
26  Scientific Technical Review,Vol.LVII,No.3-4,2007 

UDK: 621.316.71/82-51 
COSATI: 11-04, 20-12, 12-01 

Stochastic Adaptive Control Using the Robust Least Squares 
Algorithm 

Vojislav Filipović, PhD (Eng)1) 

This paper considers properties of the Astrom-Wittenmark self tuning tracker for MIMO systems described with the 
ARX model. It is supposed that the stochastic noise has the non-Gaussian distribution (condition always present in 
practice). The consequence of that fact is a nonlinear transformation of the tracking error in the direct adaptive 
minimum variance controller. The system under consideration is the minimum phase with different dimensions for 
input and output vectors. Using the concept of the Kronecker product it is possible to represent unknown parameters 
in the form of a vector.  The tensor calculus is thus avoided. Global stability is proved without any modification of the 
matrix gain in the recursive algorithm. The paper also discusses the relation of the assumption about the absolutely 
continuous finite-dimensional distributions and different modifications of a high-frequency gain. The paper presents 
theoretical results but the adaptive control methodology has already been present for many years in military systems 
(CH-47 helicopter and X-15 aircraft). 
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Introduction 
HE analysis of adaptive controllers is a very important 
topic in the control area [1]. In this reference it is 

shown that if the least squares parameters estimates 
converge to some limit then the adaptive controller must be 
optimal but, as noted, it is very difficult to prove that the 
estimates are indeed convergent. After that much attention 
has been drawn to establishing the global stability and the 
asymptotic optimality for adaptive controllers. Significant 
progress in this direction was made in [14] where global 
convergence has been established for a class of stochastic 
adaptive control algorithms based on the stochastic 
approximation method. The next important step is a result 
presented in [23]. Namely, from the practical point of view, 
least squares generally have a superior rate of convergence 
in comparison with the stochastic approximation algorithm. 
But, in that case, it was necessary to modify the gain matrix 
for the global convergence of algorithms. In [17] an attempt 
was made to remove the above restriction. For a minimum 
phase system where adaptive noise is i.i.d. and Gaussian, 
using the Bayesian embedding method and the properties of 
normal equations, a least squares-based adaptive tracker 
converges outside an exceptional set of the Lebesque 
measure zero in the parameter space. In this approach the 
restrictions are: Gaussianity and independency of noise and 
the exceptional set. Very important results are presented in 
[13] where the Astom-Wittenmark self-tuning regulator and 
the ELS-based adaptive tracker are considered. It is shown 
by a careful analysis of growth rates how to avoid the need 
to establish parameter convergence. Also, convergence of 
the original Astrom-Wittenmark self-tuning regulator is 
proven rigorously. Using the ideas from [17] and [13], 
reference [21] presents a more comprehensive theory of 

stochastic adaptive filtering, control and identification. It is 
also established that the parameters converge to the null 
space of a certain matrix. The results from [13] are used for 
some problems in the model reference adaptive control 
[20]. Weighted estimation and tracking for a multivariable 
ARMAX model is considered in [2]. This paper introduces 
a random weighting sequence and shows that the given 
algorithm has the performance of the ELS for the strong 
consistency and matches the best result of SG for the 
adaptive tracking. Some aspects of tuning of self-tuning 
controllers is discussed in [24]. A further important step is 
reference [11] where the best convergence rate of self-
tuning regulators (logarithmic law of STR) is found, The 
overview of adaptive methodology is given in [12] and 
[16]. This paper will consider the Astrom-Wittenmark 
controller when the disturbance is non-Gaussian. The non-
Gaussianity introduces nonlinear transformation of the 
tracking error in the estimation algorithm. A special case of 
such situation is the case when there is an priori 
information about the class of distribution to which the real 
disturbance belongs. In such situation the theory of min-
max estimation can be applied and so the given algorithm is 
known as a robust algorithm. 

Reference [6] considers the robust SG algorithm 
(nonrobust version of SG algorithm is considered in [4] and 
[18]) as well as the stability and optimality of the minimum 
variance controller. The parallel result for the ELS 
algorithm for SISO systems described by the ARMAX 
model is presented in [8]. It is shown that for the stability of 
the adaptive controller no modification of the gain matrix is 
necessary. A tracking problem when the noise is non-
Gaussian and when unmodeled dynamics is also present is 
considered in [7]. Robust predictor for SISO systems is 
presented in [9]. 

T 
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In this paper we will consider the adaptive controller for 
the system described by the multivariable ARX model. It is 
supposed that the system is the minimum phase and that the 
input and the output vector have different dimensions 
(rectangular systems). The system is established by the 
concept of stochastic Lyapunov function stability and 
optimality of feedback. The extension of the results for 
system control described by multivariable ARMAX models 
is presented in [10]. 

