∆z x  becomes  

 ( ) ( ) ( )k n kR I∆ = −z x z x  (46) 

Therefore, (37), becomes 

 ( ) ( ) ( ) ( )* *
k k kV R PR P∆ = −x z x z x  (47) 

It is obvious that if the following equation is satisfied  

 * *, 0R PR P Q Q Q− = − = >  (48) 

then ( ) 0, 0k kV∆ < ≠x x . 
In the Lyapunov matrix eq. (48), of all possible solvents 

R of M(X), only one of maximal solvents is of importance, 
for it is the only one that contains the maximal eigenvalue 

mλ ∈Ω  (Conclusion 2), which has dominant influence on 
the stability of the system. So, (33) represents the stability 
sufficient condition for the system given by (16). The 
matrix ( )1T  can be determined in the following way.  

From (45), it follows 

 ( ) ( )1 1hT h R T+ =  (49) 

and using (42-43) one can get (25), and for the sake of 
brevity, instead of the matrix ( )1T , one introduces a simple 
notation T. 

If a solvent which is not maximal is integrated into 
Lyapunov equation, it may happen that there will exist 
positive definite solution of Lyapunov matrix eq. (33) 
although the system is not stable (see Example 4). 

Conversely, if the system (16) is asymptotically stable 
then all roots iλ ∈Ω  are located within the unit circle. 
Since ( )mRσ ⊂ Ω , follows ( ) 1mRρ < , so the positive 
definite solution of Lyapunov matrix eq. (33) exists 
(necessary condition). Q.E.D. 

Corollary 1. Suppose that there exists at least one 
maximal left solvent of M(X) and let mR  denote one of 
them. Then, system (16) is asymptotically stable if and only 
if ( ) 1mRρ < , Stojanovic, Debeljkovic (2008.b). 

Proof. Follows directly from Theorem5. Q.E.D. 
Conclusion 4. Corollary 1 may be proved in the 

following way.  
From Conclusion 2 follows ( )Rσ ⊂  ( )eqAλ⊂ Ω =  and 

based on the properties of the maximal solvent Rm it follows 
( ) ( )m eqR Aρ ρ= .  
So, if the maximal solvent is discrete stable then Aeq will 

be also a discrete stable matrix and vice versa. 
Corollary 2. Suppose that there exists a dominant left 

solvent 1R  of M(X), Stojanovic, Debeljkovic (2008.b).  
Then, system (16) is asymptotically stable if and only if 
( )1 1Rρ < .  
Proof. Follows directly from Corollary 1, since a 

dominant solution is, at the same time, a maximal solvent. 
Q.E.D. 

Conclusion 5 In the case when the dominant solvent 1R  
may be deduced by Traub or Bernoulli algorithm, 
Corollary 3 represents a quite simple method. 

If the aforementioned algorithms are not convergent but 
still there exists at least one of maximal solvents Rm, then 
one should use Corollary 1.  

The maximal solvents may be found, for example, using 
the concept of eigenpars, Pereira (2003).  

If there exists no maximal solvent Rm, then the proposed 
necessary and sufficient conditions cannot be used for 
system stability investigation. 

Conclusion 6. For some time delay systems it holds  

 ( ) ( )
( ) ( ) ( )

1dim dim
dim dim 1

m

i eq

R R
A n A n h

= =
= = = +�

  

For example, if time delay amounts to 100h = , and the 
row of matrices of the system is 2n = , then: 

2 2
1, mR R ×∈^  and 202 202

eqA ×∈^ .  
To check the stability by the eigenvalues of the matrix 

Aeq, it is necessary to determine 202 eigenvalues, which is 
not numerically simple. On the other hand, if a dominant 
solvent can be computed by Traub or Bernoulli algorithm, 
Corollary 2 requires a relatively small number of additions, 
subtractions, multiplications and inversions of the matrix 
format of only 2×2. 

So, in the case of great time delay in the system, by 
applying Corollary 2, a smaller number of computations is 
to be expected compared with a traditional procedure of 
examining the stability by the eigenvalues of the 
companion matrix Aeq. 

An accurate number of computations for each of the 
mentioned methods requires additional analysis, which is 
not the subject of this paper. 
Numerical examples  

Example 1. Let us consider linear discrete system with 
delayed state (16) with 

 0
0.1 0.3
0.1 0.15A ⎡ ⎤= ⎢ ⎥−⎣ ⎦

, 0
0.3 0.4
0.2 0.25A ⎡ ⎤= ⎢ ⎥⎣ ⎦

, 1h =   

and let us check the stability properties of the system under 
consideration, based on the application  
of Theorem 1, Corollaries 1 and 2. 

Application of Theorem 5 By the left solvents Si of 
( )XM , applying the concept of eigenpar Pereira (2003), 

the left solvents Ri of M(X) are calculated: 

 1 1
3.548 4.759
2.408 3.39R S∗ ⎡ ⎤= = ⎢ ⎥−⎣ ⎦

, *
2 2

1.812 2.490
1.171 1.604R S −⎡ ⎤= = ⎢ ⎥−⎣ ⎦

,  

 *
3 3

0.453 0.576
0.342 0.326R S ⎡ ⎤= = ⎢ ⎥⎣ ⎦

, *
4 4

0.402 0.620
0.388 0.287R S ⎡ ⎤= = ⎢ ⎥⎣ ⎦

,  

*
5 5

0.345 0.502
0.191 0.394R S − −⎡ ⎤= = ⎢ ⎥− −⎣ ⎦

, *
6 6

0.386 0.417
0.167 0.443R S − −⎡ ⎤= = ⎢ ⎥− −⎣ ⎦

,  
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The solvents R1, R3 and R4 are the maximal solvents, 
since they contain the eigenvalue 0.838mλ = ∈Ω .  

From the solved Lyapunov eq. (33), for example, 
1mR R=  and 2Q I= , we can conclude that the system 

under consideration is asymptotically stable. 
Application of Corollary 1 By adopting, for example, 

3mR R=  as a maximal solvent, we conclude that in 
equation ( ) 0.838 < 1mRρ =  is satisfied, therefore the 
observed system is asymptotically stable. 

Application of Corollary 2 If for a set of 1 2h + =  
solvents, we choose R1 and R2, the conclusion is that R1 is a 
dominant solvent, whereby the condition has been fulfilled 

( )( )1 2det , 0V R R ≠ .  
Therefore, the Traub or Bernoulli algorithm can be used 

for the determination of a dominant solvent.  
By Traub algorithm, after only three iterations upon the 

matrices Gi [13] and three iterations upon Xi [13] (3+3), 
identical value, as above calculated, was obtained for 
dominant solvent 1R . 

Similarly, by applying Bernoulli algorithm, after 12 
iterations upon Xi [13], an identical value, as above 
calculated, was obtained for the dominant solvent 1R .  

Since ( )1 0.838 1Rρ = < , based on Corollary 2, it 
follows that the system under consideration is 
asymptotically stable. 

Example 2. Let us consider linear discrete systems with 
delayed state (16), with 

 0
0 1
0 0A −⎡ ⎤= ⎢ ⎥⎣ ⎦

, 1
1 1
0 0A ⎡ ⎤= ⎢ ⎥⎣ ⎦

, 1h = .  

and let us check the stability properties of the system under 
consideration. 

Application of Corollary 1.  
The left solvents Ri of M(X) are 

 1
1 0
1 1R ⎡ ⎤= ⎢ ⎥− −⎣ ⎦

, 2
1 2

0 0R − −⎡ ⎤= ⎢ ⎥⎣ ⎦
, 3

1 0
0 0R ⎡ ⎤= ⎢ ⎥⎣ ⎦

.  

Since ( ) { }1 1,1Rλ = − , ( ) { }2 1,0Rλ = −  and ( ) { }3 1,0Rλ =  
there exists no dominant solvent, but all the three solvents 
are the maximal ones.  

Because ( ) 1iRρ = , 1 3i≤ ≤ , based on Corollary 1, the 
system is not asymptotically stable. 

Example 3. Let us consider linear discrete systems with 
delayed state (16) with 

 0
7 /10 1/ 2
1/ 2 17 /10A ⎡ ⎤= ⎢ ⎥⎣ ⎦

, 1
1/ 75 1/ 3
1/ 3 49 / 75A − −⎡ ⎤= ⎢ ⎥⎣ ⎦

  

There are two left solvents of matrix polynomial eq. 
(25): 

 1
19 / 30 1/ 6

1/ 6 29 / 30R ⎡ ⎤= ⎢ ⎥−⎣ ⎦
, 2

1/ 5 1/ 3
1/ 3 11/15R ⎡ ⎤= ⎢ ⎥−⎣ ⎦

  

Since ( ) { }1
4 4,5 5Rλ = , ( ) { }2

2 2,5 5Rλ = , the dominant 

solvent is R1.  
As we have ( )1 2,V R R  nonsingular, Traub or Bernoulli 

algorithm may be used.  
Application of Corollary 2.  
Only after (4+3) iterations for Traub and 17 iterations 

for Bernoulli algorithm, a dominant solvent can be found 
with an accuracy of 410− . 

