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Robust Control of Systems over Communication Network

Vojislav Z Filipovi¢, PhD (Eng)"

In this paper the problem of robust control of constrained linear dynamic systems, in the presence of communication
networks with queues, is considered. The communication network is between the process and the controller. We
assume that the queue is in the sensor. The closed-loop system may face the problem of induced random delays caused
by the communication network and that delay would deteriorate the system performance as well as its stability.
Digital control systems with random but bounded delay in the feedback loop can be modeled as finite dimensional
discrete-time jump linear systems with transition jumps being modeled as finite state Markov chains. The queue is
modeled as a nonlinear systems to which feedback linearisation methodology is apllied. Then the complete system
(process, communication network, queue) can be presented as a discrete-time jump system. For such a system,
without unmodeled dynamics, the constrained quadratic control is proposed. The analysis of the system is then
performed in the presence of unmodeled dynamics. This kind of systems has wide applications in military systems and
process control systems.
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Introduction

N many industrial systems, especially those with remote

sensors, actuators and controllers, a communication
network is used to gather sensor data and send control
signals. A communication network is a cost-effective and
reliable way to coordinate different modules of control
systems. Utilization of a multi-user network with random
demands, affecting the network traffic, could result in
random delays in the feedback-loop. These delays will
deteriorate the system performance as well as stability. The
problem becomes more complicated when, queue formation
is also, considered for closed-loop data transmission.

Time-delays are important components of many
dynamical systems that describe interconnection between
dynamics, propagation or transport phenomena and heredity
and competition in population dynamics. In monograph
[14] the stability and stabilization of such systems are
considered using a unified eigenvalue-based approach.
Application of methodology is demonstrated on the
congestion anlysis in a high performance communication
network.

The paper considers a situation when a communication
network is incorporated between the process and the
controllers (up link case). The control systems, involve a
queue as well. Such kind of systems is considered in [3]. In
this paper the queue has a FIFO (first-in, first-out) structure.
With the known maximum bufter size and the upper bound
of random delay in the communication link, the recursive
relation for controller input is described in the above paper.
The static controller is then considered for jump systems.

In [17] the problem of control systems with random
communication delays is considered. It is shown that the
control systems with random and bounded delays in the
feedback loop can be modeled as finite dimensional
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discrete-time jump linear systems with the transition jumps
being modeled as finite-state Markov chains. The important
conclusion of this the paper is that control of the augmented
state-space model is an output feedback problem even if a
state feedback law is intended for the original system.

Many physical systems are subject to frequent
unpredictable structure changes (random failures, sudden
environment disturbances, abrupt variation of operating
points). Such systems can be described with Markovian
jump systems. The system is a hybrid system with the state

vector which has two components x; and (k). The first

one is generally referred to as the state, and the second one
is regarded as the mode. Stability of stochastic systems with
Markovian switching is considered in [1], [13] and [20].
Stochastic nonlinear hybrid systems are considered in [7].

In this paper we will consider the robust control of
systems over a communication network and a queue. The
results in this paper differ in the following from the known
results in the literature

(i) For a network buffer (queue) in this paper we use a
nonlinear mathematical model. The feedback lineariza-
tion is applied to that model.

(il) The process model has unmodeled dynamics

(ii1) The controller is robust and designed in the presence of
a set of constraints
(iv) The transition probability of Markov chains is not ex-
actly known but belongs to the convex hull.
(v) Using the LMI tool, the robust stability, in the sense of
mean square stability, is proved.
The problem under consideration belongs to the field of
discrete-time Markovian jump linear systems. That kind of
systems is considered in [5].
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Problem formulation
The system under consideration is presented in Fig.1.
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Figure 1. Control systems involving the queue and the communication
link

It is supposed that the queue is in the sensor. The
discrete-time linear time-invariant (LTI) process model
with unmodeled dynamics is

X =(4'+ 4)) xi + By (1)

where x; € R", u e R". The uncertainty Ay has a finite
matrix norm, i.e.

e o

Remark 1. The uncertainty can also be presented, as:

!
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The paper supposes that the communication network has
a scheduler for queues. One kind of scheduling is presented
in [16]. For the queue and the communication network the
following assumptions were made:

The queue flow strategy is FIFO (first-in, first-out).

The communication network is shared with other control
loops. The scheduling can be in the form of stochastic
process [19].

The important parameters for the queue are queue
capacity (maximum number of customers that can be
accomodated in the actual queuing space) and queuing
discipline (refers to the rule according to which the next
customer to be served is selected from the queue [2].

