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Robust Control of Systems over Communication Network 

Vojislav Z Filipović, PhD (Eng)1) 

In this paper the problem of robust control of constrained linear dynamic systems, in the presence of communication 
networks with queues, is considered. The communication network is between the process and the controller. We 
assume that the queue is in the sensor. The closed-loop system may face the problem of induced random delays caused 
by the communication network and that delay would deteriorate the system performance as well as its stability. 
Digital control systems with random but bounded delay in the feedback loop can be modeled as finite dimensional 
discrete-time jump linear systems with transition jumps being modeled as finite state Markov chains. The queue is 
modeled as a nonlinear systems to which feedback linearisation methodology is apllied. Then the complete system 
(process, communication network, queue) can be presented as a discrete-time jump system. For such a system, 
without unmodeled dynamics, the constrained quadratic control is proposed. The analysis of the system is then 
performed in the presence of unmodeled dynamics. This kind of systems has wide applications in military systems and 
process control systems. 
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Introduction 
N many industrial systems, especially those with remote 
sensors, actuators and controllers, a communication 

network is used to gather sensor data and send control 
signals. A communication network is a cost-effective and 
reliable way to coordinate different modules of control 
systems. Utilization of a multi-user network with random 
demands, affecting the network traffic, could result in 
random delays in the feedback-loop. These delays will 
deteriorate the system performance as well as stability. The 
problem becomes more complicated when, queue formation 
is also, considered for closed-loop data transmission. 

Time-delays are important components of many 
dynamical systems that describe interconnection between 
dynamics, propagation or transport phenomena and heredity 
and competition in population dynamics. In monograph 
[14] the stability and stabilization of such systems are 
considered using a unified eigenvalue-based approach. 
Application of methodology is demonstrated on the 
congestion anlysis in a high performance communication 
network. 

The paper considers a situation when a communication 
network is incorporated between the process and the 
controllers (up link case). The control systems, involve a 
queue as well. Such kind of systems is considered in [3]. In 
this paper the queue has a FIFO (first-in, first-out) structure. 
With the known maximum bufter size and the upper bound 
of random delay in the communication link, the recursive 
relation for controller input is described in the above paper. 
The static controller is then considered for jump systems. 

In [17] the problem of control systems with random 
communication delays is considered. It is shown that the 
control systems with random and bounded delays in the 
feedback loop can be modeled as finite dimensional 

discrete-time jump linear systems with the transition jumps 
being modeled as finite-state Markov chains. The important 
conclusion of this the paper is that control of the augmented 
state-space model is an output feedback problem even if a 
state feedback law is intended for the original system. 

Many physical systems are subject to frequent 
unpredictable structure changes (random failures, sudden 
environment disturbances, abrupt variation of operating 
points). Such systems can be described with Markovian 
jump systems. The system is a hybrid system with the state 
vector which has two components kx  and ( )r k . The first 
one is generally referred to as the state, and the second one 
is regarded as the mode. Stability of stochastic systems with 
Markovian switching is considered in [1], [13] and [20]. 
Stochastic nonlinear hybrid systems are considered in [7]. 

In this paper we will consider the robust control of 
systems over a communication network and a queue. The 
results in this paper differ in the following from the known 
results in the literature 
(i) For a network buffer (queue) in this paper we use a 

nonlinear mathematical model. The feedback lineariza-
tion is applied to that model. 

(ii) The process model has unmodeled dynamics 
(iii) The controller is robust and designed in the presence of 

a set of constraints  
(iv) The transition probability of Markov chains is not ex-

actly known but belongs to the convex hull. 
(v) Using the LMI tool, the robust stability, in the sense of 

mean square stability, is proved. 
The problem under consideration belongs to the field of 

discrete-time Markovian jump linear systems. That kind of 
systems is considered in [5]. 

I 
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Problem formulation 
The system under consideration is presented in Fig.1. 

 

Figure 1. Control systems involving the queue and the communication 
link 

It is supposed that the queue is in the sensor. The 
discrete-time linear time-invariant (LTI) process model 
with unmodeled dynamics is  

 ( )1 1 1 1 1
1  k k kx A A x B u+ ∆= + +  (1) 

where 1 n
kx R∈ , mu R∈ . The uncertainty 1A∆  has a finite 

matrix norm, i.e. 