Since ( )1
4 15Rρ = < , based on Corollary 2, it follows 

that the system under consideration is asymptotically stable. 
Example 4. Let us consider linear discrete systems with 

delayed state (16), with 

 0
17 / 6 11/ 6
1/ 3 2 / 3A −⎡ ⎤= ⎢ ⎥⎣ ⎦

, 1
5 / 3 17 /12
2 / 3 5 /12A −⎡ ⎤= ⎢ ⎥−⎣ ⎦

, 1h = .  

The eigenvalues of matrices M(X) are given with 
{ }0.5, 0.5, 0.5, 2 = Ω .  

There is only one solvent of matrix polynomial eq. (25): 

 12 / 7 1/ 7
4 / 7 16 / 7R ⎡ ⎤= ⎢ ⎥−⎣ ⎦

  

with ( ) { }0.5, 0.5Rλ = .  
It can be seen that there exist no dominant and maximal 

solvents of (25), so the proposed stability conditions cannot 
be applied. 

If we, disregarding the assumption on the existence of 
the maximal solvent Rm, apply Corollary 1, based on 
( ) 0.5 1Rρ = < , we would arrive at a wrong conclusion that 

the system is asymptotically stable.  
But, the system is unstable since it possesses a 

characteristic root 2 1mλ = > . 
All numerical examples are taken from Stojanovic, 

Debeljkovic (2008.b). 

Large scale Time delay systems 
CONTINUOUS  
LARGE SCALE TIME DELAY SYSTEMS 

This paper offers new necessary and sufficient 
conditions for the delay-dependent asymptotic stability of 
the linear continuous large scale time delay systems. The 
obtained conditions of stability are expressed by nonlinear 
system of matrix equations and the Lyapunov matrix 
equation for an ordinary linear continuous system without 
delay. This condition is not conservative, however, it 
requires somewhat more complex numerical computations. 
Introduction 

In the past two decades, a considerable interest has been 
permanently shown in the problem of asymptotic stability 
of continuous large scale time delay systems. The 
stabilization problem for large scale time delay systems 
with or without perturbations is studied in Suh, Bein 
(1982), Lee, Radovic (1982, 1987), Kolla, Farison (1991). 
Wang et al. (1995) extended the results of Lee, Radovic 
(1982) to the problems of stabilization, estimation and 
robustness. Moreover, Wang, Mau (1997) derived a much 
more concise and less conservative result other than Wang 
et al. (1995). Hu (1994) and Trinh, Alden (1995.b) have 
synthesized some decentralized controllers to stabilize the 
whole system. Xu (1995) provides a new criterion for 
delay-independent stability of linear large scale time delay 
systems by employing an improved Razumikhin-type 
theorem and M-matrix properties.  

In Trinh, Alden (1997.b), by employing a Razumikhin-
type theorem, a robust stability criterion for a class of linear 
system subject to delayed time-varying nonlinear 
perturbations is given. New sufficient conditions for delay - 
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independent asymptotic stability of large scale systems are 
presented by Huang et al. (1995) using the properties of 
matrix norm and measure. It is shown that the presented 
approach simplifies the stability problem.The basic aim of 
the above mentioned works was to obtain only sufficient 
(S) conditions for stability of large scale time delay 
systems. It is notorious that those conditions of stability are 
more or less conservative.  

In contrast, the major result of our investigations are 
necessary and sufficient (NS) conditions of asymptotic 
stability of continuous large scale time delay autonomous 
systems (see Lee, Diant (1981) for similarly results for time 
delay systems). The obtained (NS) conditions are expressed 
by nonlinear system of matrix equations and the Lyapunov 
matrix equation for an ordinary linear continuous system 
without delay. Those conditions of stability are delay-
dependent and are not conservative. 

Unfortunately, viewed mathematically, they require 
somewhat more complex numerical computations. 
Main Results  

Consider linear continuous large scale time delay 
autonomous systems composed of N  interconnected 
subsystems.  

Each subsystem is described as: 

 ( ) ( ) ( )
1

N

i i i ij j ij
j

t A t A t τ
=

= + −∑x x x� , 1 i N≤ ≤  (50) 

with an associated function of the initial state 
( ) ( )i iθ ϕ θ=x , [ ], 0 , 1im i Nθ τ∈ − ≤ ≤ . ( ) in

i t ∈x \  is 

the state vector, i in n
iA ×∈\  denotes the system matrix, 

i jn n
ijA ×∈R  represents the interconnection matrix between 

the i -th and the j -th subsystems, and ijτ  is the constant 
delay. 

For the sake of brevity, we first observe system (50) 
made up of two subsystems ( )2N = .  

For this system, we derive new necessary and sufficient 
delay-dependent conditions for stability, by Lyapunov's 
direct method. The derived results are then extended to the 
linear continuous large scale time delay systems with 
multiple subsystems. 
a) Large scale systems with two subsystems 

Theorem 6. Given the following system of matrix 
equations (SME) 

 
 

1 11 1 21
1 1 11 2 21 0A e A e S Aτ τ− −− − − =R RR  (51) 

 
 

1 12 1 22
1 2 2 2 12 2 22 0S S A e A e S Aτ τ− −− − − =R RR  (52)  

where 1A , 2A , 12A , 21A  and 22A  are the matrices of 
system (50) for 2N = , in  represents the subsystem orders 
and ijτ  represents pure time delays of the system.  

If there exists a solution of SME (51-52) upon the 
unknown matrices 

 

1 1
1

n n×∈CR  and 1 2
2

n nS ×∈C , then  the 
eigenvalues of matrix 

 1R  belong to a set of roots of the 
characteristic equation of system (50) for 2N = . 

Proof. By introducing the time delay operator se τ− , 
system (50) can be expressed in the form 

( ) ( ) ( ) ( )

( ) ( ) ( )

511 2
1 11 12

21 22
21 2 22

1 2

,
s

s s

TT T

e
A A e A et t A s t

A e A A e

t t t

τ τ

τ τ

− −

− −

⎡ ⎤+= =⎢ ⎥
+⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

x x x

x x x

�
(53) 

Let us form the following matrix 

 
( ) ( ) ( )

( ) ( ) ( )1 2

11 12
1

21 22
2

11 12

21 22

1 11 12

21 2 22

n n

s s
n

s s
n

e
F s F sF s sI A s
F s F s
sI A A e A e

A e sI A A s

τ τ

τ τ

+

− −

− −

⎡ ⎤= = −⎢ ⎥⎣ ⎦
⎡ ⎤− − −

= ⎢ ⎥− − −⎣ ⎦

 (54) 

Its determinant is 

  

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( ) ( )

11 12

21 22

11 2 21 12 2 22

21 22

11 2 12 2
2

21 22

det det

det

, ,          det det

F s F sF s F s F s

F s S F s F s S F s
F s F s

G s S G s S G s,SG s G s

⎡ ⎤= ⎢ ⎥⎣ ⎦
+ +⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤= =⎢ ⎥⎣ ⎦

(55) 

 ( ) 11 21
11 2 1 1 11 2 21, s s

nG s S sI A A e S A eτ τ− −= − − −  (56) 

 ( ) 12 22
12 2 2 2 2 12 2 22, s sG s S sS S A A e S A eτ τ− −= − − −  (57)  

Relations (55-57) were obtained by applying a finite 
sequence of elementary row operations of type 3 over the 
matrix ( )F s  Lancaster, Tismenetsky (1985). 
Transformational matrix 2S  is unknown for the time being, 
but a condition determining this matrix will be derived in 
the further text. 

The characteristic polynomial of system (50) for 2N = , 
defined by 

 ( ) ( )( ) ( )2det =det ,ˆ N ef s sI A s G s S= −  (58) 

is independent of the choice of the matrix 2S , because the 
determinant of the matrix ( )2,G s S  is invariant with respect 
to the elementary row operation of type 3, Lancaster, 
Tismenetsky (1985). 

Let us designate a set of roots of the characteristic 
equation of system (50) by ( ){ }| s 0ˆ s f∑ = = . 

