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This paper gives a detailed overview of the work and the results of many authors in the area of Non-Lyapunov (finite 
time stability, technical stability, practical stability, final stability) of particular class of linear systems. The stability 
robusteness problem has been also treated and presented.  
This survey covers the period from 1985 to nowadays and has a strong intention to present the main concepts and 
contributions that have been derived during the mentioned period through out the world, published in respectable 
international journals or presented at workshops or prestigious conferences. 
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Introduction 
T should be noticed that in some systems their character 
of dynamic and static state must be the considered at the 

same time. Singular systems (also, referred to as 
degenerate, descriptor, generalized, differential - algebraic 
systems or semi – state) are the dynamics of which is 
governed by a mixture of algebraic and differential 
equations. Recently many scholars have paid a lot of 
attention to singular systems and have obtained many 
positive results. The complex nature of singular systems 
causes many difficulties in the analytical and numerical 
treatment of such systems, particularly when there is a need 
for their control. 

In practice, there is not only an interest in system 
stability (e.g. in sense of Lyapunov), but also in the bounds 
of system trajectories. A system could be stable but 
completely useless because it possesses undesirable 
transient performances. Thus, it may be useful to consider 
the stability of such systems with respect to certain sub-sets 
of state-space, which are a priori defined in a given 
problem. Besides that, it is of particular significance to 
consider the behavior of dynamic systems only over a finite 
time interval. 

These bound properties of system responses, i.e. the 
solution of system models, are very important from the 
engineering point of view. Therefore, numerous definitions 
of the so-called technical and practical stability were 
introduced. Roughly speaking, these definitions are 
essentially based on the predefined boundaries for the 
perturbation of initial conditions and the allowable 
perturbation of system response. In engineering 
applications of control systems, this fact becomes very 
important and sometimes crucial, for the purpose of 
characterizing in advance, in quantitative manner, possible 
deviations of the system response. Thus, the analysis of 
these particular bound properties of the solutions is an 

important step, which precedes the design of control 
signals, when finite time or practical stability control is 
concerned. In the context of practical stability for linear 
singular systems, various results were first obtained in 
Debeljkovic, Owens (1985) and Owens, Debeljkovic (1986). 

Let the linear singular system in free regime be governed 
by: 

 ( ) ( ) ( )0 0t ,E A t t= =x x x x&  (1) 

where , n nE A ×∈R  are the constant matrices, with E  

singular, ( ) nt ∈x R  is the phase vector (i.e. generalized 
state-space vector), 0x  is the consistent initial condition. 

The systems defined in (1) are usually known as singular 
( )det 0E = , descriptor (the way in which the system is 
initially described), semi-state, differential-algebraic 
equations and generalized state space systems. They occur 
naturally in many physical applications such as electrical 
networks, aircraft and robot dynamics, neutral delay and 
large-scale systems, economics and optimization problems, 
biology, etc. 

The survey of the updated results in this area and the 
broad bibliography can be found in Campbell (1980); 
Verghese et al. (1981); Lewis (1986); Campbell (1990), and 
in the special issues on semi-state systems of the journal 
Circuits, Systems and Signal Processing (1986, 1989). 

Notations and preliminaries 
The dynamical behavior of the systems described by (1) 

is defined over the time interval { }0 0:J t t t t T= ≤ ≤ + , 
where the quantity T  may be either a positive real number 
or the symbol +∞ , so finite time stability and practical 
stability can be treated simultaneously. 

I 
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The time invariant sets, used as bounds of system 
trajectories, are assumed to be open, connected and 
bounded.  

Let the index β  stands for the set of all allowable states 
of the system and the index α  for the set of all initial states 
of the system, such that the set S Sα β⊆ . 

In general, it may be written: 

 ( ){ } ( ) { }: , \ 0kQS t t Wρ ρ= < ∈x x x  (2) 

where Q  will be assumed to be a symmetric, positive 
definite, real matrix and where kW  denotes the sub-space of 
consistent initial conditions generating the smooth 
solutions. The vector of initial conditions is consistent if 
there is a continuous, differentiable solution of (1). A 
geometric treatment Owens, Debeljkovic (1985) yields kW  
as the limit of the sub-space algorithm: 

 ( )1
0 1, , 0n

j jW W W j−
+= = ≥A ER  (3) 

where ( )1− ⋅A  denotes the inverse image of ( )⋅  under the 
operator A . 

Campbell et al. (1976) have shown that the sub-space 
kW , is the set of vectors satisfying: 

 ( ) 0
ˆ ˆDI E E− =x 0 , or ( )ˆ ˆD

kW I E E=ℵ − , (4) 

where ( ) 1Ê cE E−= − A . c  is any complex scalar such 
that: 

 ( )det 0cE A− ≠  or ( ) { }0kW E∩ℵ =  (5) 

which guarantees uniqueness of the solutions generated by 
kW  . 
The null space1 of the matrix F  is denoted by ( )Fℵ  

and the superscript "D" is used to indicate the Drazin 
inverse.  

If F  is n n×  then matrix DF  denotes the Drazin 
inverse with the following properties: 

 1, ,D D D D D D k kFF F F F FF F F F F+= = = , (6) 

where k  is the index of F  defined to be the smallest non-
negative integer such that: 

 1j jF rank F+ =  (7) 

Let ( )⋅x  be any vector norm (i. g. 1, 2,⋅ = ∞ ) and ( )⋅  

the matrix norm induced by this vector. 

Basic notations  
R   Real vector space 

  Complex vector space 
C   Complex plane  
I   Unit matrix 
F   ( ) n n

ijf ×= ∈R , real matrix 

                                                           
1 In literature the term Kernel is very often used, but for the sake of the 
term null space is more correct as it is related clarity, to matrices and the 
term Kernel is related to transformations. 

TF   Transpose of the matrix F  
0F >   Positive definite matrix 
0F ≥   Positive semi - definite matrix 

( )Fℜ   Range of the matrix F  
N   Nilpotent matrix 
( )FN   Null space (kernel) of the matrix F  

 ( )Fλ  Eigenvalue of the matrix F  

( ) ( )Fσ  Singular values of matrix F  

{ }Fσ   Spectrum of the matrix F  

F   Euclidean matrix norm F ( )max
TA Aλ=  

DF   Drazin inverse of the matrix F  
⇒   Follows 
a   Such that 

Matrix measure has been widely used in the literature 
when dealing with stability of time delay systems.  

The matrix measure2 µ  for any matrix n nF ×∈C  is 
defined as follows 

 ( )
0

1
lim

h

I hF
F

h
µ

+→

+ −
. (8) 

Also, 

 ( )
0

1
lim

h

I hF
F

h
µ

+→

− +
− − . (9) 

From Mori (1988), the following inequality holds: 

 ( ) ( )2 2F F Fµ µ− ≤ − − ≤ ≤ F . (10) 

The matrix measure defined in (8) can be subdefined in 
three different ways, depending on the norm utilized in its 
definitions. 

 ( ) ( )1
1

sup Re
n

kk ik
k i

i k

F f fµ
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ , (11) 

 ( ) ( )2
1 max2 ii

F F Fµ λ ∗= + , (12) 

 ( ) ( )
1

sup Re
n

ii ik
i k

k i

F f fµ∞
=
≠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ . (13) 

Coppel (1965). 
The upper index ∗  denotes the transpose conjugate. In 

the case of n nF ×∈R  it follows TF F∗ = , where the index 
T  denotes the transpose. 