 1A γ∆ ≤  (2) 

Remark 1. The uncertainty can also be presented, as: 

 1

1

l

i i
i

A q A∆
=

=∑  ,  1iq γ<  ,  1,...,i l=  (3) 

The paper supposes that the communication network has 
a scheduler for queues. One kind of scheduling is presented 
in [16]. For the queue and the communication network the 
following assumptions were made: 

The queue flow strategy is FIFO (first-in, first-out). 
The communication network is shared with other control 

loops. The scheduling can be in the form of stochastic 
process [19]. 

The important parameters for the queue are queue 
capacity (maximum number of customers that can be 
accomodated in the actual queuing space) and queuing 
discipline (refers to the rule according to which the next 
customer to be served is selected from the queue [2].  

Mathematical model of the jump systems 
In this paper we will consider a dynamic model of the 

buffer. Different kinds of models are considered in 
literature [9], [15] and [16]. We will first consider the fluid 
flow model for the scalar continuous case. Using the flow 
conservation principle for a single queue and assuming no 
packet losses, the following differential equations are 
obtained: 

 ( ) ( ) ( ), ,
b
i out i in ix t f t f t= − +&  (4) 

where ( )x t  is the state of the queue and ( )inf t  and 

( )outf t represent respectively the  number of incoming and 
outgoing packets. According to Fig.2 we obtain from (4) 

 

Figure 2. Network buffer 

 ( ) ( ) ( )b b b
i i ix t u t v t= −  (5) 

Let us introduce the processing rate ( )( )b
ir x t . In the 

literature there are different forms of the function ( )r ⋅ . In 

this paper we will use ( )r ⋅  as in [9] 

 ( )( ) ( )
( )( )

b
ib

i b
i

x t
r x t

x tθ
=  (6) 

where ( )θ ⋅  is the average packet residence time. For the 

linear relationship between θ  and the buffer level b
ix  there 

is 

 ( )( ) ( )
( )

b
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+

 (7) 

where 0ia >  is the parameter and µ  is the service rate of 
the network server. From (5) and (7) the fluid model of the 
buffer is finally obtained 
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 (8) 

Remark 2. For 1ia =  in relation (8) there is a classic 
formula of the queuing theory for the M/M/1 system [11]. 

In our case the buffer coresponds to the n-dimensional 
vector. Therefore, eq. (8) gives 
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 (9) 

From (8) and (9), the fluid model in the vector form is 
obtained 

 ( ) ( ) ( )( )b b bx t u t f x t= −&  (10) 
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For the nonlinear system in (10), feedback linaerization 
[10] is applied. The model is simple and it can be 
heuristicaly read 

 ( ) ( )( ) ( )b b bu t f x t h t= +  (11) 

Eqs. (10) and (11) give the linear continuous system 

 ( ) ( )b bx t h t=&  (12) 

 1
b b b
k k kx x h+ = +  (13) 

From Fig.1 it can be concluded that 

 1b
k kh x=  (14) 

The last two relations give 

 1
1

b b
k k kx x x+ = +  (15) 

Models (1) and (15) can be presented as a common 
model. 

 ( )2 2 2 2 2
1  k k kx A A x B u+ ∆= + +  (16) 
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Between model (16) and the controller, there is the 
communication network. Now we will find the common 
model for model (16) and the communication network. 

It is assumed that there are random but bounded delays 
from the sensor to the controller. Let us denote the finite 
delay bound with d . Using methodology from [6] we 
increase the state variable 

 ( ) ( ) ( )2 2 2
1 ...

TT T T
k k k k dx x x x− −

⎡ ⎤= ⎢ ⎥⎣ ⎦
 (17) 

where ( )2 1d n
kx R +∈ . As in [17] we can obtain a model 

which includes the process, the queue and the 
communication network (in the sense of stochastic time 
delay). 