Substituting the scalar variable s  by the matrix X  in 
( )2,G s S  we obtain  

 ( ) ( ) ( )
( ) ( )

11 2 12 2
2

21 22

, ,, G X S G X SG X S G X G X
⎡ ⎤= ⎢ ⎥⎣ ⎦

 (59) 

If there exist the transformational matrix 2S  and the 
matrix 

 

1 1
1

n n×∈CR  such that ( )
 11 1 2, 0G S =R  and 

( )
 12 1 2, 0G S =R  is satisfied, i.e. if (51-52) hold, then 

 ( ) ( ) ( )
   1 11 1 2 22 1=det , det 0f G S G⋅ =R R R  (60) 

So, the characteristic polynomial (58) of system (50) is an 
annihilating polynomial [14] for the square matrix 

 1R , 
defined by (51-52). In other words, ( )

 1σ ⊂ ∑R . Q.E.D. 
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Theorem 7. Given the following SME 

 
 

2 12 2 22
2 2 1 12 22 0A e S A e Aτ τ− −− − − =R RR  (61) 

 
 

2 11 2 21
2 1 1 1 1 11 21 0S S A e S A e Aτ τ− −− − − =R RR  (62) 

where 1A , 2A , 12A , 21A  and 22A  are the matrices of 
system (50) for 2N = , in represents the subsystem orders 
and ijτ represents the time delays of the system.  

If there exists a solution of SME (61-62) upon the 
unknown matrices 

 

2 2
2

n n×∈CR  and 2 1
1

n nS ×∈C , then  the 
eigenvalues of matrix 

 2R  belong to a set of roots of the 
characteristic equation of system (50) for 2N = . 

Proof. The proof is similar with the proof of Theorem 6. 
Q.E.D. 

Corollary 3. If system (50) is asymptotically stable, then 
 the matrices 

 1R  and 
 2R , defined by SME (51-52) and 

(61-62), respectively, are stable ( ( )
 

Re 0iλ <R , 1 2i≤ ≤ ). 
Proof. If system (50) is asymptotically stable, 

then , Re 0s s∀ ∈Σ < . Since ( )
 iσ ⊂ ∑R , 1 2i≤ ≤ , it 

follows that ( )
 

,iλ σ∀ ∈ R  Re 0λ < , i.e. the matrices 
 1R  

and 
 2R  are stable. Q.E.D. 

Definition 4. The matrix 
 1R  (

 2R ) is referred to as a 
solvent of SME (51-52) or (61-62). 

Definition 5. Each root mλ  of the characteristic eq. (58) 
of system (50) which satisfies the following condition: 
Re max Re ,s smλ = ∈Σ  will be referred to as the maximal 
root (eigenvalue) of system (50). 

Definition 6 Each solvent 1mR  ( 2mR ) of SME (51-52) 
or (61-62), the spectrum of which contains the maximal 
eigenvalue mλ  of system (50), is referred to as the maximal 
solvent of SME (51-52) or (61-62). 

Theorem 8. Stojanovic, Debeljkovic (2005). 
Suppose that there exists at least one maximal solvent of 

SME (61-62) and let 1mR  denote one of them. Then, 
system (50), for 2N = , is asymptotically stable if and only 
if for any matrix * 0Q Q= >  there exists the matrix 

* 0P P= >  such that 

 *
1 1m mP P Q+ = −R R  (63) 

Proof. (Sufficient condition) Similarly Lee, Diant 
(1981), define the following vector continuous functions 

 ( ) [ ], , 0iti i mt θ θ τ= + ∈ −x x , (64) 

 

( )

( ) ( ) ( )

1 2

2 2

1 1 0

,
ji

t t

i i ji i
i j

S t T t d
τ

η η η
= =

=
⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

∑ ∑ ∫

z x x

x x
 (65) 

where ( ) i in n
jiT t ×∈C , 1, 2j =  are some time varying 

continuous matrix functions and 11 nS I= , 1 2
2

n nS ×∈C . 
The proof of the theorem follows immediately by 

defining the Lyapunov functional for system (50) as 

    ( ) ( ) ( ) *
1 2 1 2 1 2, , , , 0*

t t t t t tV P P P= = >x x z x x z x x  (66) 

The derivative of (66), along the solutions of system (50) 
is  

 ( ) ( ) ( )
( ) ( )

1 2 1 2 1 2

1 2 1 2

, , ,
, ,

*
t t t t t t

*
t t t t

V P
P

=
+

x x z x x z x x
z x x z x x

� �
�

 (67.a) 

 

( )

( ) ( ) ( )

1 2

2 2

1 1

,t t

ji

i i ji i
i j o

dS t T t ddt

τ

η η η
= =

=
⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

∑ ∑ ∫

x xz

x x

�

�  (67.b) 

From 

 
( ) ( )[ ] ( ) ( )

( ) ( )

'
ji i ji i

ji i

d T t T td
d T tdt

η η η ηη
η η

− = − −

− −

x x

x
 (68) 

follows 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

'

0 0

   

0   

ji ji

ji i ji i

ji i ji ji i ji

d T t d T t ddt

T t T t

τ τ

η η η η η η

τ τ

− = −

+ − −

∫ ∫x x

x x

 (69) 

Therefore 

 

( ) ( ) ( )

( )( ) ( )

( ) ( )

2 2

1 2
1 1

2

1

2
'

1 0

, 0

ji

t t i i ji i
i j

j ji i ji ji i ji
j

i ji i
j

S A T t

S A S T t

S T t d
τ

τ τ

η η η

= =

=

=

⎧ ⎛ ⎞⎪ ⎜ ⎟= +⎨ ⎜ ⎟⎪ ⎝ ⎠⎩

+ − −

⎫⎪+ − ⎬
⎪⎭

∑ ∑

∑

∑∫

z x x x

x

x

�

 (70) 

If we define new matrices 

 ( )
2

1

0 , 1, 2i i ji
j

A T i
=

= + =∑R  (71) 

and if one adopts 

 ( ) , , 1, 2i ji ji j jiS T S A i jτ = =  (72) 

 ( ) ( )'
1 1, , , 1, 2i ji i ji i i iS T S T S S i jη η= = =R R R  (73) 

then 

 ( ) ( )1 2 1 1 2, ,t t t t=z x x z x x� R  (74) 

 ( ) ( ) ( ) ( )* *
1 2 1 2 1 1 1 2, , ,t t t t t tV P P= +x x z x x z x x� R R  (75) 

It is obvious that if the following equation is satisfied 

 *
1 1 0P P Q+ = − <R R , (76) 

then ( )1 2, 0t tV <x x� , ti∀ ≠x 0 .  
In the Lyapunov matrix eq. (63), of all possible solvents 
1R  only one of maximal solvents 1mR  is of importance, 

because it contains the maximal eigenvalue mλ ∈Σ , which 
has dominant influence on the stability of the system.  

If a solvent, which is not maximal, is integrated into 
Lyapunov eq. (63), it may happen that there will exist 
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positive definite solution of this equation, although the 
system is not stable. 

(Necessary condition) Let us assume that system (50) for 
2N =  is asymptotically stable, i.e. s∀ ∈Σ , Re 0s <  hold. 

Since ( )1mσ ⊂ ΣR  follows ( )1Re 0mλ <R  (see 
Corollary 1) and the positive definite solution of Lyapunov 
matrix eq. (63) exists.  

From (72-73) it follows 

 ( ) 1
11 ,0 , 1, 2, 1, 2ji

j ji i ji nS A e S T S I i jτ= = = =R  (77) 

Using (71) and (77), for 1i = , we obtain (51).  
Multiplying (71) (for 2i = ) from the left by the matrix 

2S  and using (73) and (77) we obtain (52).  
Taking a solvent with the eigenvalue mλ ∈Σ  (if it exists) 

as a solution of the system of eqs. (51-52), we arrive at the 
maximal solvent 1mR . Q.E.D. 

Theorem 9. Stojanovic, Debeljkovic (2005). 
Suppose that there exists at least one maximal solvent of 

SME (61-62) and let 2mR  denote one of them. Then, 
system (50), for 2N = , is asymptotically stable if and only 
if for any matrix * 0Q Q= >  there exists the matrix 

* 0P P= >  such that 

 *
2 2m mP P Q+ = −R R  (78) 

Proof. The proof is almost identical to that given for 
Theorem 8. Q.E.D. 

Conclusion 7. Consider a following linear continuous 
system without time delay 

 ( ) ( )imt t=x x� R  (79) 

where the matrix imR  is defined by SME (51-52), for 
1i = , or by SME (61-62), for 2i = , respectively.  

Applying Theorem 8 or Theorem 9, the investigation of 
the stability of large scale time delay system (50) reduces to 
investigating the stability of corresponding system (79) 
without delay.  

The dimension of system (50) is infinite, while the dime-
nsion of corresponding system (79) is finite and equals in . 

