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Postbuckling and Failure Analysis of Axially Compressed Composite 
Panels Using FEM 

Stevan Maksimović, PhD (Eng)1) 

In order to improve confidence in composite structure design, a better description of the failure of laminates is 
necessary. In this paper the buckling and postbuckling behaviour of axially compressed layered composite panels is 
studied by means of Finite Element Method (FEM). A series of experiments was conducted to verify the FEA-results, 
but also to address the stability and strength of the composite structure. Combining a geometric nonlinear finite 
element analysis (FEA) based on the von Karman theory and High Order Shear Deformation Theory (HOST) are 
used to study the first-ply failure behavior as well as the postbuckling behavior of laminated type composite 
structures. For this purpose and for the investigation of the failure responses, the improved 4-node layered shell finite 
elements are used. The finite element formulation is based on the third order shear deformation theory with four-
node shell finite elements having eight degrees of freedom per node. A simple method is proposed to predict buckling 
loads and the post-buckling behaviour. The comparisons between the numerical and the experimental results show 
quite a good agreement. 

Key words: composite materials, panel, fracture mechanics, stability analysis, initial failure analysis, Finite Element 
Analysis (FEA). 
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Introduction 
UE to their high specific properties, the use of fiber-
reinforced composites has increased drastically during 

the past few years in a large range of industrial applications. 
However, in order to meet the aspirations of aeronautical 
companies for lighter, safer and less polluting planes, the 
next generations of aircraft will integrate more and more 
composite components. 

Fibre-reinforced composite laminates are materials with 
high specific as well as absolute stiffness and strength and 
therefore are promising alternatives to conventional 
structural materials. Availability of reliable computational 
techniques for prediction of stiffness and stability would be 
a major contribution to improved quality assessment of 
preliminary design, as well as to saving by replacement or 
at least reduction of the number of tests required for 
qualification. Nowadays modern computational facilities, 
with the enormously increased computer capabilities, offer 
the opportunity to investigate the complex buckling 
phenomena with robust nonlinear numerical analysis [2-5]. 
Numerous numerical solutions based in shell finite 
elements have been continuously developed for the analysis 
of layered composite structures. Formulation of the shell 
finite elements based on the classical laminate plate theory 
(CLPT) is inadequate. Laminated plates/shells made of 
advanced filamentary composite materials, whose elastic to 
shear modulus ratios are very large, are susceptible to 
thickness effects because the effective transverse shear 
module is significantly smaller than the effective elastic 
module along fiber directions. These high ratios of elastic 
to shear modulus render the classical laminated plate theory 
inadequate for the analysis of thick composite plates. A 

higher order shear deformation theory (HOST) with 
imposed conditions on vanishing of the surfaced shear 
stresses is needed for laminated anisotropic shells [1, 6]. In 
the present work a quadrilateral isoparametric shell finite 
element is developed based on combining the HOST [11] 
and membrane elements with drilling/rotational degrees of 
freedom (DOF) [13, 14, 16, 17]. Membrane elements with 
drilling DOF are of particular importance as they form the 
building block of shell facets with full rotational DOFs. 

This paper covers the experimental verification of the 
predictive capabilities of such Finite Element Analysis 
(FEA). For these principal investigations a representative 
substructure of the axially compressed composite panels is 
considered. The problem statement, experimental set up, 
FE-modelling as well as the presentation and discussion of 
results are outlined. Subsequently, some experimental 
results concerning the aspects of stability and strength are 
also presented. 