Problem formulation 
Let the system under consideration be described by a 

linear multiple-imput/multiple-output ARX model with m-
and l-dimensional output and input respectively. 

 ( ) 1
1 2 , 1q

qB z B B z B z q−= + + ⋅ ⋅ + ≥   

 ( ) ( )1 1n n nA z y B z u w+ += + , 0n ≥   (1) 

 0n ny w= = , 0nu = , 0n <   

where A (z) and B (z) are the matrix polynomials in the 
shift-back operator z yn = yn-1  with the order p and q 
respectively , i.e. 

 ( ) p
pz zAAIzA +++= ...1 ,  0p ≥  (2) 

 ( ) q
qz zBBBzB +++= ...21 ,  0q ≥  (3) 

The noise {wn} is assumed to be a martingale - 
difference sequence with respect to a nondecreasing family 
of σ - algebras {Fn }. 

The unknown matrix coefficients are 

 [ ]1 1... ... TM
p qA A B Bθ = − −  (4) 

Model (1) can be rewritten in the next form 

 ( )1 1
T

n n ny wθ ϕ+ += +  (5) 

where 

 1
T T T T T
n n n p n n qy y u uϕ − − +

⎡ ⎤
= ⋅ ⋅ ⋅ ⋅⎢ ⎥

⎣ ⎦
 (6) 

Let us introduce the matrix 0
nx  in the form 
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T
n

X
ϕ

ϕ
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⎣ ⎦

O  = I ⊗ T
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where ⊗ is the symbol for the Kronecker product. Also, a 
new vector θ is constructed by stocking the columns of the 

Mθ  matrix one on top of the other. Relation (5) now has 
the form 

 1 1n n ny X wθ− += +  (8) 

In this paper we will consider the direct adaptive 
minimum variance controller. The algorithm for the 
estimation of unknown parameters can be given by 
minimizing the next functional 

 ( ) ( ){ } 1
1 , : m

nJ E R Rθ ε += Φ Φ →   (9) 

whereby εn+1 is the prediction error, i.e. 1 1 1ˆn n ny yε + + += −  
where 1ˆny +  is the prediction of yn. 

The functional J(θ) depends on the probability 
distribution of observations which is, generally, non-
Gaussian. From the identification theory it is known that 

 Φ(x) = - log p (x),  x ∈ Rm  (10) 

where p(⋅) is the probability density. Using the 
methodology from [5], from (8) and (9) one can get 

 ( )1 1 1
T

n n n n n n nP X y Xθ θ θ+ + += + Ψ −  (11) 

 
11

1
T T

n n n n n n n n nP P P X X P X M X P
−−

+ ⎡ ⎤= − +⎣ ⎦  (12) 

 ( ) ( ) ( )log , dim 1xx p x x mxΨ = −∇ Ψ =  (13) 

 1 1  ,  T T T T T T
n n n p n p n q n ny y u u X Iϕ ϕ− + − − +⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅ = ⊗⎣ ⎦  (14) 

 ( ){ } , m
xM E x x R= ∇ Ψ ∈  (15) 

For the minimum variance controller, the control un is 
chosen as [22] 

 1n n nX yθ ∗
+=    (16) 

where { }1ny∗
+  is a sequence of bounded deterministic 

signals. 
Remark 1. Using the concept of the Kronecker product 

(relation (7)) one can represent unknown parameters in the 
vector form. The tensor calculus is thus avoided. 

Remark 2. If we can use an a priori assumption that the 
distribution of real noise lies in a specified class of the 
distribution F which is convex and vaguely compact ([15] 
and [19]) it is possible to construct a robust real-time 
procedure in min-max sense. The members of F are 
symmetric and contain the standard normal distribution N. 
Two important classes are 
a) the gross error model 

F1ε = { F : F = (1-ε) N + εG, G is symmetric} 
b) the Kolmogorov model  

F2,ε = { F : F is symmetric and sup
x

 ⎜F (x) - N (x)⏐ ≤ ε } 

Analysis of adaptive algorithms 
In this part of the paper the global stability of the control 

system and self-optimizing property of the adaptive 
controller is established. What is more important, the above 
mentioned facts are proved for algorithms (11)-(16) without 
any modification of the gain matrix. 

Now we will quote two lemmas which will be useful for 
future reference. 