Conclusion 8. The proposed criteria of stability are 
expressed in the form of necessary and sufficient conditions 
and as such do not possess conservatism unlike the existing 
sufficient criteria of stability. 

Conclusion 9. To the authors’ knowledge, in the 
available literature, there are no adequate numerical 
methods for direct computations of the maximal solvents 

1mR  or 2mR . Instead, using various initial values for 
solvents iR , we determine imR  by applying minimization 
methods based on nonlinear least squares algorithms (see 
Example 5). 
b) Large scale system with multiple subsystems 

Theorem 10. Given the following system of matrix 
equations  

 1

0

, , 1

k ji

k i
k

N

k i i i j ji
j

n n
i k n

S S A e S A

S S I i N

τ−

=
×

− − =

∈ = ≤ ≤

∑
C

RR
 (80) 

for a given k , 1 k N≤ ≤ , where iA  and jiA , 1 i N≤ ≤ , 

1 j N≤ ≤  are the matrices of system (50) and jiτ  is time 
delay in the system. 

If there is a solvent of (80) upon the unknown matrices 
k kn n

k
×∈CR  and iS , 1 i N≤ ≤ , i k≠ , then the eigenvalues 

of the matrix kR  belong to a set of roots of the 
characteristic equation of system (50). 

Proof. The proof of this theorem is a generalization of 
proof of Theorem 6 or Theorem 7. Q.E.D. 

Theorem 11. Suppose that there exists at least one 
maximal solvent of (80) for the given k , 1 k N≤ ≤  and let 

kmR  denote one of them.  
Then, linear discrete large scale time delay system (50) 

is asymptotically stable if and only if for any matrix 
* 0Q Q= >  there exists the matrix * 0P P= >  such that 

 *
km kmP P Q− = −R R  (81) 

Proof. The proof is based on generalization of the proof 
for Theorem 8 and Theorem 9. 

It is sufficient to take arbitrary Ninstead of 
2N = .Q.E.D. 

Numerical example  
Example 5. Consider the following continuous large 

scale time delay system with delay interconnections 

 
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 12 2 12

2 2 2 21 1 21 23 3 23

3 3 3 31 1 31 32 2 32

x t A x t A x t
x t A x t A x t A x t
x t A x t A x t A x t

τ
τ τ
τ τ

= + −

= + − + −

= + − + −

�
�
�

 (82) 

1

-6 2 0
0 -7 0
0 0 -10.9

A
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 12

3 -2 0
0 0 3

-2 1 2
A =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

2

-1.87 4.91 10.30
-2.23 -16.51 -24.11
1.87 -3.91 -10.30

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 21

-1 0 -2
3 0 5
1 0 2

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  

23

-1 -1
3 2
1 1

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 3
-18.5 -17.5
-13.5 -18.5

A = ⎡ ⎤
⎢ ⎥⎣ ⎦

, 

31
4 -2 1
2 0 1

A = ⎡ ⎤
⎢ ⎥⎣ ⎦

, 32
1 2 -1
3 2 0

A = ⎡ ⎤
⎢ ⎥⎣ ⎦

. 

Applying Theorem 10 to the given system, for 1k = , the 
following SME is obtained 

 

1 21 1 31

1 12 1 32

1 23

1 1 2 21 3 31

1 2 2 2 12 3 32

1 3 3 3 2 23

0

0

0

  

    

A e S A e S A

S S A e A e S A

S S A e S A

τ τ

τ τ

τ

− −

− −

−

− − − =

− − − =

− − =

R R

R R

R

R
R

R
 (82) 

If for pure system time delays we adopt the following 
values: 12 1τ = , 21 1τ = , 23 1τ = , 31 1τ =  and 32 1τ = , by 
applying the nonlinear least squares algorithms, we obtain a 
great number of solutions upon 1R  which satisfy SME 
(83).  

Among those solutions is a maximal solution: 

 1

-1.6105 -3.3299 -8.7623
-6.8446 -23.2023 -67.2638
2.8542 8.4472 21.1500

m
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

R   
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and its belonging transformational matrix: 

 2

18.42 2.33 14.44
-3.99 1.76 -6.13
-0.17 -1.20 0.45

S
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 3

0.44 -0.78
-0.80 -0.97
0.58 0.39

S
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

The eigenvalues of the matrix 1mR amount to: 

1 0.5059λ = − , 2,3 1.5785   8.8824jλ = − ± , wherefrom it 
follows that the maximal eigenvalue of the given system is 

1mλ λ= .  
To check the obtained value for mλ , from the 

characteristic equation of system (82), by applying 
minimization methods, we arrived at the identical value for 

mλ . For initial guesses mλ  values were taken from a set of 
complex numbers with a large real part in order to detect 
the maximal eigenvalue mλ  of the given system.  

Since Re 0mλ < , based on Theorem 11, a considered 
large scale time delay system is asymptotically stable. 

If now for pure time delay we adopt the following 
values: 12 5τ = , 21 2τ = , 23 4τ = , 31 5τ =  and 32 3τ = , by 
using the identical procedure as in the previous case, we 
arrive at the following value for the maximal solvent: 

1

-0.0484 -0.0996 0.0934
0.2789 -0.3123 0.2104
1.1798 -1.1970 -0.3798

m

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=R  

The eigenvalues of the matrix 1mR  amount to: 

1 0.2517λ = − , 2,3 = 0.2444  0.3726jλ − ± .  
Therefore, for a maximal eigenvalue mλ one of the 

values from the set { }2 3,λ λ  can be adopted.  
Based on Theorem 11, it follows that the large scale time 

delay system is asymptotically stable.  
DISCRETE LARGE SCALE TIME DELAY SYSTEMS 

In the sequel we will established new necessary and 
sufficient conditions for the asymptotic stability of a 
particular class of large-scale linear discrete time-delay 
systems.  

The time-dependent criteria are derived by Lyapunov’s 
direct method and are based on the exact solution of a 
particular system of monic matrix polynomial equations. It 
has been demonstrated that with large time delays of the 
system and a great number of subsystems N, a decrease in 
the number of computations is to be expected in favor of 
the derived stability criteria compared with a traditional 
procedure of examining the stability by eigenvalues of the 
equivalent matrix A .  

In order to make the results of this work more applicable 
in practice, some proposals for more appropriate numerical 
methods of determining the maximal solvent mAR  should 
be made. 
Introduction 

A large-scale dynamic system with time delay can 
usually be characterized by a large number of state 
variables and complex interaction between subsystems. 
Recently, the stability and stabilization problem of large-
scale systems with delays has been considered by Lee, 
Radovic (1987, 1988), Hu (1994), Trinh, Alden (1995.b), 
Xu (1995), Huang, et al. (1995), Lee, Hsien (1997), Wang , 
Mau (1997) and Park (2002).  

 

Most related works treated the stabilization problem in 
the continuous-time case. Since most modern control 
systems are controlled by a digital computer, it is natural to 
deal with the problem in a discrete-time domain.  

The majority of stability conditions in the available 
literature, of both continual and discrete time-delay 
systems, are sufficient conditions independent of time 
delay. Only a small number of works provide both 
necessary and sufficient conditions which are in their nature 
mainly dependent on time delay.  

Basic inspiration for our investigation is based on the 
paper Lee, Diant (1981). In this paper the necessary and 
sufficient conditions of linear continuous systems with one 
delay have been derived. Necessary and sufficient 
conditions for the asymptotic stability of linear discrete 
large-scale systems with multiple delays are considered 
herein. The obtained conditions of stability are derived by 
Lyapunov’s direct method. But first it is necessary to solve 
the system of matrix polynomial equations (SMPE) upon an 
appropriate matrix integrated into discrete Lyapunov 
equation. 

The obtained conditions of stability are not conservative 
in a traditional sense like the majority of results reported in 
the available literature. In case that a solution of SMPE 
exists, it is always possible by using those results to find 
out if the system is stable or not.  The mentioned restriction 
(solubility of SMPE) can be taken as a conditional (non-
classical) conservativeness. 

Compared to the traditional method of investigating the 
stability by the equivalent matrix of the system (see Lemma 
1), the advantage of this method is in a lower number of 
numerical computations and its disadvantage is in the 
impossibility of applying this method in the situations when 
there is no adequate solution of SMPE. 
Preliminaries 

Consider a large-scale linear discrete time-delay systems 
composed of N  interconnected iS .  

Each subsystem iS , 1 i N≤ ≤  is described as 

 ( ) ( ) ( )
1

:   1
N

i i i i ij j ij
j

k A k A k h
=

+ = + −∑x x xS  (83) 

with an associated function of initial state 

 ( ) ( ) { }, , 1  ,  ,  0i ii i m mh hθ θ θ= ∈ − − +x ψ …  (84) 

where ( ) in
i k ∈x \  is state vector, i in n

iA ×∈\  denotes the 

system matrix, i jn n
ijA ×∈  represents the interconnection 

matrix between the i-th and the j-th subsystems and the 
constant delay ijh ∈ +T . 