Consider a linear singular system (LSS) (1).  
It is assumed that the matrix E  is in the form 

( )1 2,n nE diag I O= . If the matrix E  is not in this form, 
then in many cases it can be transformed to the required 
form by left multiplication with a (nonsingular) matrix T , 
and such transformation will not alter the original phase 
variables ( )tx . 

                                                           
2 In literature the term logarithmic matrix norm, is also used although it 
can be a negative number which is not a property of a norm. 
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The resulting (LSS) model will thus be given as 

 ( ) ( ) ( )1 1 1 2 2t A t A t= +x x x&  (14) 

 ( ) ( )3 1 4 2A t A t= +0 x x  (15) 

where ( ) ( ) ( )1 2,
TT T nt t t⎡ ⎤= ∈⎣ ⎦x x x  is a decomposed 

vector, with ( ) ( )1 2
1 2, ,n nt t∈ ∈x xR R , and 1 2n n n= + .  

The matrices , 1, 2,3, 4iA i = , are of appropriate 
dimensions. For the system (14 - 15) the det 0E = .  

At the expense of changing the original phase variables 
of the system (1), a much broader class of SLS (1) can be 
transformed to the form (14-15) using 1T ET−  
transformation of the matrix E , where T  is a nonsingular 
matrix. For that reason we analyze (14-15) instead of the 
system (1). 

The solutions of the (LSS) models in this investigation 
are continuously differentiable functions of time t  which 
satisfy the considered equations of the model. Since for the 
(LSS) not all initial values 0x  of ( )tx  will generate a 
smooth solution, those that generate such solutions 
(continuous to the right) are called consistent.  

The value of a particular solution at the moment t , 
which at the moment 0t =  passes through the point 0x , is 
denoted ( )0,tx x  in the abbreviated notation ( )tx .  

Note that if uniqueness of solutions is not guaranteed, 
then more than one solution of (14-15) can pass through the 
point 0x  at the moment 0t = . 

The set of all points iS , in the phase space ,n n
iS ⊆R R , 

which generates smooth solutions, can be determined via 
the Drazin inverse technique.  

Also, ( )ty  represents the Euclidean norm of the 

matrix or the vector ( )ty .  
The solutions of the (LSS) can be unique (them the 

system is called regular) or nonunique (when the system is 
regarded as irregular). 

Time invariant singular systems 

Stability definitions 
Definition 1. System (1) is finite time stable w.r.t 

{ }, , ,J Qα β α β, , <  if ( )0 0 kt W∀ = ∈x x , satisfying 
2

0 Q α<x , implies ( ) 2 ,Qt t Jβ< ∀ ∈x . Debeljkovic, 

Owens (1985). 
Definition 2. System (1) is finite time instable w.r.t. 

{ }, ,J α β α β, , <Q , if for ( )0 0 kt W∀ = ∈x x , satisfying 

2
0 Q α<x , there is t J∗ ∈  implying ( ) 2

Q
t β∗ ≥x , Owens, 

Debeljkovic (1986). 
Further on, kI  and 0k  will represent the identity matrix 

and the null matrix of dimension k k× , respectively.  
Let  

( ) ( ) ( ){ }: , 0n T
G k GA t t G Gγ γ= ∈ < = >x xR . 

Definition 3. System (1) is practically stable w.r.t. 

{ }, , ,J Gα β  if ( )0 GS Aα α∀ ∈ ∩x  at the moment 0t = , it 

follows that t J∀ ∈ , every solution, ( ) ( )0, Gt A β∈x x , 
Debeljkovic et al. (1995). 

If the intention is to consider not all, but only some of 
the solutions of the system (1), then the solutions can be 
characterized by 

Definition 4. A solution ( )0,tx x  of the system (1) is 

practically stable w.r.t. { }, , ,J Gα β  if ( )0 GS Aα α∈ ∩x  at 
the moment 0t =  and t J∀ ∈ , the solution 
( ) ( )0, Gt A β∈x x , Debeljkovic et al. (1995). 
When the system (14 - 15) is considered, then the more 

precise characterization of the practical stability than the 
one given by Definition 4, is provided by: 

Definition 5. System (14 - 15) is practically stable w.r.t 
{ }1 2 1 1, , , , ,J Iα α β β α β, , <  if there is ( )0 3 4A A∈ℵx , 
satisfying the conditions 

2
10 1I α<x , and 2

20 2I α<x  

implies  

( ) 2
1 2, ,It t Jβ β β β< ∀ ∈ = +x , 

Debeljkovic, et al.(1992). 
Definition 6. System (14 - 15) is practically unstable 

w.r.t { }1 2 1 1, , , , ,J Iα α β β α β, , <  if there is 

( )0 3 4A A∈ℵx , satisfying the conditions 

2
10 1I α<x , and 2

20 2I α<x  

and there is a t J∗ ∈ , such that implies  

( ) 2

1 2, ,
I

t t Jβ β β β∗ ∗≥ ∈ = +x , 

Debeljkovic, et al.(1992). 
Definition 7. A solution ( )0,tx x  of the system (1) is 

{ }1 2, , ,J α β β - bounded if there is 0 kW∈x  which satisfies. 

2
10 1α<x  and 2 2

20
1

βα β<x , 

implies 

( ) ( )2 2
1 0 1 2 0 2, , ,t tβ β

−
< ∀ <x x x x  on .J  

Debeljkovic et al. (1992).  
Definition 8. A solution ( )0,tx x  of the system (1) is 

{ }1 2, , ,J α β β - unbounded if there is ( )0, kt W∗ ∈x x  which 
satisfies 

2
10 1α<x  and 2 2

20
1

βα β<x , 

implies 

( ) ( )2 2
1 0 1 2 0 2, , ,t tβ β∗ ∗

−
≥ ∀ ≥x x x x  

Debeljkovic et al. (1992). 
Definition 9. A solution ( )0,tx x  of the system (14 - 15) 



 D.DEBELJKOVIC, et al.: THE STABILITY OF LINEAR CONTINUOUS SINGULAR SYSTEMS OVER THE FINITE TIME INTERVAL: AN OVERVIEW 53 

is { }, , ,J Gα β  - bounded if and only if ( )0 3 4A A∈ℵx  

and 2
0 G α<x , implies ( ) 2

0, Gt β<x x  on J , Debeljkovic 
et al. (1992). 

Definition 10. A solution ( )0,tx x  of the system (14 - 

15) is { }, , ,J Gα β  unbounded if and only if there exists a 

( ) ( )0 3 4,t J A A∗ ∈ ×ℵx x , such that 2
0 G α<x , implies 

( ) 2
0, Gt β≥x x , Debeljkovic et al. (1992). 

Any specific form of the matrix G  can be assumed, for 
example a convenient one is TG E PE= , where TP P=  is 
an arbitrary pd matrix.  