Higher order shear deformation theory 
The higher-order shear deformation theory used here [1] 

takes into account the parabolic distribution of transverse 
shear stress along the laminate thickness. This requires the 
use of a displacement field in which the in plane displa-
cements are cubic functions of the thickness coordinate and 
the transverse deflection in constant along the plate 
thickness. This definition of the displacement field satisfies 
the condition that the transverse shear stress be zero on the 
plate surface and not zero in any other place. So that the 
displacement field is given by 
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where u, v and w are the displacements of a point (x, y) of 
the midplane and ψx, ψy are the rotations of the normals to 
the midplane about the axis x and y, respectively. The 
functions ξx, ξy and ζx, ζy are determined by using the 
condition that the transverse shear stresses 4σ  and 5σ  are 
zero on the plate surfaces 

 5 ( , , ) 02xz
hx yτ σ= ± =  (2) 

4 ( , , ) 02yz
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For orthotropic plates or plates laminated in orthotropic 
layers, these conditions are equivalent to the requirement 
that the corresponding strains be zero on these surfaces 
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Taking into account that ε4 and ε5 are zero on the plate 
surfaces, the following expressions are obtained 
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Introducing eq. (4) into eq. (1), the displacement field 
becomes 
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The displacement field (5) accommodates a quadratic 
variation of transverse shear strains and vanishing of 
transverse shear stresses on the top and bottom of a general 
laminate composed of orthotropic layers. The HOST 
provides a slight increase in accuracy relative to the first 
order shear deformation theory solution at expense of a 
significant increase in computational effort. Thus there is 
no need to use shear correction factors in a higher order 
theory. Eq. (5) can be adapted in the next form 
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Eq. (6) can be used for all plate theories: classical plate 
theory (α=1, β=0 and λ=0), first order shear deformation 
theory (α=0, β=1 and λ=0) and HOST (α=0, β=1 and λ=1). 

Finite Element Analysis 
Finite element analysis (FEA) is employed to investigate 

the buckling and postbuckling behaviour of composite 

panels under axial compression. The 4-node shell finite 
elements [8, 9] are used in this investgation. These elements 
present eight degrees of freedom at each node: three 
translations, three rotations about the nodal x, y and z axes 
and two higher order terms. 

Based on the higher order shear deformation plate theory 
in the present analysis, a four-noded quadrilateral element 
(Q4-RT) with 8 degrees of freedom per node [2, 8] is used. 
The formulation of a 4-nodes shell finite element that can 
be good enough also if applied to the thin multilayered 
plates/shells is by no means an easy matter. The author’s 
experience has shown that a good approach to the 
formulation of a 4-node shell finite element can be based on 
the application of the Discrete Kirchhoff’s Theory (DKT) 
[12] for bending behavior. DKT ensures C1 continuity at 
discrete points on inter-element boundaries. The improved 
4-noded layered shell element is derived combining the 
HOST and the DKT, Fig.1. 

 

Figure 1. Description of the 4-noded shell finite element 

 
More details about that element can be found in [9] and 

[11]. In the Co finite element theory the continuum 
displacement vector within the element is defined by 
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where Ni (r, s) is the interpolation function associated with 
the node i and expressed through the normalized 
coordinates (r, s); M is the number of nodes in the element 
and ai is the generalized displacement vector in the mid-
surface. In the case of the negligible mid-surface normal 
stress σz the stress-displacement relationships, stress 
resultants and the constitutive equations associated with the 
higher-order shear deformation theory are given in [2] and 
[8]. The total stiffness matrix of the element is obtained by 
the linear superposition of the following three independent 
parts: 
(i) Membrane stiffness matrix KM 
(ii) Bending stiffness matrix KB, and 
(iii) Rotational stiffness matrix KΘz  

The four-node quadrilateral layered shell element, for the 
geometrical nonlinear analysis, is derived combining a 
higher order shear deformation theory and membrane 
elements with drilling/rotational degrees of freedom. This 
finite element has 8 degrees of freedom (DOF) per node 
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where u0, v0, w0, θx, θy represent conventional degrees of 
freedom, θz are in-plane vertex rotations. The terms ψx and 
ψy are the corresponding higher order terms in the Taylor’s 
series expansion used in the theory and are also defined at 
the reference plane. This element is obtained by the 
superposition of the refined membrane element with 
rotational degrees of freedom and the discrete Kirchhoff 
model for bending. 