In the following lemma necessary and sufficient 
condition for the asymptotic stability of system (83) has 
been given, expressed via eigenvalues the so-called 
equivalent matrix A . This condition is based upon the fact 
that the observed system is finite-dimensional. The order of 
this system is very high and time delay dependent. 

Lemma 7. System (83) will be asymptotically stable if 
and only if  

 ( ) 1ρ <A  (85) 

holds, where the matrix 
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( )

1

,

1 , maxi i

N N
ij

N

i m m jij
i

e e

eN n h h h

×

=

∈⎡ ⎤⎣ ⎦

= + =

=

∑
\A A

 (86) 

is defined in the following way  

   ( ) ( )

 1                       1                           

1 1

0 0 0
0 0 0 0

0 0 0 0
0

0 0 0 0

ii

i
i m i mi i

i

i

h

i ii

n
n h n h

nii

n

A A
I

I

I

↓ ↓
+

+ × +

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"

" "
" "
" " \

# # # % # #
" "

A  (87) 

 ( ) ( )

1          1                

1 1

0 0
0 0 0

0 0 0

ij

i m j mi j

h

ij
n h n h

ij

A
↓ ↓

+

+ × +

⎡ ⎤
⎢ ⎥

= ∈⎢ ⎥
⎢ ⎥
⎣ ⎦

"

" "
" " \# # # % #
" "

A  (88) 

where iA  and ijA , 1 i N≤ ≤ , 1 j N≤ ≤ , are the matrices 
of system (83).  

Proof. It is not difficult to demonstrate that system (83) 
can be given in the following equivalent form 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

  
1 2

 

ˆ ˆ     1
ˆ ˆ ˆ ˆ       

ˆ 1
1

i

TT T T
N

TT T T
i i i i m

k k

k k k k

k k k k h
i N

+ =

⎡ ⎤= ⎣ ⎦
⎡ ⎤= − −⎣ ⎦

≤ ≤

x x

x x x x

x x x x

"

"

A

 (89) 

wherefrom a given condition for asymptotic stability 
follows directly. Q.E.D. 
Main results  

Using Lyapunov's direct method, necessary and 
sufficient stability time-delay dependent conditions for 
system (83), are derived.  

Prior to it, we demonstrate that the spectrum of the 
matrix, which is integrated into Lyapunov equation, is a 
subset of the spectrum of the matrix A , i.e. a set of 
characteristic roots of system (83). 

Theorem 12. Given the following system of monic 
matrix polynomial equations (SMPE)  

 
1

1

0

, , max , 1

m jim m ii i

i
i

N
h hh h

i i i j ji
j

n n
i n m jij

S S A S A

S S I h h i N

−+

=
×

− − =

∈ = = ≤ ≤

∑
A

A

A A

A

A

^

R R R
 (90) 

for a given A , 1 N≤ ≤A , where iA  and jiA , 1 i N≤ ≤ , 

1 j N≤ ≤  are matrices of system (83) and jih  is time delay 
in the system. 

If there is a solution of SMPE (90) upon the unknown 
matrices n n×∈R  and iS , 1 i N≤ ≤ , i ≠ A , then 

( ) ( )
 

λ λ⊂AR A  holds, where the matrix A  is defined by 
(86-88). 

Proof. By introducing the time-delay operator hz− , 
system (83) can be expressed in the following form 

 

( ) ( ) ( )

( )

11 12 1

21 22 2

1 2

1 11 12 1

21 2 22 2

1 2

                        1 ,
N

N

N N NN

h h h
N

h h h
N

h h h
N N N NN

e

e

k A z k
A A z A z A z

A z A A z A zA z

A z A z A A z

− − −

− − −

− − −

+ =
⎡ ⎤+
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

x x
"
"

# # % #
"

  

 ( ) ( ) ( ) ( )1 2
TT T T

Nk k k k⎡ ⎤= ⎣ ⎦x x x x"  (91) 

Let us form the following matrix. 

 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
11 12

1
21 22

2

1 2

1

2

11 12 1

21 22 2

1 2

1 11 12

21 2 22

1 2

1

2

        

e

N N

N

N

NN
N

N

N
N

N N NN

h h
n

h h
n

h h
N N

h
N

h
N

h
n N NN

e

F z F z F z
F z F z F zF z zI A z

F z F z F z

zI A A z A z
A z zI A A z

A z A z

A z
A z

zI A A z

− −

− −

− −

−

−

−

⎡ ⎤
⎢ ⎥

= − = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ − − −
⎢ − − −⎢=
⎢
⎢ − −⎣

⎤−
⎥− ⎥
⎥

− − ⎦

"
"

# # % #
"

"
"

# # %
"

"
"
% #
" ⎥

(92) 

If we add to the arbitrarily chosen A  - th block row of 
this matrix the rest of its block rows previously multiplied 
from the left by the matrices 0jS ≠ , 1 j N≤ ≤ , j ≠ A  
respectively, we obtain 

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( )

11 12

1 1 2 2
1 1

1 2

1

1

det

det
N N

j j j j
j j
j j

N N

N

N

N j jN
j
j

NN

F z
F z F z

F z S F z F z S F z

F z F z
F z

F z S F z

F z

= =
≠ ≠

=
≠

=
⎡
⎢
⎢
⎢ + += ⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥+ ⎥
⎥
⎥
⎥
⎥⎦

∑ ∑

∑

A A

A A

A

A

"
# # "

"

# # %
"

"
" #

"

% #
"  (93) 

After multiplying i -th of the block column, 1 i N≤ ≤ , 

of the preceding matrix by mihz  and after integrating the 
matrix nS I= , the determinant of the matrix ( )F z  

equals 

( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

11

1

1

11 1

1
1 1

1

11 12 1

1 2

1 2

...

...det det

...
...

det , , ... ,

...

mm N

N
i mi mm Ni

mm N

N
i mi

i

hh
N

N Nn h
hh

j j j jN
j j

hh
N NN

N

n h

N

N N NN

z F z z F z

z S F z z S F zz z

z F z z F z
G z G z G z

z G z S G z S G z S

G z G z G z

=

=

−

= =

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

∑ ⎢ ⎥
=⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢∑ ⎢= ⎢
⎢
⎢⎣

∑ ∑
# # #

# % #

# # # #

# # # #

F =

� � �

( ) { }1
1det , , ,...,

N
i mi

i
n h

Nz G z S S S S=
−

⎥
⎥ =⎥
⎥
⎥⎦

∑
= =

(94) 

The -th block row of the N N×  block matrix ( ),G z S  
is defined by 
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( ) 1

1

, ,

1 ,

m m m jii i i
N

h h h h
i i i i j ji

j

n

G z S z S z S A z S A

i N S I

+ −

=

= − −

≤ ≤ =

∑
A

A

A

(95) 

The relation (93) was obtained by applying a finite 
sequence of elementary row operations of type 3 over the 
matrix ( )F z , Lancaster, Tismenetsky (1985).   

The mentioned sequence of elementary row operations 
can be expressed in an equivalent form by the following 
nonsingular matrix 

 

1

1

0 0 1

0 0 N

n

N

n

I

E S S S

NI

←

←

←

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

AA A

" "
## % # # #

" "
## # # # %

" "

 (96) 

that multiplies the matrix ( )F z  from the left. 
The transformation matrices 1, , NS S" , with the 

exception of  the matrix nS I= AA , are unknown for the time 
being, but in the further text a condition will be derived that 
the unknown matrices are determined upon.   

The characteristic polynomial of system (83), Gorecki et 
al. (1989)  

 ( ) ( )
0

det ,ˆ
N

j
j

j

e
g z G z S a z

=

= =∑  (97) 

where 

 ( )
1

1 , , 0i

N

i m j
i

e eN n h a j N
=

= + ∈ ≤ ≤∑ \  (98) 

does not depend on the choice of the transformation 
matrices 1, , NS S" ), Lancaster, Tismenetsky (1985).  