For the purpose of a more convenient analysis (since the 
matrix E  of the system (1) can be of  
a special structure) it is useful to slightly reformulate the 
previous definitions as follows: 

Definition 11. A solution  ( )0,tx x  of the system (14 - 

15) is { }, , ,J Gα β  - bounded if and only if  

( )0 3 4x A A∈ℵ  and 2
10 1α<x  and 2 2

20
1

βα β<x , 

implies ( ) ( )2 2
1 0 1 2 0 2, , ,t tβ β∗ ∗

−
≥ ∀ ≥x x x x  on J , 

Debeljkovic et al. (1993). 
Definition 12. A solution ( )0,tx x  of the system (14-15) 

is { }, , ,J Gα β  unbounded if and only if there exists a 

( ) ( )0 3 4,t J A A∈ ×ℵx x , such that 2
10 1α<x  and 

2 2
20

1

βα β<x , implies ( ) 2
1 0 1,t β∗ ≥x x , or 

( ) 2
2 0 2,t β∗ ≥x x  on J , Debeljkovic et al. (1993). 
Two comments are necessary at this stage. First note that 

if all solutions starting from all points of 
( ) ( )3 4 GA A βℵ ∩A  are { }, , ,J Gα β  - bounded then the 

system considered is practically stable with respect to 
{ }, , ,J Gα β .  

The second comment is that if there is any one solution 
which is { }, , ,J Gα β  unbounded, then the system 

considered is { }, , ,J Gα β  practically unstable. 
Let 

( ) ( ) ( ){ }: , 1, 2n
k kB t t k℘ = ∈ <℘ =x xR . 

Definition 13. A solution ( )0,tx x  of the system (14 - 

15) is practically stable w.r.t. { }1 2, , ,J α β β  if 

( ) ( )0 1 2 1 2S B Bα α α β β∈ ∩ ∩x  at the moment 0t =  and 

t J∀ ∈ , the solution ( ) ( ) ( )0 1 1 2 2,t B Bβ β∈ ∩x x , 
Debeljkovic et al. (1993). 

Definition 14. System (1) is practically unstable w.r.t. 
{ }, , ,J Gα β  if ( )0 GS Aα α∃ ∈ ∩x  at the moment 0t = , 

and 1t J∃ ∈ , and there is a solution ( )0,tx x  such that 

( ) ( )1 0, gt A β∈x x , Debeljkovic  et al. (1993). 

Definition 15. A solution ( )0,tx x  of the system (1) is 

practically unstable w.r.t. { }, , ,J Gα β  iff 

( )0 GS Aα α∈ ∩x  at the moment 0t =  and 1t J∃ ∈ , such 

that ( ) ( )1 0, gt A β∈x x , Debeljkovic et al. (1993). 

Definition 16. A solution ( )0,tx x  of the system (14 - 

15) is practically unstable w.r.t. { }1 2, , ,J α β β  if 

( ) ( )0 1 2 1 2S B Bα α α β β∈ ∩ ∩x  at the moment 0t =  and 

1t J∃ ∈ , such that ( ) ( ) ( )0 1 1 2 2,t B Bβ β∈ ∩x x , 
Debeljkovic et al. (1993). 

Note that the instability concepts given by previous 
Definitions are also special cases of the general generic 
qualitative concept introduced in Bajic (1992.b).  

The concept of interest that is tied directly to the types of 
stability (or boundedness) property is the so-called potential 
domain of validity of the respective concept. With regard to 
the practical stability types defined via proposed 
Definitions, the relevant concept is that of the potential 
(weak) domain of practical stability. The term potential 
(weak) is used because for each 0x  which belongs to this 
domain, it is only guaranteed that there exits at least one 
solution with the specified practical stability 
characterization, and that there is no guarantee that all 
solutions emanating from 0x  possess the required practical 
stability property. 

This problem will be treated later. 
Now we turn our attention to the forced linear singular 

systems, described in the following manner 

 ( ) ( ) ( ) ( )0 0t ,E A t B t t= + =x x u x x&  (16) 

where ( ) ( ),n mt t∈ ∈x uR R . 
We strongly underline that the consistent initial 

conditions for the system operating in free and forced 
regime need not to be the same. 

Definition 17. System given by (16) is finite-time stable 
w.r.t. ( ) ( ){ }0, , , , ,Qt t Jα β ε α β⋅ < , if and only if 

 0 0, kQ Wα< ∀ ∈x x ,  

and 

 ( ) ( ) ,B t t t Jε≤ ∀ ∈u ,  

imply 

 ( ) ,Qt t Jβ< ∀ ∈x ,   

Q  being the positive definite matrix on the sub-space of the 
consistent initial conditions of the system given by (16), 
Debeljkovic, Jovanovic (1997). 

To overcome some mentioned problems concerning the 
nature of the sub-space kW  for free and for forced singular 
systems some simplifications have to be done. 

Assumption 1. The vector valued function ( )tu  has a 
property that guarantees identical sub-space consistent 
initial conditions for the system governed by (1) as well as 
for the system given by (16). 

Proposition 1. If ( ) ( ) ( )T t M tϕ =x x x  is a quadratic 

form on nR  then it follows that there are numbers ( )Mλ  

and ( )MΛ , satisfying 
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( ) ( )M Mλ−∞ < ≤ Λ < +∞ , 

such that 

 ( ) ( ) ( )
( ) ( ) { }, \

T

k
t M t

M M W
V

λ ≤ ≤ Λ ∀ ∈
x x

x 0
x

.  

If TM M=  and ( ) ( ) { }0, \T
kt M t W> ∀ ∈x x x 0 , then 

( ) 0Mλ >  and ( ) 0MΛ > , where ( )Mλ  and ( )MΛ  are 
defined in such way 

( ) ( ) ( ) { }
( ) ( )

, \ ,min
1

T
k

T T
t M t WM

t E PE t
λ

⎧ ⎫∈
= ⎨ ⎬=⎩ ⎭

x x x 0
x x

, 

 ( ) ( ) ( ) { }
( ) ( )

, \ ,max
1

T
k

T T
t M t WM

t E PE t
⎧ ⎫∈

Λ = ⎨ ⎬=⎩ ⎭

x x x 0
x x

.  

It is convinient to consider, for the purposes of this 
paper, the agregation function for the system given by (16) 
in the following manner 

 ( )( ) ( ) ( )T TV t t E PE t=x x x , (17) 

with the particular choice P I= , I  being the identy 
matrix. 

Definition 1. is not suitable for the treatment of singular 
systems so we use 

 ( ) ( )0
1

V
Q
α α

γ
′< <x , (18) 

instead of 2
0 Q α<x  and 

 ( )( ) ( )2
V x t

Q
β β

γ
′< <  (19) 

instead of ( ) 2 ,Qt t Jβ< ∀ ∈x .  

It is obvious that (18) and (19) represent sufficient 
conditions for the conditions of Definition 1. 

Note that the use of TQ E PE=  leads to 2 1γ γ1 = =  and 
the problem is equivalent. 

The matrix Q  is chosen to represent physical constraints 

on the system variables and is assumed to satisfy TQ Q=  

and ( ) ( ) 0,T t Q t >x x  ( ) { }\ 0kt W∀ ∈x . 

Stability theorems 
Theorem 1. The system is practicaly stable with respect 

to { }, ,J α β α β, < , if the following conditions are 
satisfied 

( ) ( )
( )

2

1

Q
i

Q
γ

β α
γ

>   (20) 

( ) ( ) ( )
( )

2

1
ln ln ,

Q
ii Q t J

Q
γ

β α
γ

> Λ + ∀ ∈ . (21) 

with ( )QΛ  as in Proposition 1, Debeljkovic, Owens 
(1985). 

Proof. 
Let 0x  be an arbitry consistent initial condition and 

( )tx  the resulting system trajectory. Then ( ) { }\ 0 ,kt W∈x  
0t∀ ≥ .  