In order to avoid singularity in the assembled matrix 
using flat elements in a global coordinate system, we used 
here a membrane element which includes in-plane nodal 
rotations, θz, as a degree of freedom. In this work Allman’s 
approach is used. Allman’s approach begins by selecting a 
quadratic form for the normal component of displacement, 
Un, and a linear form for the tangential component of 
displacement, Ut, along each element edge i–j, Fig.2. 
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where ϕ is the running distance from one end and (Un1, Ut1, 
υz1), (Un2, Ut2, υz2) are the translational and rotational 
components displacements at each end of the edge. 
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Figure 2. Membrane part of the shell element 

As Harder and Mac Neal [14] noted, eqs. (9) and (10) 
can be used to eliminate the transitional displacements at 
the midpoint of the edge in favor of the degrees of freedom 
at the adjacent corner points so that, in this way, any eight-
noded membrane quadrilateral can be converted into an 
element with corner translations and rotations as DOFs. 
Because of geometric complexity and large deformation in 
the postbuckling state of the laminate, a geometrically non-
linear finite-element analysis is performed. 

Failure Criterion 
Initial failures of a layer within the laminate of a 

composite structure can be predicted by applying an 
appropriate failure criterion or the first-ply failure theory. 
Failure modes in laminated composite panels are strongly 

dependent on ply orientation, loading direction and panel 
geometry. There are four basic modes of failure that occur 
in laminate composite structures. These failure modes are: 
matrix cracking, fiber-matrix shear failure, fiber failure and 
delamination. Various first-ply failure theories are 
incorporated in the pre-, buckling and post-buckling failure 
analysis of the laminated fibrous composite structures. 
Failure criteria used with finite element results from the 
nonlinear postbuckling solutions qualitatively predict the 
load level and the location of local failures in the laminates 
that correspond to experimental results. A finite element 
computational procedure is incorporated for the first-ply 
failure analysis of laminated composite shells. The 
procedure is based on the higher-order shear deformation 
theory and the tensor polynomal failure criterion 

 1... ≥+++ kjiijkjiijii FFF σσσσσσ  (11) 

where σi are the stress tensor components in material 
coordinates and Fi, Fj and Fijk are the components of the 
strength tensors. Most failure criteria are based on the stress 
state in a lamina. The Tsai-Wu criterion [15] was 
considered in this work in order to determine the first-ply 
failure. The failure of an axial compressed panel was 
initiated near the region with severe local bending 
gradients. The computation and experimental results 
indicate that local failures occurred in regions of large 
radial displacements. These local failures are associated 
with the brittle failure characteristics of the graphite-epoxy 
material system. The procedure of calculating the first-ply 
failure load of laminated composite panels refers to 
calculating stress and strains at all the nodes for each layer 
of laminate and then the maximum values of stress and 
strain are picked up. The failure loads for the weakest ply in 
the plate/shell are then calculated using various failure 
criteria using the iteration procedure. The increment in the 
load level can be made suitable for predicting the failure 
load. 

 

Tsai- Wu criterion 
 

The coefficients Fi and Fij in eqn (11) are functions of 
the unidirectional lamina strengths and are presented below 
for the Tsai-Wu criterion: 

 F1σ1+F11σ1
2+F2σ2+F22σ2

2+F12σ1σ2+F66σ6
2≤1 (12) 

where 

F1 = Xt
-1-Xc

-1, F2 = (Yt
-1-Yc

-1) 

F11 = (XtXc)-1  F22=(YtYc)-1 

F12 =- (XtXcYtYc)
1
2  F66=S-2 

Here: Xt, Xc are the longitudinal tensile and compressive 
strengths, Yt, Yc are the transverse tensile and compressive 
strengths, S- is the rail shear strength.  

Numerical and experimental results 
A numerical analysis of critical and post critical 

behaviour of axially compressed composite panels was 
done applying 4-node shell finite elements (Q4-RT) and it 
was compared to the experimental results. The geometry, 
loads and boundary conditions are shown in Fig.3. During 
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the experiments the panel was clamped (c) along the lateral 
edges where the loads were introduced and it was simply 
supported (ss) along its longitudinal edges (dashed lines). 
The mesh of finite elements was formed for the whole 
panel and the boundary conditions were defined in the same 
way as it was done during the experiments (Fig.4). 