Lemma 1. Let the next assumptions hold 
A1. the function Ψ (⋅) is uniformly bounded 
A2.  λ min { M }  > 0 

Then 

( ) ( ) ( )1 1
0

1

log

where  

n
T T
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T
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Proof: Can be found in [7]. 
The next lemma has the form 
Lemma 2. Let {xn, Fn} be a martingale difference 

sequence and assume that the following assumption is 
satisfied 
A1: { }2

1sup . .i
n

E x F a s− < ∞  1where  px R∈  

A2: ( ) 1, 0, , p
n a a na k k a R≤ ∈ ∞ ∈  

Then for ∃ δ > 0 

( )1 / 2
1

1lim 0
n

T
i in

i

x a
n δ+→∞

=

= •∑  

Proof: The proof is given in [8]. 
Now we will quote the key lemma. 
Lemma 3. Consider model (5) and algorithms (11) - (16) 

subject to the following assumptions 
A1: {wn} is a martingale-difference with symmetric 
distribution P (⋅) and 

{ }2
1sup . .n n

n
E w F a s+ < ∞  

A2: The function Ψ (⋅) is odd and continuous almost 
everywhere 
A3: The function Ψ is uniformly bounded 
A4: There exists the passive operator H such that 

( ) 0
1 1 1

1
2
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where c > 1• 

Proof: Introducing the stochastic Lyapunov function 

1
1 1 1 1

T
n n n nV Pθ θ−

+ + + += % %  

where 

n nθ θ θ= −% ,  

one can get using (11) 
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 ( ) ( ) ( )1 1 1 1
T

n n n n nX P Xε ε ε+ + + +⋅ + Ψ Ψ  (17) 

Using the matrix inversion lemma (12) can be rewritten 
in the next form 

 1 1
1

T
n n n nP P X MX− −

+ = +   (18) 

From (17) and (18) follows 
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  (19) 

It is well known that in [22] the predicted error has the 
form 

 1 1n n n nX wε θ+ += − +%  (20) 

Using (19) and (20) we have 
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Summing both sides of (21) from 0 to n we obtain 
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where 
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for k0 > 0, k1 ≥ 0 and n∀ ≥ 0     • 
Using assumption A3 of the lemma, from (22) and (23) 

it follows 
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Having in mind a simple inequality 

 xyxy −≤−   (25) 

relation (24) can be rewritten in the next form 
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In [3] the following result is proved 

      ( )1 1
0 0

0  0 log
n n

T
i i i i i n

i i

w X X r

β

θ θ+ +
= =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑% %  (27) 

for β ∈  (1/2, 1) and c∀  > 1. 
Using Lemma 1 and relations (26) and (27), one can get 

the result of lemma• 
Now we will formulate the main result of the paper. 
Theorem 1. Suppose that for model (5) and algorithms 

(25) - (26) the following conditions are satisfied 
C1: B1 is of full rank and +

1B  B(z) is an asymptotically 

stable matrix polynomial where +
1B  denotes the pseudo 

inverse of B1 
C2: All finite-dimensional distributions of { 0x , w } are 
absolutely continuous with respect to the Lebesque measure 
and 

x = {y0 ,..,y1-n, u0,..., u1-n ; w0...w1-n } 

C3: Reference signal { }ny∗  is uniformly bounded 

C4: { nw , }nF  is a martingale sequence with 
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C5: Conditions A1-A4 of Lemma 2 hold  
Then the self-tuning tracker is stable and optimal in the 

following sense 
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0

1lim ) . .

1lim . .

n

iin
i
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∑

∑
  

Proof: We will first prove the global stability of the self - 
tuning tracker. It is a well known fact [22] that 

 lim   . .n
n

r a sn→∞
< ∞   (28) 

Using the matrix inversion lemma from relation (12) it 
follows 

 1 1
1

T
n n n nP P X MX− −

+ = +  (29) 

and from (3.11) we can define the recursive quantity nr , i,e. 

 ( ) 1
1 ,   T

n n n n n nr r tr X MX r trP−
+ = + =  (30) 

Using relations (23) and (25), the definition of the matrix 
Xn and C1, C2 and C4 conditions of the Theorem, one can 
get a relation for the global stability of the self-tuning 
tracker. 

In the second part of the proof we will prove optimality 
of the tracker. From relation (8), one can write 

 1 1 1   ,   i i i i i i iy y X wθ θ θ θ∗
+ + +− = − + = −% %  (31) 

Now we have 
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(32) 

From Lemma 2 it follows 

 ( )1 1
0

1 . 0 . .
n

T
i i

i

w a sn ε+ +
=

Ψ =∑  (33) 

Using (32), (33) and Lemma 3 one can get the second 
statement of the theorem  • 

Remark 3. In the Theorem1 condition C2 is restrictive. 
To avoid such type of conditions it is possible to make 
some modifications. 