Differentiating ( )( )V tx  along the trajectories of the 
system yields 

  
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

T T T

T T

V t t A PE E PA t
Q t E PE t Q V t

= +

≤ Λ ⋅ ≤ Λ

x x x
x x x

&
. (22) 

Integrating the previous inequality gives 

 ( )( ) ( ) ( )0
Q tV t e VΛ≤ ⋅x x . (23) 

If ( )( )V tx  is to be less than β ′  eg. ( )( )V t β ′<x , for 

0 t J≤ < , for all 0x  and  ( )0V α′<x  then it is sufficient 
that 

 ( ) , 0Q te t Jα βΛ ′ ′< ≤ < . (24) 

That is 

 ( ) ln , 0Q t t Jβ
α
′

Λ < < <′ . (25) 

But 

 ( )
( )

1

2

Q
Q

γβ β
α α γ
′
=′ ,  (26) 

so this is reduced to  

 ( ) ( )
( )

2

1
ln ln , 0

Q
Q t t J

Q
γβ

α γ
> Λ + ≤ < . (27) 

This is guaranteed by (i) and (ii)  of Definition 1. 
The condition (i) is a consequence of our change in the 

problem definition.  

If 1β α >  there is no garantee that ( )
( )

2

2

Q
Q

γ
β α

γ
> . 

If TQ E PE=  in our initial problem then 1 2 1γ γ= = . If, 
however, Q  is fixed, we can control this problem by 
chosing P .  

This is illustrated by the next result. 
Proposition 2. There is the matrix 0TP P= > , such that 
( ) ( )1 2 1Q Qγ γ= = . Debeljkovic, Owens (1985). 

Proof. Choose c  such that ( )det 0cE A− ≡ . 

Set ( ) 1Ê cE a E−= − .  
Then P  can be defined in the following. 

  

( )( ) ( )

( ) ( )( ) ( ) ( )

1 1

1 1

ˆ ˆ

ˆ ˆ ˆ ˆ

0

D D

D D

T

P E cE A QE cE A

EE I cE A Q EE I cE A

P

∗− −

∗− −

= − −

+ − − − −

= >

 (28) 

and 

 
( ) ( )

( ) ( )
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

TT D D

TT D D

E PE E E Q E E

E EE I Q EE I E

=

+ − −
. (29) 

If ( ) { }\ 0kt W∈x  then ( )ˆ ˆ DI EE− =x 0 , so 
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( ) ( )

( )
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

D D

D

I EE E E EE E

E I EE

− = −

= − =

x x

x 0
. (30) 

Hence 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

ˆ ˆ ˆ ˆTT TT D D

T

t E PE t t E E Q E E t

t Q t

=

=

x x x x

x x
, (31) 

and 

 2 1γ γ1 = = . (32) 

with that choice of P , Q.E.D. 
Corollary 1. If 1β α > , there is a choice of P  such 

that 

 ( )
( )

2 Q
Q

γβ
α γ1
> . (33) 

The practical meaning of this result is that condition (i) 
of Definition  1 can be satisfied by an initial choice of free 
parameters of the matrix P .  

Condition (ii) depends also on the system data and hence 
it is more complex but it is quite legitimate to ask whether 
we can choose P  such that ( ) 0QΛ < ? 

Theorem 2. Suppose that the following rank condition is 
satisfied 

 ( )3 4 4 2rank A A rank A r n= = ≤  (34) 

The solutions of the system (14 - 15) are practically 
stable w.r.t. { }1 2, , , ,J Iα β β  if the following conditisons are 
fulfilled 

 1
max ln ,t t Jβγ α⋅ < ∀ ∈  (35) 

 2 2

1
L β

β< , (36) 

where 

 ( ) ( )max 1 1 1 2 2 2
T T TA A L A A Lγ = Λ + + Λ + , (37) 

with the matrix L  as any solution to the following matrix 
equation 

 3 40 A A= + , (38) 

Debeljkovic et al. (1992). 
Theorem 3. Suppose now that rank condition (34) is 

satisfied. Then the solutions of the system (14 - 15) are 
practically unstable w.r.t. { }1 2, , , ,J Iα β β  if 

0δ δ α∃ → < <  and t J∗∃ ∈  such that the following 
conditions are fulfilled 

 1
min ln ,t βγ α

∗⋅ >  (39) 

 
2# 2

1

L β
β

< , (40) 

where 

 ( ) ( )min 1 1 1 2 2 2
T T TA A L A A Lγ λ λ= + + +  (41) 

with the matrix L  being any solution of (38) where 

 ( ) 1# T TL L L L
−

= , (42) 

denotes a general pseudo inverse of the matrix L , 
Debeljkovic et al. (1992). 

Now we are coming back to the idea of a potential 
(weak)  domain of practical stability. 

Let { }, , ,J Gα βΩ = .  

Then, the potential domain of { }, , ,J Gα β -practical 
stability is defined as 

 ( ) ( ) ( )
( ) ( )

0 0

0

: , such that
J, ,
G

G

S A t
t t A

α α
β

∈ ∩ ∃⎧ ⎫Ω = ⎨ ⎬∀ ∈ ∈⎩ ⎭

x x x
x xS  (43) 

In an analogous manner, the potential domains of other 
practical stability types can be formulated.  

For example, the potential domain of the { }, , ,J Gα β -
practical stability for the system (14-15) may be defined as 

 ( )
( ) ( )

( )
( ) ( ) ( )

0 1 2 1 2

0

0 1 1 2 2

:
, , such that

J, ,

S B B
t

t t B B

α α α β β

β β

∈ ∩ ∩⎧ ⎫
⎪ ⎪Ω = ∃⎨ ⎬
⎪ ⎪∀ ∈ ∈ ∩⎩ ⎭

x
x x

x x
S , (44) 

where { }1 2, , ,J α β βΩ = .  
One of the tasks in the analysis will be to estimate the set 
( )ΩS  by an underestimate ( ) ( ) ( ),u uΩ Ω ⊆ ΩS S S , 

using the LDM. 
The exposition in this section is taken from Bajic (1995).  
It is assumed that the assumption expressed by (34) 

holds. 
The rank assumption (34) implies ( )( )3 4S A Aα =ℵ  for 

the system (14 - 15).  
In addition, there exists a matrix L  which satisfies the 

matrix equation (38). 
From (38) it follows that if the solutions of (14 - 15) 

exist, then there will be the solutions ( )tx  the components 
of which are tied by 

 ( ) ( )2 1 ,t L t t J= ∀ ∈x x  (45) 

Those solutions of (14 - 15) that satisfy (45) also have to 
satisfy the constraints (15).  

As [ ]( ) [ ]( )2 3 4nL I A A Sα− ⊆ℵ =N  when (38) holds, 
then the following conclusions follow under the assumption 
(34): 
(i) There are solutions of the system (14 - 15) which be-

long to the set [ ]( )2nL Iℵ − . 

(ii) If the solutions of the system (14 - 15) that satisfy (45) 
are { }, , ,J Gα β -practically stable, then the potential 

domain of the { }, , ,J Gα β -practical stability for the 
system (14 - 15) may be determined by 

  ( ) ( )( ) [ ]( ) ( ){ }0 2:n
u n Gx t L I A αΩ = ∈ ∈ℵ − ∩xS R  (46) 

To perform the analysis of practical stability for the 
system (14 - 15), we employ the Lyapunov function 

 ( )( ) ( ) ( ) { }1 1 2, ,T T
nV t t G t P G diag P O= = =x x x x x (47) 
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where the matrix G  is symmetric positive semi-definite 
(psd), and the matrix P  is symmetric and positive definite 
(pd).  