Let us denote 

 ( ){ }| 0ˆ z g z∑ = =  (99) 

a set of all characteristic roots of system (83).  
This set of roots equals the set ( )λ A .  
Substituting a scalar variable z  by the matrix 

n nX ×∈  in ( ),G z S , a new block matrix is obtained 

( ),G X S .  
If there exist the transformation matrices Si, 1 i N≤ ≤ , 

i ≠ A  and the solvent n n×∈R  such that for the A -th 
block row of ( ),G X S  holds 

 ( ), 0, 1iG S i N= ≤ ≤A AR  (100) 

i.e. holds (91), then 
and 

 ( ) 0g =AR   (101) 

Therefore, the characteristic polynomial of system (83) 
is an annihilating polynomial for the square matrix 

 AR  and 

( )
 

λ ⊂ ∑AR  holds. The mentioned assertion holds 
, 1 N∀ ≤ ≤A A . Q.E.D. 
Definition 7. The matrix AR  is referred to as a solvent 

of eq. (90) for the given A , 1 N≤ ≤A . 
From (90) for the given A , 1 N≤ ≤A , the transformation 

matrices jS  1 j N≤ ≤  and the solvent AR are computed, 
the latter being used further for examining the stability of 
system (83). 

Definition 8. The characteristic root mλ  of system (83) 
with the maximal module: 

 ( ): max maxm m ii
λ λ λ∈Σ = Σ = A  (102) 

will be referred to as the maximal root (eigenvalue) of 
system (83).  

Definition 9. Each solvent mAR  of SMPE (90), for the 
given A , 1 N≤ ≤A , the spectrum of which contains the 
maximal eigenvalue mλ  of  system (83), is referred to as 
the maximal solvent of (90). 

Theorem 13. Stojanovic, Debeljkovic (2008.a). 
Suppose that there exist at least one A , 1 N≤ ≤A , that 

there exists at least one maximal solvent of SMPE (90) and 
let mAR  denote one of them. Then, linear discrete large-
scale time-delay system (83) is asymptotically stable if and 
only if for any matrix * 0Q Q= >  there exists the matrix 

* 0P P= >  such that 

 *
mm P P Q− = −AAR R  (103) 

Proof. Define the following vector discrete functions 

 ( )
{ }

,
, 1, , 0 , 1i i

ki i

m m

k
h h i N

θ
θ

= +
∈ − − + ≤ ≤

x x
…  (104) 

 

( )

( ) ( ) ( )

1

1 1 1

, ,
ji

k kN
hN N

i i ji i
i j l

S k T l k l
= = =

⎡ ⎤
⎢ ⎥= + −
⎢ ⎥⎣ ⎦

∑ ∑∑
v x x

x x

"

 (105) 

where ( ) i in n
jiT k ×∈ , 1 j N≤ ≤ , 1 i N≤ ≤  are, in 

general, some time-varying discrete matrix functions and 

nS I=
AA , in n

iS ×∈ , 1 i N≤ ≤ , i ≠ A . 

The conclusion of the theorem follows immediately by 
defining Lyapunov functional for system (83) as 

 ( ) ( ) ( )1
*
, , , , , , ,

0

*
k kNV P

P P
= ⋅ ⋅ ⋅ ⋅

= >
x x v v" " "  (106) 

It is obvious that ( ), , 0V ⋅ ⋅ >"  for ki∀ ≠x 0 , 1 i N≤ ≤ .  
The forward difference of (106), along the solutions of 

system (83) is  

 
( ) ( ) ( )

( ) ( )
( ) ( )

, , , , , ,
, , , ,

, , , ,

*

*

*

V P
P

P

⋅ ⋅ = ⋅ ⋅ ⋅ ⋅
+ ⋅ ⋅ ⋅ ⋅
+ ⋅ ⋅ ⋅ ⋅

v v
v v

v v

" " "
" "
" "

∆ ∆
∆

∆ ∆
 (107) 

A difference of ( ), ,⋅ ⋅v "  can be determined in the 
following manner 

 

( )

( ) ( ) ( )
1 1 1

, ,
jihN N

i i ji i
i j l

S k T l k l
= = =

⋅ ⋅ =
⎡ ⎤
⎢ ⎥+ −
⎢ ⎥⎣ ⎦

∑ ∑∑
v

x x

"∆

∆ ∆  (108) 
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with 

 ( ) ( ) ( ) ( )
1

i

N

i i n i ij j ij
j

k A I k A k h
=

= − + −∑x x x∆  (109) 

and 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1 1

1
1

1 1

1
ji

ji

hN N

ji i ji i
j l j

N

ji ji i ji
j

hN

ji i
j l

T l k l T k

T h k h

T l k l

= = =

=
−

= =

− =

+ −

+ −

∑∑ ∑

∑

∑∑

x x

x

x

∆

∆

 (110) 

Then 

 ( )

( ) ( )

( ) ( )

( ) ( )

( )

1

1
1

1

1 1

1

1

, ,

i

ji

N

i n ji i
j

N

ji ji i jiN
j

i hN
i

ji i
j l
N

ij j ij
j

A I T k

T h k h

S

T l k l

A k h

=

=
−

=

= =

=

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥− +
⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎢ ⎥⋅ ⋅ =
⎢ ⎥
+ −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥
⎣ ⎦

∑

∑
∑

∑∑

∑

x

x

v

x

x

"∆

∆

(111) 

It is obvious that for the last member in the sum (111) 
holds 

   
( ) ( )

( )

1 1 1 1

1 1

N N N N

i ij j ij i ij j ij
i j j i

N N

j ji i ji
i j

S A k h S A k h

S A k h

= = = =

= =

− = − =

= −

∑∑ ∑∑

∑∑

x x

x
 (112) 

and if we define new matrices 

 ( )
1

1
N

i i ji
j

A T
=

= +∑R ,1 i N≤ ≤  (113) 

then ( ), ,⋅ ⋅v "∆  has a form 

 

( ) ( ) ( )

( )( ) ( )

( ) ( )

1

1 1
1

1 1 1

, ,

∆

i

ji

N

i i n i
i

N N

j ji i ji ji i ji
i j

hN N

i ji i
i j l

S I k

S A S T h k h

S T l k l

=

= =
−

= = =

⋅ ⋅ = − +

+ − − +

+ −

∑

∑∑

∑∑∑

v x

x

x

" R∆

 (114) 

If 

 ( ) ( )
1 , 1

j ji i ji ji i ji jiS A S T h S T h
i N j N

− =
≤ ≤ ≤ ≤

∆  (115) 

then 

 
( ) ( ) ( )

( ) ( )]

1

1 1

, , i

ji

N

i i n ii
i

hN

i ji i
j l

S I k

S T l k l

=

= =

⎡⋅ ⋅ = −⎣

+ ∆ −

∑

∑∑

v x

x

" R∆

 (116) 

If one adopts 

 ( ) ( ) , 1ii i n n iS I I S i N− = − ≤ ≤AAR R  (117) 

 ( ) ( ) ( )
1 , 1

i ji n i jiS T l I S T l
i N j N
= −

≤ ≤ ≤ ≤
AAR∆  (118) 

then 

 ( ) ( ) ( ), , , ,nI⋅ ⋅ = − ⋅ ⋅v vAA" "R∆  (119) 

and 

 ( ) ( ) ( ) ( )*, , , , , ,*V P P⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅v vA A" " "R R∆ (120) 

It is obvious that if the following equation is satisfied  

 * *, 0P P Q Q Q− = − = >A AR R  (121) 

then ( ), , 0V ⋅ ⋅ <"∆ , ki∀ ≠x 0 , 1 i N≤ ≤ . 
In Lyapunov matrix eq. (103), of all possible solvents 
AR  of (90), only one of maximal solvents mAR  is of 

importance, for it is the only one that contains the maximal 
eigenvalue mλ ∈Σ  (Definition 9), which has dominant 
influence on the stability of the system. If a solvent which 
is not maximal is integrated into Lyapunov eq. (103), it 
may happen that there will exist a positive definite solution 
of this equation, although the system is not stable. 

Accordingly, condition (103) represents the sufficient 
condition of the stability of system (83). 

If it exists, the maximal solvent mAR  can be determined 
in the following way.  

From (115) and (118) we obtain 

 ( )
 

,

 1
1 , 1

jih
j ji i ji

n

S A S T
S I i N j N

=
= ≤ ≤ ≤ ≤AA

AR  (122) 

Multiplying i -th equation of the system of matrix eq. 

(113) from the left by the matrix 
  

m ih
iSAR  and using (117) 

and (122), we obtain eq. (90). Taking a solvent with the 
eigenvalue mλ ∈Σ  (if it exists) as a solution of the system 
of eq. (90), we arrive at the maximal solvent mAR . 

Conversely, if system (84) is asymptotically stable, then 
iλ∀ ∈Σ , 1iλ < . Since ( )mλ ⊂ ΣAR ,it follows that 

( ) 1mρ <AR , therefore the positive definite solution of 
Lyapunov matrix eq. (103) exists (necessary condition). 
Q.E.D 

Corollary 4. Suppose that for the given A , 1 N≤ ≤A , 
there exists the  matrix AR  being a solution of SMPE (90).  