In the original scheme of Astrom and Wittenmark [1] it 
is supposed that the matrix coefficient B1 is a priori known. 

References [3] and [13] suggest the next kind of 
modification of estimate B1n. Namely, the estimate B1n is 
replaced with any Fn - measurable 1

1
ˆ −

nB  that satisfies the 
conditions 
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The weighted ELS recursive algorithm is considered in 
[2]. The modification to B1n is 

 { }1 min 1 1
1

1

ˆ ˆ ˆ 0ˆ
ˆ

T
n n n

n T
n n n n

B if B B
B

B P Q otherwise

λ

υ

⎧ >⎪= ⎨
+⎪⎩

  

where Pn and Qn are the orthogonal matrices associated 
with the singular value decomposition of nB1

ˆ . 
The results from the adaptive control of SISO systems 

[11] about the modification of the high-frequency gain are 
applicable as well. 

Conclusion 
This paper considers the problem of global stability and 

optimality of the Astrom-Wittenmark self-tuning tracker 
when the noise is, generally, non-Gaussian. The system is 
modeled as a multivariable ARX model with the 
rectangular structure. As a special case, the approach 
includes the robust procedure with respect to the change of 
disturbance distribution. The paper also discusses relaxation 
of some assumptions by the high-frequency gain 
modification. Further investigation will be directed to give 
the logarithm law of the self-tuning regulator for the 
algorithms described in this paper. 
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Stohastičko adaptivno upravljanje zasnovano na robusnom metodu 
najmanjih kvadrata: Pregled rezultata 

Rad razmatra osobine Astrom-Wittenmark-ovog regulatora u problemu praćenja referentne vrednosti za slučaj 
multivarijabilnih sistema opisanih sa ARX modelom. Pretpostavlja se da stohastički poremećaj nema Gausovu 
raspodelu (uslov uvek prisutan u praksi). Posledica toga je nelinearna transformacija greške praćenja u direktnom 
adaptivnom regulatoru minimalne varijanse. Sistem je minimalno fazni i ima različite dimenzije ulaznog i izlaznog 
vektora. Korišćenjem Kronekerovog proizvoda nepoznati parametri se predstavljaju u formi vektora. Time se 
izbegava tenzorski račun. Dokazana je globalna stabilnost bez ikakve modifikacije matričnog pojačanja u 
rekurzivnom algoritmu. Dokazana je optimalnost regulatora u slučaju praćenja referentne trajektorije U radu su, 
takođe, razmatrani odnos pretpostavke o apsolutnoj neprekidnosti konačno dimenzionalnih raspodela verovatnoće i 
modifikacije visokofrekventnog pojačanja. 
U radu su predstavljeni teoretski rezultati, ali metodologija adaptivnog upravljanja već postpoji mnogo godina u 
vojnim sistemima (CH-47 helikopter i X-15 avion). 

Ključne reči: adaptivno upravljanje, ARX model, Negausov poremećaj, sampodešavajući regulator, stabilnost sistema, 
metoda najmanjih kvadrata. 
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Commande adaptive stochastique basée sur la méthode des moindres 
carrés: tableau des résultats 

Ce papier considère les propriétés du régulateur Astrom-Wittenmark pendant la poursuite des valeurs de référence 
chez  les systèmes multivariables décrits à l’aide de modèle ARX. On suppose que la déviation stochastique n’a pas la 
distribution de Gauss (condition toujours présente en pratique).La conséquence de cela est la transformation non-
linéaire de l’erreur de poursuite dans le régulateur direct adaptif de la variance minimale.Le système est de phase 
minimale et aux différentes dimensions de vecteurs d’entrée et de sortie.Les paramètres inconnus sont présentés en 
forme de vecteurs au moyen du concept du produit de Kronecker. De cette façon on a évité le calcul de tenseur . La 
stabilité totale a été prouvée sans aucune modification du profit de la matrice dans l’algorithme récursif. L’optimalité 
du régulateur est confirmée dans le cas de la poursuite de la trajectoire de référence. Dans ce papier on a considéré 
aussi le rapport entre la  supposition de la continuité absolue des distributions de dimension de la probabilité et la 
modification de haute fréquence. On a présenté les résultats théoriques mais la méthodologie de commande adaptive 
existe depuis des années dans les systèmes militaires (hélicoptère CH 47 et avion X-15)/ 

Mots clés: commande adaptive, modèle ARX,déviation non-Gauss, régulateur automatique, stabilité du système, 
méthode des moindres carrés. 

 

 