The total time derivative of ( )( )V tx  along the solutions 
of (14 - 15) is given by 

  ( )( ) ( )1 1 1 1 2 2 1 1 2 2
T T T T TV t A P PA A P PA= + + +x x x x x x x&  (48) 

Let ( )M Zλ  and ( )m Zλ  denote the maximal and the 
minimal eigen value of a real symmetric matrix Z , 
respectively.  

The following Theorem determines the practical stability 
of (14 - 15). 

Theorem 4. Let the rank condition (34) hold and let the 
matrix G  be defined as in (47). Then there are 

{ }, , ,J Gα βΩ =  - practically stable solutions of (14 - 15) 
that satisfy (45), if 

 ln , ,t t Jβ
α℘⋅ ≤ ∀ ∈  (49) 

where , ,α β β α∈ ≥R , and ( ) ( )M MZ Pλ λ℘=  when 

( ) 0M Zλ ≤  or ( ) ( )M mZ Pλ λ℘=  when ( ) 0M Zλ > , 

where ( ) ( )1 2 1 2
TZ A A L P P A A L= + + + , and L  satisfies 

(38).  
Moreover, if ( ) 0M Zλ ≤ , i.e. if Z  is negative 

semidefinite (nsd), then [ [0, ,J β α= +∞ = , can be 
selected.  

If ( ) 0M Zλ > , then [ [0, ,J T T= < +∞  and β α>  
has to he selected to have 0T > , Debeljkovic et al. (1995). 

Theorem 5. Let the rank condition (34) hold and let the 
matrix G  be defined as in (47). Then there are 
{ }1 2, , ,J α β β  - practically stable solutions of (14 - 15) that 
satisfy (45), if 

 1ln , ,t t Jβ
α℘ ≤ ∀ ∈  (50) 

 2 2

1

aL a= , (51) 

where , ,α β β α∈ ≥R , and ( ) ( )M MZ Pλ λ℘=  when 

( ) 0M Zλ ≤  or ( ) ( )M mZ Pλ λ℘=  when ( ) 0M Zλ > , 

where ( ) ( )1 2 1 2
TZ A A L P P A A L= + + + , with L  satisfying 

(38).  
Moreover, if ( ) 0M Zλ ≤ , i.e. if Z  is nsd, then 

[ [0, ,J = +∞  β α φ= , can be selected where 

( ) ( )M mP Pφ λ λ= . If ( ) 0M Zλ >  then [ [0, ,J T=  
T < +∞  and β αφ=  has to be selected to have 0T > , 
Debeljkovic et al. (1995). 

Theorem 6. Let { }1 2, , ,J α β βΩ =  and let the conditions 
of Theorem 5 hold.  

Then the underestimate ( )u ΩS  of the potential domain  

( )P e  of the { }1 2, , ,J α β β  - practical stability for the 
system (14 - 15) may be defined as 

  ( ) ( )
[ ]( ) ( ) ( )2 1 2 2 2

:n

u
n

t
L I B Bα αβ β

⎧ ⎫= ∈
Ω = ⎨ ⎬∈ℵ − ∩ ∩⎩ ⎭

x x
x

RS  (52) 

where ( )ΩS  is defined by (44), Debeljkovic et al. (1995). 
The practical instability can be concluded from  
Theorem 7. Let the rank condition (34) hold and let the 

matrix G  be defined as in (47). Then there are 
{ }1 2, , ,J α β β  - practically unstable solutions of (14 - 15), 

where 1α β≤ , if the matrix 
( ) ( )1 2 1 2

TZ A A L P P A A L= + + + , with L  satisfying (38), 
is pd and for some , 0δ δ α< < , there is 
( ) ( )11 ln Tβ ϕ℘ ∆ < , where ( ) ( )m MP Pϕ λ λ= , 

( ) ( )m MZ Pλ λ℘= , Debeljkovic et al. (1995). 
Theorem 8. System (1) is finite time stable w.r.t. 

{ }, , ,J Iα β  , if the following condition is satisfied 

 ( ) ,LSS t t Jβ
αΦ < ∀ ∈ ,  (53) 

( )LSS tΦ  being the fundamental matrix of the linear 
singular system (1), Debeljkovic et al. (1997). 

Now we apply Coppel's (1965) and the matrix mesure 
approach. 

Theorem 9. System (1) is finite time stable w.r.t. 
{ }, , ,J Iα β , if the following condition is satisfied 

 ( ) ,te t Jµ β
α

ϒ ⋅ < ∀ ∈ ,  (54) 

where: 

 ( ) ( )1 1ˆ ˆˆ ˆ, ,DE A A sE A A E sE A E− −ϒ = = − = −  (55) 

Debeljkovic et al. (1997). 
Starting with the explicit solution of system (1), derived 

in Campbell  (1980) 

 ( ) ( )0ˆˆ
0 0 0

ˆ ˆ,
DE A t t Dt e EE−= =x x x x  (56) 

and differentiating equtation (56), one gets 

 ( ) ( )ˆˆ
0

ˆ ˆˆ ˆDD E A t Dt E Ae E A t⋅= ⋅ =x x x&  (57)  

so only the regular singular systems are treated with 
matrices given (55). 

Theorem 10. For the given constant matrix ˆˆ DE A  any 
solution of (l) satisfy the following inequality 

 ( ) ( )( ) ( )

( ) ( )( )

0

0

ˆˆ

0
ˆˆ

0

D

D

E A t t

E A t t

t e t t J

t e

µ

µ

− − −

−

≤ ∀ ∈

≤

x x

x
, (58) 

Kablar, Debeljkovic (1998). 
Theorem 11. In order that system (1) be finite time 

stable w.r.t. { }, ,J α β α β, , <I , it is necessary that the 
following condition is satisfied 

 ( ) ( )0ˆˆ
,

DE A t t
e t J

µ β
δ

− − ⋅ −
< ∀ ∈  (59) 

where 0 δ α< ≤ , Kablar, Debeljkovic (1998). 
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Theorem 12. In order that system (1) be finite time 
instable w.r.t. { }, ,J α β α β, , <I , it is necessary that 

there is t J∗ ∈  such that the following condition is satisfied 

 ( ) ( )0ˆˆ
,

DE A t t
e t J
µ β

α

∗⋅ − ∗≥ ∈ . (60) 

Theorem 13. The system (1) is finite time instable w.r.t. 
{ }, ,J α β α β, , <I , if , 0δ δ α∃ < ≤  and t J∗ ∈  such that 
the following condition is satisfied 

 ( ) ( )0ˆˆ
,

DE A t t
e t J

µ β
δ

∗− − ⋅ − ∗< ∈ . (61) 

Finally, we use the Bellman – Gronwall approach to 
derive our results. 