Mathematical model of the jump systems

In this paper we will consider a dynamic model of the
buffer. Different kinds of models are considered in
literature [9], [15] and [16]. We will first consider the fluid
flow model for the scalar continuous case. Using the flow
conservation principle for a single queue and assuming no
packet losses, the following differential equations are
obtained:

3(8) == Fours (1) + fins (1) @

where x(¢) is the state of the queue and f;, (¢) and

Jour () represent respectively the number of incoming and
outgoing packets. According to Fig.2 we obtain from (4)
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Figure 2. Network buffer
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Let us introduce the processing rate r(xib (t)) In the
literature there are different forms of the function r(-). In

this paper we will use 7(-) as in [9]
b
(1) =2 () (©)

where 0(-) is the average packet residence time. For the

linear relationship between @ and the buffer level x’ there
is

F(+ (1)) = o (1)

B a; +x? (¢)

()

where a; >0 is the parameter and g is the service rate of

the network server. From (5) and (7) the fluid model of the
buffer is finally obtained

pxi (1)
a; +x7 (1)

X () =ul (t)- (8)

Remark 2. For a; =1 in relation (8) there is a classic

formula of the queuing theory for the M/M/1 system [11].
In our case the buffer coresponds to the n-dimensional
vector. Therefore, eq. (8) gives

(1) u (1)

pxt (t)
a +x1b (¢)
)= ©)
uxt (t)
La, +x7 (1)

From (8) and (9), the fluid model in the vector form is
obtained

i (t)=u’ (t)- £ (2" (1)) (10)
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For the nonlinear system in (10), feedback linaerization
[10] is applied. The model is simple and it can be
heuristicaly read

u (1) =f(x (1)) +h* (1) (11)

Egs. (10) and (11) give the linear continuous system
X (t)=n"(t) (12)
X = x; +hy (13)

From Fig.1 it can be concluded that
W =x; (14)
The last two relations give
X =X+ (15)

Models (1) and (15) can be presented as a common
model.

X = (4> + A) x; + By (16)
1 1 1
2| X 2 A 0 2 |4y O
=[] =4 ) a4 ]
k
B -|B
0

Between model (16) and the controller, there is the
communication network. Now we will find the common
model for model (16) and the communication network.

It is assumed that there are random but bounded delays
from the sensor to the controller. Let us denote the finite

delay bound with d. Using methodology from [6] we
increase the state variable

T T 7"
Xx 2[(x,f) (x,f,l) ...(x,f,d) } (17
where x; e R As in [17] we can obtain a model

which includes the process, the queue and the
communication network (in the sense of stochastic time
delay).

X+l :(A+AA)xk +Buk (18)
Vi =CrinyXi (19)
4> 0 - 00
1 0 00
A = O I : s
0 10
A0 0 0 2
1 0 00 0
AA = O [ 5 B: .
0 10 0

Cr(k) :[0...0[ ()...()]

where {r(k)} is a bounded random integer sequence with
0<r(k)<d<w and C,y) has all elements being zero

except for r(k)-th block being an identity matrix. The

system of (18) and (19) is the discrete-time jump linear
system. These equations are in the form of an output
feedback control problem.

The important problem is how to model the r(k)
sequence. One method is proposed in [3] where the (k) is
modeled as a finite state Markov process with the transition
probability

P={r(k+1)=j |r(k)=i}=p, (20)

where 0<i, j<d.The model is general and can include
packet losses. The structured transition probability matrix is

Po Pu O 0o - 0
Pio Pu P2 O 0
P=|: : : : (21)
Pa-1,d
Pao Par Paz Pai Pa,a
where
d
0<p; <1 and ) p, =1 (22)
Jj>0

Each row represented the transition probabilites from a
fixed state to the whole state.

Remark 3. In [17] it is showed that the delay r(k) can
increase at most by 1 step each and can decrease as many
steps as possible.

Remark 4. The diagonal elements of the probability
matrix P are the probabilites of data coming in sequence
with equals delays. The elements above diagonal are the
probabilites of encoutering longer delays and the elements
below the diagonal include packet losses. In [18], the
stability conditions of networked control systems with both
arbitrary and Markovian packet losses are established via a
packet-loss dependent Lyapunov approach.

In this paper it is supposed that the transition probability
matrix Py is not precisely known, but belongs to the

convex hull. For any set {H,,...,H,} the convex hull is
defined as

conv{H,,...H,} =

r r 23
={H:IZ_;(Z,H1,(Z,>O,[Z;0£/=1} ( )

Constrained quadratic control

In this part of the paper we consider the system of (18)
and (19) without unmodeled dynamics, i.e.