 ( )1  k k kx A A x Bu+ ∆= + +  (18) 

 ( )k kr ky C x=  (19) 
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 ( ) [ ]0 0  0 0r kC I= L L   

where ( ){ }r k  is a bounded random integer sequence with 

( )0 r k d≤ ≤ < ∞  and ( )r kC  has all elements being zero 

except for ( )r k -th block being an identity matrix. The 
system of (18) and (19) is the discrete-time jump linear 
system. These equations are in the form of an output 
feedback control problem. 

The important problem is how to model the ( )r k  

sequence. One method is proposed in [3] where the ( )r k  is 
modeled as a finite state Markov process with the transition 
probability 

 ( ) ( ){ }1   ijP r k j r k i p= + = = =  (20) 

where 0 i≤ , j d≤ . The model is general and can include 
packet losses. The structured transition probability matrix is  
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where 

 0 1ijp≤ ≤   and  
0

1
d

ij
j

p
>

=∑  (22) 

Each row represented the transition probabilites from a 
fixed state to the whole state. 

Remark 3. In [17] it is showed that the delay ( )r k  can 
increase at most by 1 step each and can decrease as many 
steps as possible. 

Remark 4. The diagonal elements of the probability 
matrix SP  are the probabilites of data coming in sequence 
with equals delays. The elements above diagonal are the 
probabilites of encoutering longer delays and the elements 
below the diagonal include packet losses. In [18], the 
stability conditions of networked control systems with both 
arbitrary and Markovian packet losses are established via a 
packet-loss dependent Lyapunov approach. 

In this paper it is supposed that the transition probability 
matrix SP  is not precisely known, but belongs to the 
convex hull. For any set { }1,..., rH H  the convex hull is 
defined as 

 
{ }1

1 1

,...,

: , 0, 1

r
r r

l l l l
l l

conv H H

H Hα α α
= =

=
⎧ ⎫⎪ ⎪= > =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑  (23) 

Constrained quadratic control 
In this part of the paper we consider the system of (18) 

and (19) without unmodeled dynamics, i.e. 

 1k k kx Ax Bu+ = +  (24) 

 ( )k kr ky C x=  (25) 



 V.FILIPOVIĆ: ROBUST CONTROL OF SYSTEMS OVER COMMUNICATION NETWORK 27 

Also, we will consider a situation when the system is 
subject to constraints on the state (finite queue capacity) 
and control input (saturation). The mathematical description 
of constraints is  

 i k i k iF x G u ρ+ ≤     w.p.1 (26) 

k = 0,1,…;   i = 1,…, t 

Remark 5. The theory of constrained systems is very 
important from the practical point of view [8]. It is usually 
true that higher performance levels are associated with 
pushing the limits. Therefore, there is astrong incentive for 
the system to operate on constraint boundaries. To be more 
specific, the target is to maximise performance whilst 
ensuring that the relevant constraints on both inputs 
(manipulated variables) and states (process variables) are 
not violated.  

It is supposed that the transition probability of the 
Markov chain SP  is not exactly known, but belongs to 

{ }1 2, ...,S S Skconv P P P  The goal of the optimization problem 
is to find the upper bound for the next function 

 ( ) ( ) ( ){ }
0

T T T T
k k kr k r k

k

J E x C C x k u D Du
∞

>

= +∑  (27) 

where {}E ⋅  is mathematical expectation. Using the 
methodology from [4] the controller can be found 

 1
j j jK Y Q−=    , 1, 2,...,j d=  (28) 

which is the solution of four LMI. Let us define  

 ( )1 2, ,..., dK K K K=  and ( )k kr ku K x=  (29) 

where ( ) { }1, 2,...,r k d∈ . Then 

 ( )J K δ≤  (30) 

 
where δ  is a bounded real number. 
 

Robust stability of constrained quadratic control 
In this part of the paper we will consider the stability of 

the following control system 

 ( )1k k kx A A x Bu+ ∆= + +  (31) 

 ( )k kr ku K x=  (32) 

where ( ) { }1, 2,...,r k d∈  and ( )1 2, ,..., dK K K K=  as in the 
previous section. 