Lemma 1. Suppose the vector ( )0,t tq  is defined in the 
following manner 

 ( ) ( ) ( )0 0 0
ˆ ˆ, , Dt t t t E E t= Φq v . (62) 

So if: 

 ( ) ( ) ( )0 0 0
ˆ ˆ, , DE t t E t t E Ev t= Φq  (63) 

then: 

 ( ) ( ) ( )( )max 02 2
0 0, T T

M t t
E E E Et t v t eΛ −≤q ,  (64) 

where: 

 ( ) ( ) ( ) ( ) { }
( ) ( )

0 0 0
max

0 0

, , : , \ 0 ,max
, , 1

T
k

T T
t t M t t t t WM

t t E E t t
⎧ ⎫∈

Λ = ⎨ ⎬=⎩ ⎭

q q q
q q

(65) 

 T TM A E E A= + ,  (66) 

 ( ) ( )0 0 0,t t t=v q , (67) 

Debeljkovic, Kablar (1999). 
Lemma 2. If equations (62) and (63) holds, then 

 ( ) ( ) ( )( )min 02 2
0 0, T T

M t t
E E E Et t t eΛ −≥q v ,  (68) 

where, 

 ( ) ( ) ( ) ( ) { }
( ) ( )

0 0 0
min

0 0

, , : , \ 0 ,min
, , 1

T
k

T T
t t M t t t t WM

t t E E t t
⎧ ⎫∈

Λ = ⎨ ⎬=⎩ ⎭

q q q
q q

(69) 

and 

 T TM A E E A= + ,  (70) 

 ( ) ( )0 0 0,t t t=v q , (71) 

Debeljkovic, Kablar (1999). 
Using this approach the results of Theorem  1 can be 

preformulate in the following manner. 
Theorem 14 (1). The system given by (1) is finite time 

stable w.r.t. ( ){ }2, , , ,QJ aα β β⋅ < , if the following 

condition is satisfied: 

 ( ) ( )max 0 ,M t te t Jβ
α

Λ ⋅ − < ∀ ∈ , (72) 

with ( )max MΛ  given (65) and the matrix M  with (66), 
Debeljkovic, Kablar (1999). 

Proof. The solution of the system given by (1) is 

 ( ) ( )0 0
ˆ ˆ, Dt A t t E E= Φx x ,  (73) 

as well as 

 ( ) ( )0 0
ˆ ˆ, DE t EA t t E E= Φx x . (74) 

Applying Lemma 1, it is easy to see 

 ( ) ( )( )max 02 2
0 0, TT

M t t
E EE Et t eΛ −≤x x ,  (75) 

and, by using Definition 1, with particular choice 
TQ E E= , one can get 

 ( ) ( ) ( )max 02
0, T

M t t
E Et t eα Λ ⋅ −≤ ⋅x ,  (76) 

and finally, by using the main condition of Theorem 14, 
namely eq. (72) one gets 

 
( ) ( ) ( )max 02

0,

,

T
M t t

E Et t e

t J

α
βα α

Λ ⋅ −≤ ⋅

< ⋅ ∀ ∈

x
,  (77) 

i.e. 

 ( ) 2 ,Qt t Jβ< ∀ ∈x  (78) 

which had to be proved and is identical to the result derived 
in Debeljkovic, Owens (1985). Q.E.D. 

Forced Linear Time Invariant Singular Systems 
In the veiw of Definition 17, the following result can be 

presented. 
Assumption 1: The vector valued function ( )tu  has a 

property that guarantees the identical sub-space consistent 
initial conditions for the system governed by (1) as well as 
for the system given by (2). 

Theorem 15. Suppose that Assumption 1 holds. Then, 
the system governed by (16) is finite-time stable w.r.t. 

( ) ( ){ }0, , , , , ,Qt t Tα β ε α β⋅ <  if 

 ( ) ( ) ( ) ( ) ( )0

0

1 1
2 2 ,

t
M t t M t

t

e e d t J
κ

α ε κ κ β
Λ ⋅ − Λ ⋅ −

+ < ∀ ∈∫ , (79) 

the matrix M  given by 

 T T TM M A E E A= = +  (80) 
and 

 ( ) ( ) ( ) { }
( ) ( )

, \ ,max
1

T
k

T T
t M t WM

t E PE t
⎧ ⎫∈

Λ = ⎨ ⎬=⎩ ⎭

x x x 0
x x

(81) 

Debeljkovic, Jovanovic (1997). 

Time varying singular systems  
Let the time-varying linear singular system (TVLSS) be 

governed by 

 ( ) ( ) ( ) ( ) ( )0 0t ,E t A t t t= =x x x x& , (82) 
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in the free regime, and by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0t ,E t A t t B t t t ∗= + =x x u x x&  (83) 

in the forced regime, where ( ) ( ), n nE t A t ×∈R  are time-

varying matrices, with ( )E t  singular. ( ) n mB t ×∈R . 

Stability definitions 
Definition 18 The system governed by (82) is finite time 

stable w.r.t. ( ){ }, , , ,J Q tα β α β<  if there is 0 kW∈x  

which satisfying 2
0 Q α<x  implies ( ) 2 ,Qt t Jβ< ∀ ∈x , 

Kablar, Debeljkovic (1998). 
Remark 1. The quadratic form ( ) 2

Qtx , is defined by: 

 ( ) ( ) ( ) ( )2 T
Qt t Q t t=x x x  (84) 

where ( )Q t  is the positive definite matrix on consistent 

initial set, satisfying ( ) ( ) ( ) ( )TQ t E t P t E t= , where 

( ) ( ) 0TP t P t= >  is an arbitrarily specified matrix. 
Definition 19. The system governed by (83) is finite time 

stable w.r.t. ( ) ( ){ }, , , , , ,J t Q tα β ε α β<  

( ) ( ) 0,TQ t Q t= > , if there is a consistent initial 

condition 0 kW∈x  and a vector valued function ( )tu , 

which, satisfying ( ) ( ) ( )0 ,Q QB t t tα ε< ≤x u  implies 

( ) ,Qt t Jβ< ∀ ∈x , Kablar, Debeljkovic (1998). 

Definition 20. The system governed by (82) is finite time 
instable w.r.t. ( ){ }, , , ,J Q tα β α β<  iff 

( )0 0 kt W∀ = ∈x x , satisfying 2
0 Q α<x , there is t J∗ ∈  

implying ( ) 2

Q
x t β∗ ≥ , Kablar, Debeljkovic (1999). 

Definition 21 The system governed by (83) is finite time 
instable w.r.t. ( ) ( ){ }, , , ,J t Q tα β ε , ,α β<  

( ) ( ) 0TQ t Q t= > , if ( )0 0 kt W∗∀ = ∈x x  and the vector 

valued function ( )tu , satisfying 0 ,
Q

α∗ <x  

( ) ( ) ( )QB t t tε≤u , t J∀ ∈ , there is t J∗ ∈  implying 

( )
Q

t β∗ ≥x , Kablar, Debeljkovic (1999). 

Stability Theorems 
Theorem 16. The system governed by (82) is finite time 

stable w.r.t. ( ){ }, , ,J Q tα β , α β< , ( ) ( ) 0TQ t Q t= >  if 
the following conditions are satisfied: 

 
( )( )max

0 ,

t

t
M t dt

e t Jα β
Λ∫

< ∀ ∈  (85) 

where: 

( )( ) ( ) ( ) ( ) ( ) { }
( ) ( ) ( ) ( ) ( )max

: \max
1

T
k

T
t M t t t WM t
t E t P t E t t

⎧ ⎫∈
Λ = ⎨ ⎬=⎩ ⎭

x x x 0
x x

(86) 

and the matrix ( )M t  is defined by 

 ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

T

T

T

T

A t P t E t
E t P t E t

M t E t P t E t
E t P t E t
E t P t A t

⎛ +
⎜ +⎜
⎜= +
⎜ ⎞+⎜ ⎟⎜ ⎠⎝

&

&

&
 (87) 

Kablar, Debeljkovic (1998). 
Theorem 17. The system governed by (83) is finite time 

stable w.r.t. ( ) ( ){ }, , , , ,J t Q tα β ε α β< , if the following 
condition is satisfied: 

 
( )( )

( )
( )( )

0

0

1 1
2 2

,

t

t t

tM t dt M t dt

t

e e d t J

τ

α ε τ τ β
Λ − Λ∫ ∫

+ < ∀ ∈∫  (88) 

where: ( )( )max M tΛ  is given by (86) and the matrix ( )M t  
is defined with (87), Kablar, Debeljkovic (1998). 