Xiy1 = Axk +Buk (24)

Ve =Gy X (25)
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Also, we will consider a situation when the system is
subject to constraints on the state (finite queue capacity)
and control input (saturation). The mathematical description
of constraints is

|Fxi + G| < pr - wep.1 (26)

k=0,1,.; i=1,..,¢

Remark 5. The theory of constrained systems is very
important from the practical point of view [8]. It is usually
true that higher performance levels are associated with
pushing the limits. Therefore, there is astrong incentive for
the system to operate on constraint boundaries. To be more
specific, the target is to maximise performance whilst
ensuring that the relevant constraints on both inputs
(manipulated variables) and states (process variables) are
not violated.

It is supposed that the transition probability of the
Markov chain P is not exactly known, but belongs to

conv{Ps,F;..., Py} The goal of the optimization problem
is to find the upper bound for the next function

J= ZE{x,Z CloCrpx (k) +uf D" Du ) (27)

k>0
where E{-}
methodology from [4] the controller can be found

is mathematical expectation. Using the

K, =Y,0;' ,j=12..d (28)
which is the solution of four LMI. Let us define
K :(Kl,Kz,...,Kd) and U, = K,.(k)xk (29)
where r(k)e{l,2,...,d}. Then

J (K ) ) (30)
where O is a bounded real number.

Robust stability of constrained quadratic control

In this part of the paper we will consider the stability of
the following control system

Xie+1 =(A+AA)xk +Buk (31)

up = K ()X (32)

where r(k)e{l,2,..,d} and K =(K},K,,...,K,) as in the
previous section.
The closed loop system is

Xpyl = (A + BK,(k))xk + AAxk = R,.(k)xk + AAxk (33)

Let us introduce the indicator function

L (w):{

1 if wed

0 other wise (34)

for ViedeN, l,4y(@)=1 for r(k)=i and 0

otherwise. Now we will formulate the formal results.
Lemma 1. Let us suppose that for the system of (31) and
(32) the following is valid:

1. System without unmodeled dynamics is

Xeot = Ry X 5 Rypy = A+ BK

ke{l,..d}

2. Transition probabilites belong to the
conv{PS1 sees Py }

3. r(k) represents a Markov chain taking values in
N and having the initial distribution.

v={v,:ie N}

X, is a random variable

5. Bounded linear operator in a Banach space is
given in the following form

d
T; (U) = ZpiniUiRiT

i=1
where U, (k)= E{xkx/z L (ki) }

If the system without unmodeled dynamics is mean
square stable, then

E{ Ju]*} < & E{ x|

where f>1 and 0<¢& <1

Lemma is, in essence, a collection of different results
from [12] and [5].

Lemma 2. For the system with unmodeled dynamics, the
following assumption is valid:

1. (31)-(32) is the system with unmodeled dynamic
2. X, is arandom variable

3. Ui(k)=E{xx{ 1,0 |

4. R.) = A+BK,, is stable for

r(k)e{1,2,....d}

5. The unmodeled dynamics has the bound ||4,[ < y <
Then

d

Ztr{AAE{xka F AL g+

i=1
d

+ZZtr{RI-E{xkka} AA} { l{r(k):i}} <

i=1

<cyd(y+2a)E{ x|}

where (c,d,a,y)€(0,)
Proof: We have
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d
G= Ztr{AAE{ka/Z } AT (=i } *

i=1

+2Ztr RE xkxk}AA}AA {1{ r(k)= l}}:

d
=d ) |4U; (k
i=1
d d
<a sl i )] 4]+ 24 D IR ] [ G

The matrix R; = A+ BK; is stable by the design of the
optimal controller and

d
4L+ 24 ) [RU, (k) Ay <
i=l1

) 4]l 35)

IR|<a<oo (36)

From (35), (36) and assumption 5° of Lemma 2 it follows
d d
G< dﬁZHUf (k)| +2d7 ) Ui (k)] =
i i=1

d
7(r+20) Y JUL ()] = rd (7 + 20)[U (K)], G37)

Owing to the fact that the system (31) and (32) is mean
square stable, the constant ¢ € (#,0) can be always found,
such that

E{ U]} <cE{ [U(0)] } (38)
then

G<cyd(y+2a)E{ |U(0)| } (39)
On the other hand

e o= £ 3o -

= (40)

E{ZExol }=E{{ ok} = £{ Folf)

Finally it is

X" (0)y(0)-4

G <cyd(y+2a)E{ x|} (41)

The proof is completed

Now we will, in the form of a theorem, formulate the
main result of the paper.