The closed loop system is  

 ( )( ) ( )1k k k k kr k r kx A BK x A x R x A x+ ∆ ∆= + + = +  (33) 

Let us introduce the indicator function 

 ( ) {1   1 0A
if A
other wise

ωω ∈=  (34) 

 

for i d N∀ ∈ ∈ , ( ){ } ( )1 1r k i ω= =  for ( )r k i=  and 0 
otherwise. Now we will formulate the formal results.  

Lemma 1. Let us suppose that for the system of (31) and 
(32) the following is valid: 
1. System without unmodeled dynamics is 

( )1k kr kx R x+ =  ,  ( ) ( )r k r kR A BK= +  

{ }1,...,k d∈  

2. Transition probabilites belong to the 

{ }1 ,...,S Spconv P P  

3. ( )r k  represents a Markov chain taking values in 
     N and having the initial distribution.  

{ }:iv v i N= ∈  

4. 0x  is a random variable 
5. Bounded linear operator in a Banach space is  

    given in the following form  

( )
1

d
T

j ij i i i
i

T U p R U R
=

=∑  

where ( ) ( ){ }{ }1T
i k k r k iU k E x x ==  

If the system without unmodeled dynamics is mean 
square stable, then 

{ } { }2 2
0  k

kE x E xβξ≤  

where 1β ≥  and 0 1ξ< <   
Lemma is, in essence, a collection of different results 

from [12] and [5]. 
Lemma 2. For the system with unmodeled dynamics, the 

following assumption is valid: 
1. (31)-(32) is the system with unmodeled dynamic 
2. 0x  is a random variable 

3. ( ) ( ){ }{ }1T
i k k r k iU k E x x ==  

4. ( ) ( )r k r kR A BK= +  is stable for 

( ) { }1, 2,...,r k d∈  

5. The unmodeled dynamics has the bound A γ∆ ≤ < ∞  
Then  

{ } ( ){ }{ }
1

1
d

T T
k k r k i

i

tr A E x x A∆ ∆ =
=

+∑  

 { }{ } ( ){ }{ }
1

2   1
d

T
i k k r k i

i

tr R E x x A∆ =
=

+ ≤∑   

( ) { }22  kc d E xγ γ α≤ +  

where ( ) ( ), , , 0,c d α γ ∈ ∞   
Proof: We have 

 



28 V.FILIPOVIĆ: ROBUST CONTROL OF SYSTEMS OVER COMMUNICATION NETWORK  

{ } ( ){ }{ }
1

1
d

T
k k r k i
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G tr A E x x A+
∆ ∆ =

=

= +∑  

{ }{ } ( ){ }{ }
1

2 1
d

T
i k k r k i

i

tr R E x x A A∆ ∆ =
=

+ =∑  

( ) ( )
1 1

2
d d

T
i i i

i i

d A U k A d R U k A∆ ∆ ∆
= =

= + ≤∑ ∑  

  ( ) ( )
1 1

  2   
d d

T
i i i

i i

d A U k A d R U k A∆ ∆ ∆
= =

≤ +∑ ∑  (35) 

The matrix i iR A BK= +  is stable by the design of the 
optimal controller and 

 iR α≤ < ∞  (36) 

From (35), (36) and assumption 5o of Lemma 2 it follows 

( ) ( )2

1 1

2
d d

i i
i i

G d U k d U kγ γ
= =

≤ + =∑ ∑  

 ( ) ( ) ( ) ( ) 1
1

2 2
d

i
i

d U k d U kγ γ α γ γ α
=

= + = +∑  (37) 

Owing to the fact that the system (31) and (32) is mean 
square stable, the constant ( ),c u∈ ∞  can be always found, 
such that 

 ( ){ } ( ){ }1 1  0E U k cE U≤  (38) 

then 

 ( ) ( ){ }12  0G c d E Uγ γ α≤ +  (39) 

On the other hand 

( ){ } ( )1
1

 0
d

i
i

E U E U u
=

⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭
∑  
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0 0 00

1

0 0 1

1   

d
T

x i
i

d

r i
i

E Ex x

E E x E x E x

=
=

=
=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
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∑

∑
 (40) 

Finally it is  

 ( ) { }2
02  G c d E xγ γ α≤ +  (41) 