 

E11 = 14200 [hbar] 

E22 =     850 [hbar] 

G12 =    590 [hbar] 

G13 =    590 [hbar] 

G23 =      59 [hbar] 

ν12  = 0.32 

Xt = 136.95 [hbar] 

Xc = 107.7  [hbar] 

S =    9.15 [hbar] 

Yt  =  4.464 [hbar] 

Yc =    12.4 [hbar] 

tlayer =  0.125 [mm] 

Figure3. Axially compressed composite panel – Geometry and boundary 
conditions 
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Figure 4. Axially compressed panel – mesh of finite elements 

The analysis of critical and post critical behaviour was 
done for three stacking sequences: 

A-[0o/90o/±45o]2s, 

B-[0o/±45o/90o]2s,  

C-[45o/0o/-45o/90o]2s. 

Table 1. Buckling behaviour of axially compressed composite panels 

BUCKLING LOAD Pcr [kN] Panel 
I II III  IV V 

13.3  15.1 C 13.52 A1 
   E 12.37 

13.4  15.1 C 13.52 A2    E 12.37 
13.4 13.3 15.1 C 13.52 A3    E 12.37 
13.4 13.8 15.1 C 13.52 A4    E 12.37 
12.5 12.9 15.1 C 13.52 A5    E 12.37 
13.1 12.7 15.1 C 13.52 A7A    E 12.37 

13.78 

13.0 14.0 16.5 C 14.73 B2    E 13.51 14.90 

13.6 14.3 16.5 C 14.78 C1    E 13.51 
14.0 14.3 16.5 C 14.78 C2    E 13.58 

16.038 

Besides the analysis of the critical and post critical 
behaviour of composite panels that was done using the 
nonlinear structural analysis, the critical loads were 
determined applying the linear eigen-value problem. Both 
analyses were done for two types of material 
characteristics: in the cases of compression and extension 
of the used CFC material. The experimental and numerical 
results and the values of buckling loads Pcr for all stacking 
sequences are given in Table 1. 
a) Experimental results: Buckling load determined from the 

Force-Axial displacement curve 
b) Experimental results: Buckling loads determined from 

the membrane deformations 
c) FINEL (FEM Software developed at Imperial College) 
d) Present numerical results: Buckling loads – FEM solu-

tions obtained solving eigen-values  
e) Present numerical results: Buckling loads – FEM solu-

tions obtained from the nonlinear analysis 
(from the Load – Deflection curve) 

E – Material characteristics - Tension 
C - Material characteristics – Compression 
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Figure 5. Nonlinear stability analysis: P-u and P-w curves 

u, v, w – Displacements in the x, y, z directions 
It is obvious from Table 1 that the FEM results agree 

particularly well with the experiments in both cases: in 
linear and nonlinear analysis. It is even more interesting to 
underline the fact that the results obtained using the 4-node 
shell finite element Q4-RT are closer to the experimental 
results than the results obtained applying 8-node shell finite 
elements used by the FINEL software. 

Besides the determination of the critical force Pcr the 
analysis of the total post critical behaviour of the panels as 
well as the analysis of the initial failure - the levels of the 
load Pf  that correspond to the initial failure. Some of these 
results will be shown for the panel with the stacking 
sequence A and they are shown in Fig.3. It is necessary to 
underline that the critical loads for the compressed panels 
can be determined from the Force – Deflection w curves 
given in Fig.5: As it can be seen from that curve and Table 
1, a good agreement between numerical and experimental 
results was obtained. 

The results of the initial failure are presented in Fig.6 in 
the form of the distribution of initial failure coefficients F.I. 