Theorem. The System of (31) and (32) is mean square
stable if and only if

E{ [xol} < B E{ x|} +erd ( +2a) E{ o[

for f>1,0<¢<1 and (¢,y,d,a) €(0,0)

Proof: (If) Suppose that the system of (31) and (32) is
robustly stable in the mean square sense. Relations (31) and
(32) give

Xp1Xho1 = (Rr(k)xk + Apx; )(Rr(k)xk + Apx; )T =

(Rr(k)xk + AAxk )(XZR ( ) +xk AA )
R, (k)X XIZRrT(k) + Apxix AS + 2R, (1) Xk Xk (AL (42)

Further it can be written

E{HXIHIHZ} = E{[r(xkﬂxlzﬂ )} =

- itr{RiE{xkka}RiT l{f(k)=f} } +

i=1

d
+Zt7" AA xkxk AAl{() }}
i=1

+22tr{E{xkxk b AT ) (43)
i1
Using Lemma 1 and Lemma 2 we obtain
E{ x|’} < EE{ |xalf | +crd (r +2a) E{ x|} (44)
(Only if) If (44) is satisfied then
E{ [xol’} > erd(r+2a) E{ x|’} as k>0 (45)

Then the system under consideration is robustly mean
square stable

Remark 6. When the model of system (31) is exact
(absence of unmodeled dynamics, i.e. ¥ =0 ) from relation

(45) it follows
E{ [xof} >0 as k>0

and the system is mean square stable.

Conclusion

In this paper the stabilizing controllers for specially
structured discrete-time jump linear systems with random
but bounded delays in the feedback loop and buffers, as
consequence of the scheduling, are considered. The main
task of the paper is the investigation of robust stability for
Markov jump linear systems. The buffer (queue) is modeled
in the form of a fluid model. For exact linearization, the
feedback linearization is used. It means that in the control
loop there are two controllers. The first one performs
feedback linearization of the buffer and the second one is
the main feedback controller. The next interesting and more
difficult problem is the investigation of a system which also
has the communication network between the controller and
the actuators (down link).
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Robusno upravljanje sistema preko komunikacionih mreza:
Pregled rezultata

U ovom radu je razmatran problem robusnog upravljanja linearnih dinemickih sistema sa ogranic¢enjima u prisustvu
komunikacione racunarske mreZe sa redovima ¢ekanja. Komunikaciona mreZa je izmedu procesa i regulatora. U
radu se pretpostavlja da je red ¢ekanja smesten u senzor. U ovakvim slu¢ajevima se u sistemu upravljanja pojavljuje
slu¢ajno kasnjenje izazvano komunikacionom racunarskom mreZom. Prisustvo kaSnjenja degradira performanse
sistema i dovodi u pitanje njegovu stabilnost. Digitalni sistem sa slu¢ajnim ali ograni¢enim kaSnjenjem moZe biti
modelovan kao kona¢no dimenzionalan diskretni linearni sistem sa skokovima, pri ¢emu su tranzicioni skokovi
modelovani kao Markovljevi lanci sa kona¢nim stanjima. Red ¢ekanja se modeluje kao nelinearan sistem na koji se
primenjuje metodologija linearizacije sa povratnom spregom. Onda se kompletan sistem (proces, racunarska
komunikaciona mreZa, red ¢ekanja) moZe predstaviti kao diskretan sistem sa skokovima. Za takav sistem, bez
nemodelovane dinamike, predloZen je kvadratni regulator sa ogranienjima. Posle toga je izvrSena analiza takvog
sistema u prisustvu nemodelovane dinamike. Takva vrsta sistema ima Siroku primenu u upravljanju vojnih i

industrijskih sistema.

Kljucne reci: komunikacioni sistem, komunikaciona mreZa, upravljanje mreZom, robustno upravljanje, dinamicki

sistem, linearni sistem, slu¢ajno kasnjenje.