If system (84) is asymptotically stable, then the matrix 
AR  is discrete stable ( ( ) 1ρ <AR ). 
Proof. If system (83) is asymptotically stable, then 

1z z∀ ∈∑ < . Since ( )λ ⊂ ∑AR , it follows that 

( ) , 1λ λ λ∀ ∈ <AR , i.e. the matrix AR  is discrete 
stable. Q.E.D. 

Conclusion 10. To the authors’ knowledge in the 
available literature there are no adequate numerical 
methods for direct computations of maximal solvents of 
SMPE of type (90). One can arrive at each individual 
solution for the mentioned equations by applying 
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minimization methods that require initial guesses. In 
addition, the convergence of those solutions is directly 
dependent on initial guesses.  

By analogy to conditions for the existence and 
enumeration of solvents of matrix polynomials given in 
literature, it is to be expected that the number of solvents of 
(91) can be zero, finite or infinite. 

Conclusion 11. It follows from the aforementioned, that 
it makes no difference which of the matrices mAR , 
1 N≤ ≤A  we use for examining the asymptotic stability of 
system (83). The only condition is that there exists at least 
one matrix for at least one A . Otherwise, it is impossible to 
apply Theorem 13. 

Conclusion 12. The dimension of system (83) amounts 

to ( )
1

1j

N
j m

j
eN n h

=
= +∑ .Conversely, if there exists a 

maximal solvent, the dimension of mAR  is much smaller 
and amounts to nA . That is why our method is superior over 
a traditional procedure of examining the stability by the 
eigenvalues of the matrix A . 

The disadvantage of this method reflects in the 
probability that the obtained solution need not be a maximal 
solvent and it cannot be known ahead if a maximal solvent 
exists at all. 

Hence the proposed methods are at present of greater 
theoretical than of practical significance. 
Numerical example 

Consider the large-scale linear discrete time-delay 
system consisting of three subsystems described by Lee, 
Radovic (1987) 

 ( ) ( ) ( ) ( )1 1 1 1 1 1 12 2 12:  1x k A x k B u k A x k h+ = + + −S ,  

 ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2

21 1 21 23 3 23

:  1
,

x k A x k B u k
A x k h A x k h

+ = +
+ − + −
S   

 ( ) ( ) ( ) ( )3 3 3 3 3 3 31 1 31:  1x k A x k B u k A x k h+ = + + −S ,  

with 

1 1 12
0 8 0 6 0 1 0 1 0 0 1, ,0 4 0 9 0 1 0 1 0 0 1

. . . . .A B A. . . . .
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

2 2

0 7 0 0 5 0 0 1
0 1 6 0 1 , 0 1 0 2
0 6 1 0 8 0 0 1

. . .
A . . B . .

. . .

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − =
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

,  

21 23

0 1 0 2 0 1 0
0 3 0 1 , 0 2 0 2
0 1 0 2 0 1 0

. . .
A . . A . .

. . .

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

 3 3 31
1 0 1 0 1 0 0 1 0 2, ,0 1 0 8 0 0 1 0 1 0 2

. . . .A B A. . . . .
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

The overall system is stabilized by employing a local 
memory-less state feedback control for each subsystem 

( ) ( )i i ik K k=u x ,  

where for the matrix of decentralized gains is now adopted 

 [ ]1 2 3
7 45 10 5 16 7 , ,4 4 4 1 4K K K− − − −⎡ ⎤ ⎡ ⎤= − − = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

  

Substituting the inputs into this system, we obtain the 
equivalent closed loop system representations 

 ( ) ( ) ( )
3

1

ˆ: 1 , 1 3i i i i ij j ij
j

k A k A k h i
=

+ = + − ≤ ≤∑x x xS   

where ˆ
i i i iA A B K= + .  

This closed loop system, in its type of model, 
corresponds to system (83), therefore it is possible to apply 
the previously obtained results for examining its stability. 

For time delay in the system, let us adopt: 12 5h = , 

21 2h = , 23 4h =  and 31 5h = .  
Applying Theorem 12 to the given closed loop system, 

we obtain the following SMPE for 1=A  

   

6 5 3
1 1 1 1 2 21 3 31

ˆ 0A S A S A− − − =R R R , 

  

6 5
1 2 1 2 2 12

ˆ 0S S A A− − =R R , 

  

5 4
1 3 1 3 3 2 23

ˆ 0S S A S A− − =R R . 

Solving this SMPE by minimization methods, we obtain  

 1
0.6001 0.3381
0.6106 0.3276
⎡ ⎤= ⎢ ⎥⎣ ⎦

R , 

2 3
0.0922 1.3475 0.5264 0.6722 -0.3969,0.0032 1.3475 0.4374 1.3716 -1.0963S S⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The eigenvalue with the maximal module of the matrix 
 1R  equals 0.9382.  

Since the eigenvalue mλ  of 40 40×∈A  also has the 
same value, we conclude that the solvent 

 1R  is a maximal 
solvent (

  1 1m =R R ). Applying Theorem 13, we arrive at 
the condition ( )

 1 0.9382 <1mρ =R  wherefrom we 
conclude that the observed closed loop large-scale time-
delay system is asymptotically stable. 

The difference in dimensions of matrices 
 

2 2
1

×∈R  and 
40 40×∈A  is rather high, even with relatively small time 

delays (the greatest time delay in our example is 5). So, in 
the case of great time delays in the system and a great 
number of subsystems N , by applying the derived results, 
a smaller number of computations are to be expected 
compared with a traditional procedure of examining the 
stability by eigenvalues of the matrix A . 

An accurate number of computations for each of the 
mentioned method require additional analysis, which is not 
the subject of this paper. 

Conclusion 
We have presented new, necessary and sufficient, 

conditions for the asymptotic stability of a particular class 
of linear continuous and discrete time delay systems. 
Moreover, these results have been extended to large scale 
systems covering the cases of two and multiple existing 
subsystems. 

The time-dependent criteria were derived by Lyapunov’s 
direct method and are exclusively based on the maximal 
and dominant solvents of particular matrix polynomial 
equations. It can be shown that these solvents exist only 
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under certain conditions, which, in a sense, limits the 
applicability of the method proposed. The solvents can be 
calculated using generalized Traub`s or Bernoulli`s 
algorithms. 

Both of them possess significantly smaller number of 
flops counts than the standard algorithm.  

Improving the converging properties of the used 
algorithms for these purposes, may be a particular research 
topic in the future. 

References 

[1] BOUTAYEB,M., DAROUACH,M.: Observers for discrete-time 
systems with multiple delays, IEEE Trans. Automat. Contr., Vol. 46, 
No.5, (2001) 746-750. 

[2] DENNIS,J.E., TRAUB,J.F., WEBER,R.P.: The algebraic theory of 
matrix polynomials, SIAM J. Numer. Anal., 13 (6), (1976) 831-845. 

[3] DENNIS,J.E., TRAUB,J.F., WEBER,R.P.: Algorithms for solvents of 
matrix polynomials, SIAM J. Numer. Anal., 15 (3), (1978) 523-533 

[4] GANTMACHER,F.: The theory of matrices, Chelsea, New York, 
1960. 

[5] GOLUB,G.H., VAN LOAN,C.F.: Matrix computations, Jons 
Hopkins University Press, Baltimore, 1996. 

[6] GORECKI,H., FUKSA,S., GRABOVSKI,P., KORYTOWSKI,A.: 
Analysis and synthesis of time delay systems, John Wiley & Sons, 
Warszawa, 1989. 

[7] HU,Z.: Decentralized stabilization of large scale interconnected 
systems with delays, IEEE Trans. Automat. Contr., Vol. 39, (1994) 
180-182. 

[8] HUANG,S., SHAO,H., ZHANG,Z.: Stability analysis of large-scale 
system with delays, Systems & Control Letters, Vol.25, (1995) 75-78. 

[9] KIM,H.: Numerical methods for solving a quadratic matrix equation, 
Ph.D. dissertation, University of Manchester, Faculty of Science and 
Engineering, 2000. 

[10] KOEPCKE,R.W.: On the control of linear systems with pure time 
delay, Trans. ASME J. Basic Eng., (3) (1965) 4-80. 

[11] KOLLA,S.R., FARISON,J.B.: Analysis and design of controllers for 
robust stability of interconnected continuous systems, Proc. Amer. 
Contr. Conf., Boston, MA, (1991) 881-885. 

[12] LANCASTER,P., TISMENETSKY,M.: The theory of matrices, 2nd 
Edition, Academic press, New York, 1985. 

[13] LEE,C., HSIEN,T.: Delay-independent Stability Criteria for Discrete 
uncertain Large-scale Systems with Time Delays, J. Franklin Inst., 
Vol. 33 4B, No. 1, (1997) 155-166. 