The proof is completed 
Now we will, in the form of a theorem, formulate the 

main result of the paper. 
Theorem. The System of (31) and (32) is mean square 

stable if and only if 

{ } { } ( ) { }2 2 2
0 0 0  2  kE x E x c d E xβξ γ γ α≤ + +  

for 1β ≥  , 0 1ξ< <  and ( ) ( ), , , 0,c dγ α ∈ ∞   

Proof: (If) Suppose that the system of (31) and (32) is 
robustly stable in the mean square sense. Relations (31) and 
(32) give 

( )( ) ( )( )1 1
TT

k k k k k kr k r kx x R x A x R x A x+ + ∆ ∆= + + =  

( )( ) ( )( )T T T T
k k k kr k r kR x A x x R x A∆ ∆+ + =  

 ( ) ( ) ( )2T T T T T T
k k k k k kr k r k r kR x x R A x x A R x x A∆ ∆ ∆+ +  (42) 

Further it can be written 

{ } ( ){ }2
1 1 1

T
k k kE x E tr x x+ + += =  

{ } ( ){ }{ }
1

1
d

T T
i k k i r k i

i

tr R E x x R =
=

= +∑

{ } ( ){ }{ }
1

1
d

T T
k k r k i

i

tr A E x x A∆ ∆ =
=

+ +∑  

 { } ( ){ }{ }
1

2 1
d

T T
k k r k i

i

tr E x x A∆ =
=

+ ∑  (43) 

Using Lemma 1 and Lemma 2 we obtain 

 { } { } ( ) { }2 2 2
0 0 0  2  kE x E x c d E xβξ γ γ α≤ + + (44) 

(Only if) If (44) is satisfied then  

 { } ( ) { }2 2
0 0 2  E x c d E xγ γ α→ +  as k →∞  (45) 

Then the system under consideration is robustly mean 
square stable 

Remark 6. When the model of system (31) is exact 
(absence of unmodeled dynamics, i.e. 0γ = ) from relation 
(45) it follows 

{ }2
0 0E x →  as k →∞  

and the system is mean square stable. 

Conclusion 
In this paper the stabilizing controllers for specially 

structured discrete-time jump linear systems with random 
but bounded delays in the feedback loop and buffers, as 
consequence of the scheduling, are considered. The main 
task of the paper is the investigation of robust stability for 
Markov jump linear systems. The buffer (queue) is modeled 
in the form of a fluid model. For exact linearization, the 
feedback linearization is used. It means that in the control 
loop there are two controllers. The first one performs 
feedback linearization of the buffer and the second one is 
the main feedback controller. The next interesting and more 
difficult problem is the investigation of a system which also 
has the communication network between the controller and 
the actuators (down link). 
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Robusno upravljanje sistema preko komunikacionih mreža: 
Pregled rezultata 

U ovom radu je razmatran problem robusnog upravljanja linearnih dinemičkih sistema sa ograničenjima u prisustvu 
komunikacione računarske mreže sa redovima čekanja. Komunikaciona mreža je između procesa i regulatora. U 
radu se pretpostavlja da je red čekanja smešten u senzor. U ovakvim slučajevima se u sistemu upravljanja pojavljuje 
slučajno kašnjenje izazvano komunikacionom računarskom mrežom. Prisustvo kašnjenja degradira performanse 
sistema i dovodi u pitanje njegovu stabilnost. Digitalni sistem sa slučajnim ali ograničenim kašnjenjem može biti 
modelovan kao konačno dimenzionalan diskretni linearni sistem sa skokovima, pri čemu su tranzicioni skokovi 
modelovani kao Markovljevi lanci sa konačnim stanjima. Red čekanja se modeluje kao nelinearan sistem na koji se 
primenjuje metodologija linearizacije sa povratnom spregom. Onda se kompletan sistem (proces, računarska 
komunikaciona mreža, red čekanja) može predstaviti kao diskretan sistem sa skokovima. Za takav sistem, bez 
nemodelovane dinamike, predložen je kvadratni regulator sa ograničenjima. Posle toga je izvršena analiza takvog 
sistema u prisustvu nemodelovane dinamike. Takva vrsta sistema ima široku primenu u upravljanju vojnih i 
industrijskih sistema. 