XKuByuee ynpaBlIeHUE CUCTEM YEPE3 KOMMYHUKAIMOHHBIE CUCTEMBI:
O0630p 1 aHanN3 pe3ynbTATOB

B macrosmieit paGoTe paccMaTpHBaHa MpoGjeMa XABY9ero yNpaBlIeHWS JIHHEHHBIX JUHAMHIECKMX CHCTEM C
OrpaHMYCHNEM B HAJINYAA KOMMYHHKALIOHHOH BBIYHCIUTENBHOH CETH C OYEPEAHOCTAMH  OXKMJJaHWS.
KoMMmyHHKamioHHas ceTh OCYIIECTBIAETCS MEXHY IPONECCOM U KOHTpoJIepoM. B pa6Gore mpenmosnaraeTcs, 4To
OUEPENHOCTh OXHUAAHMS HAXONMTCS B UYBCTBHTEILHOM 3JIeMEHTe. B Takmx ciyuyasx B CHCTeMe YIpaBJIeHHS
HmosBNIseTCS ClydaiiHas BpeMeHHas 3ajlepXKa, BbI3BaHa KOMMYHWKAIMOHHOM BHIYMCIUTENBHOMN ceThio. Hammine
BPEMEHHOI 3aiepKKH NPHBOJAT K YCTaPEBaHAIO XapAKTEPHCTHK CHCTEMBI H CTABHT IO yTPO3Y €r0 yCTOHYMBOCTD.
ITndposas crcreMa co CIy9aiiHOM HO OIpaHWYCHHON BPEMEHHOH 3alepXKO# MOXKET ObITh MOJEIMpPOBaHA B BHJE
AUCKPETHOH IJIMHEWHON CHACTEMBI C TIDDKKAaMH KOHEYHOH Ppa3MEpPHOCTH, NPH YEM IEPEXOAHBIE NPbIKKA
MOJICIAPOBaHbl KaK Ien¥ MapkoBa ¢ KOHEUHBIMH COCTOSHEAMH. O9epEéNHOCTL OXHEAAHWS MOJeIHpyeTcs Kak
HeJIMHEHHas! CHCTeMa, Ha KOTOPYIO IPUMEHSETCS METOJOJIOT S JIMHeapu3anyy ¢ oOpaTHOM! cBs3bi0. Torma momHyo
cAcTeMy (Tpoliece, BBIUACTATENLHAS KOMMYHUKAIHOHHAS CETh, OUCPENHOCTE OXHUNAHNS) BO3MOXKHO IPENCTABUTH
KaK JUCKPETHYIO CHCTeMYy C TpbIkKamu. [Ij1s1 Takoil chcTeMbl, 6€3 HEMOJEINPOBAaHHONW AWHAMMKM, MPEJIOXEH
KBafipaTHIeCKU#l IyBCTBUTEIBHBIA 2]IEMEHT ¢ orpaHmYeHMAMHA. ITocie aToro ciellal aHAJIM3 Takol CHCTEMbI IpH
HAJIMYAY HEMOJEIMPOBAHHOM JUHAMHUKM. Takoil BAJ CHACTEMbI INAPOKO IPHMEHSETCS B YIPABJICHAW BOCHHBIX H

OPOMBININEHHBIX CHCTEM.

Kawuesvle cno6a: KOMMyHWKAI[HIOHHAsi CHCT€Ma, KOMMYHAKAIOHHAas CETh, YNPAaBICHHE CETBIO, JKHAByJee
yIpaBieHHne, AMHAMAYECKAs CACTEMa, TMHEHHAs CACTEMA, CITyJaiiHast BpeMeHHasI 3aePKKa.
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Commandes robustes des systémes par les systemes des
communications: tableau des résultats

Ce papier considére le probléme des commandes robustes des systémes linéaires dynamiques avec limitations et dans
la présence du réseau de communications aux filtres d’attente. Le réseau de communications est entre le procés et le
régulateur. Dans ce travail on suppose que la file d’attente est située dans le sensor. Dans des cas pareils chez le
systéme des commandes apparait un délai aléatoire causé par le réseau de communications informa- tique. La
présence du délai dégrade les performances du systéme et met en question sa stabilité. Le systéme digital avec délai
aléatoire mais limité peut étre modelé comme le systéeme discret linéaire fini et dimensionel avec sauts, mes sauts de
transitions étant modelé comme les chaines de Markov avec les états finis. La file d’attente est modelée comme le
systéme non-linéaire ou I’on applique la métodologie de linéarisation avec réactions. Le systéme complet (proces,
réseau de communication informatique, file d’attente) peut alors étre présenté comme le systéme discret avec sauts.
Pour ce systéme, sans dynamique non-modelée, on a proposé un régulateur carré avec contraintes. Ensuite, on a
analysé ce systéme en présence de la dynamique non-modelée. Ce type de systéme trouve une vaste application chez
les commandes des systémes militaires et industriels.

Mots clés: systéme de communications, réseau de communications, commande de réseau, commande robuste, systéme
dynamique, systéme linéaire, délai aléatoire.