Theorem 18. The system governed by (83) is finite time 
instable w.r.t. ( ){ }, , , , ,J Q tα β α β<  ( ) ( ) 0TQ t Q t= >  if 

there is, , 0δ δ α< < , and t J∗ ∈  such that the following 
condition is satisfied: 

 
( )( )

0

t

t
M t dt

e
λ

δ β

∗

∫
⋅ ≥ , (89) 

where: 

  
( )( ) ( )( )

( ) ( ) ( ) ( ) { }
( ) ( ) ( ) ( ) ( )

min

: \min
1

T
k

T

M t M t
t M t t t W
t E t P t E t t

λ λ=
⎧ ⎫∈

= ⎨ ⎬=⎩ ⎭

x x x 0
x x

, (90) 

and the matrix ( )M t  is defined by: 

 ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ))

T

T

T T

A t P t E t
E t P t E t

M t
E t P t E t
E t P t E t E t P t A t

⎛
⎜+⎜= ⎜+
⎜⎜+ +⎝

&

&

&

  (91) 

Kablar, Debeljkovic (1998). 

Robustness stability consideration  
Considerable attention has been focused in recent years 

on design of controllers for multivariable linear systems so 
that certain system properties are preserved under various 
classes of perturbations occurring in the system. 

Patel and Toda (1980) first reported on the robustness 
bounds on unstructured perturbations of linear continuous-
time systems. 

Yedavalli and Liang (1985) improved Patel's result for 
linear perturbations with a known structure and proposed 
similarity transformation method to reduce robustness 
bounds conservatism. 

In this part of the paper, the non-Lyapunov (practical, 
finite time) stability robustness consideration of linear, both 
regular and irregular, linear singular systems is addressed 
using the Lyapunov approach. The bounds of the 
unstructured perturbation vector function, for different 
representations of singular systems, that maintain the 
nominal system practical stability are presented. 



 D.DEBELJKOVIC, et al.: THE STABILITY OF LINEAR CONTINUOUS SINGULAR SYSTEMS OVER THE FINITE TIME INTERVAL: AN OVERVIEW 59 

Regarding stability robustness consideration, it is 
convenient to represent the model (1) in the following form: 

 ( ) ( ) ( )( ) ( )0 0,pE t A t t t= + =y y f y y y& ,  (92) 

where ( )( )p tf y  is the perturbation vector or in the 
following form 

 ( ) ( ) ( ) ( )( )1 1 1 2 2 1pt A t A t t= + +x x x x x& ,  (93) 

 ( ) ( ) ( )( )3 1 4 2 2pA t A t t= + +0 x x f x ,  (94) 

with: 

 ( ) ( )( ) ( )( ) ( )( )
( )( )

1

2

p
p p p

p

t
T t t

t
⎡ ⎤

= = = ⎢ ⎥
⎣ ⎦

f x
f y f x f x

f x
,  (95) 

Theorem 19. The system (92) is practically stable w.r.t. 
( ), , , ,J Gα β α β< , if the following conditions are 
satisfied: 

 
( )( )2

ln ,
M

t Jt
η β

α
Λ +

< ∀ ∈ ,  (96) 

 ( )( ) ( ) , .p t E t constη η≤ ⋅ =f y y ,  (97) 

where 

  ( ) ( ) ( ) { }
( ) ( )

, \ ,max
1

T
k

T T
t M t WM

t E PE t
⎧ ⎫∈

Λ = ⎨ ⎬=⎩ ⎭

x x x 0
x x

 (98) 

Debeljkovic et al.  (1995.a). 
Assumption 2. The vector perturbation function 
( )( )p tf x  satisfies the following condition 

 ( )( ) ( )( ) ( )( )2 1,
TT T

p p pt t t≡ =f x 0 f x f x 0 , (99) 

so it can be written 

( )( ) ( )
( )

( )
( ) ( )( )1 1

1 1 1
2 1

p p p
t tt f t
t L t

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤= = =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

x xf x f x
x x

. (100) 

Theorem 20. Suppose Assumption 2 and (34) and (38) 
hold and let 2rank F n< , where the matrix F  is defined by  

 ( ) ( )3 4A AF t t
L I

⎛ ⎞= =⎜ ⎟−⎝ ⎠
x x 0 . (101) 

Then the solutions of (93 - 94), different from the null 
solution ( )t ≡x 0 , are practically stable w.r.t. 

{ }1 2 1, , , , , ,J Gα β β η α β≤ , if the following conditions are 
satisfied: 

 ( )( )1ln 2 ,sA t t Jβ ηα ≥ Λ + ∀ ∈ ,  (102) 

 2 2

1
L β

β≤ ,  (103) 

 ( )( ) ( )1 1 1p t tη≤ ⋅f x x ,  (104) 

where the matrix sA  is defined as follows 

 ( ) ( )( )1 2 1 2
1
2

T
sA A A L A A L= + + + , (105) 

and ( )Λ ⋅  with (98), Debeljkovic et al. (1995.a). 
To analyze the robustness of practical stability let us 

consider the perturbed linear singular system which can be 
presented in the form 

 ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1 1 2 2t A t A t B t B t= + + +x x x x x& , (106) 

 ( ) ( )3 1 4 2A t A t= +0 x x , (107) 

where ( ) ( ) ( )1 2
TT Tt t t⎡ ⎤= ⎣ ⎦x x x  need not represent the 

original phase variables of the nominal system.  
The vectors ( )1 1B tx  and ( )2 2B tx , represent the model 

perturbation.  
The matrices 1B  and 2B  need not be known completely 

and for our robustness analysis we require the knowledge 
only of the bounds of their norms.  

To simplify the formulation of the stability robustness 
results, we introduce the following assumption:  

Assumption 3. Let L  be a matrix which satisfies (38), 
let iε , 1, 2,3i = , be positive numbers, and let 1 1,B ε≤   

2 2 ,B ε≤  3L ε≤ . 
Now define a new matrix Z  as 

 ( ) ( )1 2 1 2 1
T

nZ A A L P P A A L Iε= + + + +  (108) 

with 

 ( ) ( )1 2 32 M Pε λ ε ε ε= +  (109) 

With the so-redefined matrix Z , we can state the results 
of stability robustness, expressed in terms of constraints 
given in Assumption 3, using analogs of Theorems 4 - 7. 