The value of the load Pf corresponding to the initial 
failure is around 36 kN and that is sufficiently above the 
critical load level (Pf / Pcr ≈ 2.6). Similarly high rates were 
obtained also for other panels and these rates are in 
accordance with the experiments. 
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Figure 6. Distribution of initial failure coefficients (F.I.) for the force Pf 

Conclusions 
The paper has applied a FEM model to analyse the 

nonlinear response of generally laminated flat composite 
panels subjected to several geometrical and mechanical 
boundary conditions. The buckling and postbuckling 
behavior of axially compressed composite panels is 
investigated.  The results of a numerical and experimental 
study to evaluate the initiation of damage in nonlinearity 
deformed flat layered composite panels subjected to axial 
compression are presented. A good agreement between 
numerical and experimental results is obtained. The failure 
criteria used with numerical results from the nonlinear 
postbuckling solutions qualitatively predict the load level 
and the location of first-ply failures in the panels that 
correspond to the experimental results. The comparison of 
numerically obtained results with the experimental data 
shows that the improved 4-node shell finite element can be 
successfully applied for the buckling and postbuckling 
analysis as well as for the initial failure analysis and for the 
prediction of the location of initial failures of compressed 
layered flat composite panels. 
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Analiza postkritičnog ponašanja i loma aksijalno pritisnutih 
kompozitnih panela primenom MKE 

Da bi se obezbedila veća pouzdanost za primenu kompozitnih materijala u procesu projektovanja neophodno je 
dobro poznavanje za modeliranje inicijalnih otkaza. U radu je razmatran problem kritičnog i postkritičnog 
ponašanja primenom metode konačnih elemenata (MKE). Niz eksperimenata bio je realizovan u cilju poređenja i 
verifikacije numeričke rezultate na bazi MKE u domenu stabilnosti i čvrstoće kompozitne strukture. Kombinuja 
geometrijski nelinearne analize MKE zasnovane na Karnanovoj teoriji i teoriju smicanja višeg reda (TSVR) za 
formulaciju konačnog elementa su korišćene za analizu inicijalnog loma kao i postkritičnog ponašanja višeslojnih 
kompozitnih struktura. Za tu svrhu je korišćen poboljšani 4-čvorni konačni element višeslojne ljuske. Formulacija 
konačnog elementa je zasnovana na teoriji smicanja višeg reda gde svaki čvor ima po osam stepeni slobode. 
Eksplicitan metod je predložen za analizu kritičnog i postkritičnog ponašanja. Poređenja između prezentovanih  
numeričkih i eksperimentalnih rezultata daju dobra slaganja. 

Ključne reči: kompozitni materijali, panel, mehanika loma, analiza stabilnosti, analiza inicijalnih otkaza, metoda 
konačnih elemenata. 
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Analyse du comportement postcritique et de défaillance des 
panneaux composites comprimés axialement 

Dans le but d’assurer plus grande fiabilité dans l’emploi des matériaux composites lors du projet, il est nécessaire de 
connaître bien la modélisation des défaillances initiales. Ce papier traîte le problème du comportement critique et 
postcritique par la méthode des éléments finis (MKE). Une série d’essais a été réalisée afin de comparer et vérifier les 
résultats numériques, basés sur MKE, dans le domaine de la stabilité et de la force chez la  structure composite. La 
combinaison de l’analyse géométrique non-linéaire de l’analyse MKE, basée sur la théorie de Karnan et la théorie de 
décalage de l’ordre supérieur (TSVR) pour la formulation de l’élément fini, est utilisée pour l’analyse de la 
défaillance initiale et pour le comportement postcritique des structures composites des couches à plusieurs. A cet effet 
on a appliqué l’élément fini amélioré de coque à couches à plusieurs et à quatre nœuds. La formulation de l’élément 
fini se base sur le théorie de décalage de l’ordre supérieur où chaque nœud possède 8 degrés de liberté La méthode 
explicite est proposée pour l’analyse du comportement critique et postcritique. La comparaison montre qu’il y a bon 
accord entre les résultats numériques et expérimentaux. 

Mots clés: matériaux composites, panneau, mécanique de fracture, analyse de la stabilité, analyse des défaillances 
initiales, méthode des éléments finis 

 
 