[14] LEE,T.N., DIANT,S.: Stability of time-delay systems, IEEE Trans. 
Automat. Contr., Vol.26, No.4, (1981) 951-953. 

[15] LEE,T.N., RADOVIC,U.: General decentralized stabilization of 
large-scale linear continuous and discrete time-delay systems, Int. J. 
Control, Vol.46, No.6, (1987) 2127-2140. 

[16] LEE,T.N., RADOVIC,U.: Decentralized stabilization of linear 
continuous and discrete-time systems with delays in interconnections, 
IEEE Trans. Automat. Contr., Vol.33, No.8, (1988) 757-761.  

[17] MALEK-ZAVAREI,M., JAMSHIDI,M.: Time-delay systems, North-
Holland Systems and Control Series, Vol.9, Amsterdam, 1987. 

[18] MORI,T., UKUMA,N., KUWAHARA,F.M.: Delay-independent 
stability criteria for discrete-delay systems, IEEE Trans. Automat. 
Contr., Vol.27, No.4, (1982) 946-966. 

[19] PARK,J.: Robust decentralized stabilization of uncertain large-scale 
discrete-time systems with delays, J. Optim. Theory Applic., Vol.113, 
No.1, (2002) 105-119. 

[20] PEREIRA,E.: On solvents of matrix polynomials, Applied numerical 
mathematics, (47) (2003) 197-208. 

[21] STOJANOVIĆ,S.B., DEBELJKOVIĆ,D.LJ.: Necessary and 
Sufficient Conditions for Delay-Dependent Asymptotic Stability of 
Linear Continuous Large Scale Time Delay Autonomous Systems, 
Asian Journal of Control, (Taiwan) Vol.7, No.4, (2005) 414 - 418. 

[22] STOJANOVIĆ,S.B., DEBELJKOVIĆ,D.LJ.: Comments on 
“Stability of Time-Delay Systems, IEEE Trans. Automat.Contr. 
(2006) (submitted). 

[23] STOJANOVIĆ,S.B., DEBELJKOVIĆ,D.LJ.: Delay – Dependent 
Stability of Linear Discrete Large Scale Time Delay Systems: 
Necessary and Sufficient Conditions, International Journal of 
Information & System Science, (Canada), Vol.4, No.2, (2008.a), 241–
250. 

[24] STOJANOVIĆ,S.B., DEBELJKOVIĆ,D.LJ.: Necessary and Sufficient 
Conditions for Delay-Dependent Asymptotic Stability of Linear 
Discrete Time Delay Autonomous Systems, Proc. of 17th IFAC World 
Congress, Seoul, Korea, July 06–10, (2008.b) 2613-2618. 

[25] SUH,H., BEIN,Z.: On stabilization by local state feedback for 
continuous-time large-scale systems with delays in interconnections, 
IEEE Trans. Automat. Contr., Vol. AC-27, (1982) 964-966. 

[26] TRINH,H., ALDEEN,M.: D-stability analysis of discrete-delay 
perturbed systems, Int. J. Control, Vol.61, No.2, (1995.a) 493-505. 

[27] TRINH,H., ALDEN,M.: A comment on Decentralized stabilization 
of large scale interconnected systems with delays, IEEE Trans. 
Automat. Contr., Vol.40, (1995.b) 914-916. 

[28] TRINH,H., ALDEEN,M.: Robust stability of singularly perturbed 
discrete-delay systems, IEEE Trans. Automat. Contr., Vol.40, No.9, 
(1995.c) 1620-1623. 

[29] TRINH,H., ALDEEN,M.: A memory-less state observer for discrete 
time-delay systems, IEEE Trans. Automat. Contr., Vol.42, No.11, 
(1997.a) 1572-1577. 

[30] TRINH,H., ALDEEN,M.: On Robustness and Stabilization of Linear 
Systems with Delayed Nonlinear Perturbations, IEEE Trans. 
Automat. Contr., Vol.42, (1997.b) 1005-1007. 

[31] WANG,W.J., WANG,R.J., CHEN,C.S.: Stabilization, estimation and 
robustness for continuous large scale systems with delays, Contr. 
Theory Advan. Technol., Vol.10, No.4, (1995) 1717-1736. 

[32] WANG,W., MAU,L.: Stabilization and estimation for perturbed 
discrete time-delay large-scale systems, IEEE Trans. Automat. 
Contr., Vol.42, No.9, (1997) 1277-1282. 

[33] XU,B., On delay-Independent and stability of large-scale systems 
with time delays, IEEE Trans. Automat. Contr., Vol.40, (1995) 930-
933. 

[34] XU,S., LAM,J., YANG,C.: Quadratic stability and stabilization of 
uncertain linear discrete-time systems with state delay, Systems 
Control Lett. 43, (2001) 77-84. 

Received: 16.03.2008. 

Asimptotska stabilnost posebnih klasa linearnih sistema sa čistim 
vremenskim kašnjenjem: potpuno novi prilaz 

U ovom radu izlažu se novi potrebni i dovoljni uslovi asimptotske stabilnosti posebne klase linearnih sistema sa čistim 
vremenskim kašnjenjem čije su vektorske diferencijalne jednačine stanja date sa: 0 1( 1) ( ) ( )k A k A k h+ = + −x x x  i 

0 1( ) ( ) ( )t A t A t τ= + −x x x� . U tom smislu izvedeni su uslovi koji uzimaju u obzir iznos čisto vremenskog kašnjenja a 
koristeći dobro poznatu tehniku Druge Ljapunovljeve metode. Dve matrične jednačine su izvedene i to: matrična 
polinomijalna jednačina i posebna kontinualna (diskretna) matrična jednačina Ljapunova. Takođe su date 
modifikacije postojećih dovoljnih uslova konvergencije Traub-ovog i  Bernoilli-jevog algoritma za sračunavanje 
dominantnog solventa matričnog polinoma. Ovi su rezultati dalje prošireni na velike sisteme. Izloženi su i 
odgovarajući numerički primeri sa ciljem da se potkrepe i ilustruju dobijeni rezultati. 

Ključne reči: kontinualni sistem, diskretni sistem, linearni sistem, stabilnost sistema, asimptotska stabilnost, stabilnost 
Ljapunova, sistem sa kašnjenjem, vremensko kašnjenje. 
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Устойчивость асимптоты линейных систем особого класса со 
чистой временной задержкой Новый подход 

В настоящей работе выведены и представлены новые  нужные и довольные условия асимптотической 
устойчивости особого класса линейных систем со чистой временной задержкой, чьи векториальные  
дифференциальные уравнения состояния представлены в форме: 0 1( 1) ( ) ( )k A k A k h+ = + −x x x  и 

0 1( ) ( ) ( )t A t A t τ= + −x x x� . В том смысле выведены условия, учитывающие сумму чистой временной задержки и 
пользуясь хорошо известной техникой второго метода Ляпунова. Два матричных уравнения выведены, и то: 
матричное многочленное уравнение и особое непрерывное (дискретное) матричное уравнение Ляпунова. 
Здесь тоже представлены модификации сущесвующих довольных условий сходимости алгорифмов Трауба и 
Бернулли для вычисления доминирующего солвента матричного полинома. Эти результаты дальше 
распространены на большие системы. Здесь тоже представлены и соответствующие численные примеры с 
целью усиления и иллюстрации полученых результатов. 

Ключевые слова: Непрерывная система, дискретная система, линейная система, устойчивость системы, 
устойчивость асимптоты, устойчивость Ляпунова, система со временной задержкой, временная задержка. 

La stabilité asymptotiques des classes particulières des systèmes 
linéaires à délai temporel pur: nouvelle approche 

Dans ce papier on expose les nouvelles conditions, nécessaires et suffisantes, de la stabilité asymptotique de classe 
particulière des systèmes linéaires à délai temporel pur dont les équations différentielles vectorielles sont données par: 

0 1( 1) ( ) ( )k A k A k h+ = + −x x x  et 0 1( ) ( ) ( )t A t A t τ= + −x x x� . Dans ce sens on a dérivé les conditions qui considèrent le 
délai temporel pur en utilisant la technique connue de la deuxième méthode de Lyapunov. On a donné aussi les 
modifications des conditions suffisantes de la convergence de l’algorithme de Traub et Bernoilli pour calculer le 
solvant dominant du polynôme de matrice. Ces résultats ont été ensuite appliqués aux grands systèmes. Les exemples 
numériques correspondants sont présentés pour illustrer les résultats obtenus. 

Mots clés: système continu, système discret, système linéaire, stabilité du système, stabilité asymptotique, stabilité de 
Lyapunov, système à délai, délai temporel. 