Theorem 21. Let the rank condition (34) and 
Assumption 3 hold, and let the matrix G  be defined as in 
(47). Then there are { }, , ,J Gα β  - practically stable 
solutions of (106 - 107) that satisfy (45), if 

 ln , ,t t Jβη α⋅ ≤ ∀ ∈  (110) 

where , ,α β β α∈ ≥R , and ( ) ( )M MZ Pη λ λ=  when 

( ) 0M Zλ ≤  or ( ) ( )M mZ Pη λ λ=  where ( ) 0M Zλ > , 
where the matrix Z  is defined by (108 -109), and L  
satisfies (38). Moreover, if ( ) 0M Zλ ≤ , i.e. if Z  is nsd, 

then [ [0, ,J β α= +∞ = , can be selected. If ( ) 0M Zλ > , 

then [ [0, ,J T T= < +∞  and β α>  has to be selected to 
have 0T > , Debeljkovic et al. (1995.b). 

Theorem 22. Let the rank condition (34) and 
Assumption 3 hold, and let the matrix G  be defined as in 
(47). Then there are { }1 2, , ,J α β β  - practically stable 
solutions of (106 - 107) that satisfy (45), if 

 ln , ,t t Jβη α⋅ ≤ ∀ ∈  (24) 

 2 2

1
L β

β=  (25) 
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where , ,α β β α∈ ≥R , and ( ) ( )M MZ Pη λ λ=  when 

( ) 0M Zλ ≤  or ( ) ( )M mZ Pη λ λ=  when ( ) 0M Zλ > , 
where the matrix Z  is defined by (108 - 109) with L  
satisfying (38). Moreover, if ( ) 0M Zλ ≤ , i.e. if Z  is nsd, 

then [ [0, ,J β αφ= +∞ = , can be selected where 

( ) ( )m MP Pφ λ λ= . If ( ) 0M Zλ > , then 

[ [0, ,J T T= < +∞  and β αφ≥  has to be selected to 
have 0T > , Debeljkovic et al. (1995.b). 

Conclusion 
The main features of finite-time stability have been 

extended to singular (semistate, descriptor) systems. The 
derived results represent the sufficient condition for stabilty 
of such systems, based on Liapunov-like functions and their 
properties on sub-space of consistent initial conditions. In 
particular these functions need not have: (a) properties of 
positivity in the whole state space and (b) negative 
derivatives along the system trajectories. 

Simple sufficient algebraic conditions are derived for 
testing the existence of SLS the solutions which have a 
specific "practical stability" characterization of 
boundedness properties. The estimate of the potential 
(weak) region of practical stability is obtained. The results 
could serve as a basis for further development of a similar 
analysis for general SLS, as well for nonlinear and time-
variable, and time-descrete descriptor systems. 

Some other results have been derived using the matrix 
measure approach, e,g. using Coppels inequality which 
significantly simplfies some analysis. 

Finally the Bellma – Gronwall approach was used to 
show that some of the previous results can be derived in 
more simplified manner. 

For a particular class of (SLS) simple sufficient 
conditions constraints for the existence of solutions with 
specific practical stability, and practical instability are 
derived.  

The estimate of the potential domain of the practical 
stability is obtained. The results are adapted to cater for the 
robustness of the practical stability for a class of perturbed 
(LSS). The results obtained could serve as a basis for 
further development of the practical stability analysis and 
the robustness consideration of (LSS). 

The similar problems have been presented and solved for 
a class of time varying linear singular systems. 

Finally, it should be noted that the derived results are 
independent of the system index. The system index is a 
measure of system singularity.  

An ordinary differential equation is of index zero. The 
existence of algebraic equations in a singular system 
description guarantees that the system index is at least one 
and the index increase implies more complex behavior.  

For more information about this important characteristic 
of singular systems, an interested reader is directed to read 
an excellent paper Campbell (1990, 1995) and also 
Campbell, Marszalek  (1996). 

Mathematically, it will be useful to simplify the results 
gathered for a non-homogenous case. For now, it seems that 
usage of well-known Bellman-Gronwall lemma could be a 
good method. Some results for a homogenous case are 
derived. With their extension to a non-homogeneus case, a 
satisfactory solution of this problem can be expected. 

One of the main problems here is finding matrices P , 

and, consequently, ( )P t .  
Some procedures are given in Owens, Debeljkovic 

(1985) for a time-invariant case and in Bajic (1992) for a 
general nonlinear time-varying case, but the algorithmic 
approach is not available. In practical usage, the assumption 
that P I=  gives sufficiently good results.  

Therefore, finding a successful method of calculating the 
matrix P , and, consequently, ( )P t  the derived results 
more will make valuable. 
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Stabilnost linearnih kontinualnih singularnih sistema na konačnom 
vremenskom intervalu: Pregled rezultata 

Ovaj rad daje detaljan pregled rada i rezultata mnogih autora na polju izučavanja neljapunopvske stabilnost 
(stabilnost na konačnom vremenskom intervalu, praktična stabilnost, konačna stabilnost) posebne klase linearnih 
sistema. Problem robusnosti stabilnosti takođe je razmatran i izložen. 
Ovaj pregled rezultata pokriva period od 1985. godine do današnjih dana i ima izraženu nameru da predstavi glavne 
koncepte i doprinose na ovom polju stvorene u celom svetu a u pomenutom periodu, koji su objavljeni u vodećim 
međunarodnim časopisima ili prezentovani na prestižnim konferencijama ili worksopovima. 

Ključne reči: kontinualni sistem, singularni sistem, linearni sistem, stabilnost sistema, stabilnost Ljapunova, konačni 
vremenski interval. 

Ustoj~ivostx linejnwh neprerwvnwh singul}rnwh sistem v 
kone~nom vremennom intervale: Obzor i analiz rezulxtatov 

Nasto}|a} rabota daët podrobnwj obzor i analiz rezulxtatov mnogih avtorov v oblasti issledovani} 
nel}punovoj ustoj~ivosti  (ustoj~ivostx na kone~nom vremennom intervale, prakti~eska} ustoj~ivostx, 
kone~na} ustoj~ivostx) osobogo klassa linejnwh sistem. Problemma krepkosti ustoj~ivosti to`e zdesx 
rassmatrivana i rastolkovana.  
$tot obzor i analiz rezulxtatov ohvatwvayt period s 1985-ogo goda do sih por i u nego vwrazitelxnoe 
namerenie predstavitx koncepcii  i vklad  v &toj oblasti sozdanwe v celom mire v upom}nutom periode i 
opublikovannwe v peredovwh me`dunarodnwh `urnalah ili pokazanw i predstavlenw na vwday|ihs} 
konferenci}h ili v masterskih. 

Kly~evwe slova: neprerwvna} sistema, singul}rna} sistema, linejna} sistema, ustoj~ivostx sistemw, 
ustoj~ivostx L}punova, kone~nwj vremennoj interval. 

Stabilité des systèmes linéaires continus singuliers chez l’intervalle 
temporelle finie: tableaux des résultats 

Ce papier présente un tableau détaillé des travaux et des résultats de nombreux auteurs dans le domaine des études 
sur la stabilité de non-Lyapunov (stablité chez l’intervalle temporelle finie, stabilité pratique, stabilité finie) de la 
classe particulière des systèmes linéaires. Le problème de la robustesse de la stabilité est aussi considéré et exposé. Ce 
tableau des résultats comprend la période depuis 1985 jusqu’à nos jours et son but est de présenter les concepts 
principaux et les contributions dans ce domaine dans le monde entier pendant la période citée et qui sont publiées 
dans les principales revues internationalles ou présentées aux conférences prestigieuses ou workshops. 

Mots clés: système continu, système singulier, système linéaire, stabilité du système, stabilité de Lyapunov, intervalle 
temporelle finie. 

 

 