Ključne reči: komunikacioni sistem, komunikaciona mreža, upravljanje mrežom, robustno upravljanje, dinamički 
sistem, linearni sistem, slučajno kašnjenje. 

@ivu~ee upravlenie sistem ~erez kommunikacionnwe sistemw: 
Obzor i analiz rezulxtatov 

V nasto}|ej rabote rassmatrivana problema `ivu~ego upravleni} linejnwh dinami~eskih sistem s 
ograni~eniem v nali~ii kommunikacionnoj vw~islitelxnoj seti s o~erëdnost}mi o`idani}. 
Kommunikacionna} setx osu|estvl}ets} me`du processom i kontrollerom. V rabote predpolagaets}, ~to 
o~erëdnostx o`idani} nahodits} v ~uvstvitelxnom &lemente. V takih slu~a}h v sisteme upravleni} 
po}vl}ets} slu~ajna} vremenna} zader`ka, vwzvana kommunikacionnoj vw~islitelxnoj setxy. Nali~ie 
vremennoj zader`ki privodit k ustarevaniy harakteristik sistemw i stavit pod ugrozu ego ustoj~ivostx. 
Cifrova} sistema so slu~ajnoj no ograni~ennoj vremennoj zader`koj mo`et bwtx modelirovana v vide  
diskretnoj linejnoj sistemw s prw`kami kone~noj razmernosti, pri ~ëm perehodnwe prw`ki 
modelirovanw kak cepi Markova s kone~nwmi sosto}ni}mi. O~erëdnostx o`idani} modeliruets} kak 
nelinejna} sistema, na kotoruy primen}ets} metodologi} linearizacii s obratnoj sv}zxy. Togda polnuy 
sistemu (process, vw~islitelxna} kommunikacionna} setx, o~erëdnostx o`idani}) vozmo`no predstavitx 
kak diskretnuy sistemu s prw`kami. Dl} takoj sistemw, bez nemodelirovannoj dinamiki, predlo`en 
kvadrati~eskij ~uvstvitelxnwj &lement s ograni~eni}mi. Posle &togo sdelan analiz takoj sistemw pri 
nali~ii nemodelirovannoj dinamiki. Takoj vid sistemw {iroko primen}ets} v upravlenii voennwh i 
promw{lennwh sistem. 

Kly~evwe slova: kommunikacionna} sistema, kommunikacionna} setx, upravlenie setxy, `ivu~ee 
upravlenie, dinami~eska} sistema, linejna} sistema, slu~ajna} vremenna} zader`ka. 
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Commandes robustes des systèmes par les systèmes des 
communications: tableau des résultats 

Ce papier considère le problème des commandes robustes des systèmes linéaires dynamiques avec limitations et dans 
la présence du réseau de communications aux filtres d’attente. Le réseau de communications est entre le procès et le 
régulateur. Dans ce travail on suppose que la file d’attente est située dans le sensor. Dans des cas pareils chez le 
système des commandes apparaît un délai aléatoire causé par le réseau de communications informa- tique. La 
présence du délai dégrade les performances du système et met en question sa stabilité. Le système digital avec délai 
aléatoire mais limité peut être modelé comme le système discret linéaire fini et dimensionel avec sauts, mes sauts de 
transitions étant modelé comme les chaînes de Markov avec les états finis. La file d’attente est modelée comme le 
système non-linéaire où l’on applique la métodologie de linéarisation avec réactions. Le système complet (procès, 
réseau de communication informatique, file d’attente) peut alors être présenté comme le système discret avec sauts. 
Pour ce système, sans dynamique non-modelée, on a proposé un régulateur carré avec contraintes. Ensuite, on a 
analysé ce système en présence de la dynamique non-modelée. Ce type de système trouve une vaste application chez 
les commandes des systèmes militaires et industriels. 

Mots clés: système de communications, réseau de communications, commande de réseau, commande robuste, système 
dynamique, système linéaire, délai aléatoire.  

 
 


