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Introduction 
N certain systems, their character of dynamic and static 
state must be considered. Singular systems (also, referred 

to as degenerate, descriptor, generalized, differential - 
algebraic systems or semi - state) are those the dynamics of 
which are governed by a mixture of algebraic and 
differential equations. Recently, many scholars have paid 
much attention to singular systems which brought about 
numerous conveniences. The complex nature of singular 
systems - causes many difficulties in the analytical and 
numerical treatment of such systems, particularly when 
there is a need for their control. 

It is well-known that singular systems have been among 
major research fields of the control theory. Over the past 
three decades, singular systems have attracted much 
attention due to the comprehensive applications in 
economics as the Leontief dynamic model Silva, Lima 
(2003), in electrical Campbell (1980) and mechanical 
models Muller (1997), etc.  

Furthermore, they arose naturally, as a linear 
approximation of system models, or linear system models 
in many applications such as electrical networks, aircraft 
dynamics, neutral delay systems, chemical, thermal and 
diffusion processes, large-scale systems, interconnected 
systems, economics, optimization problems, feedback 
systems, robotics, biology, etc.  

Discussion of singular systems originated in 1974 with 
the fundamental paper of Campbell et al. (1974) and latter 
on the antological paper of Luenberger (1977). Since then, 
considerable progress has been made in investigating such 
systems; see surveys of Lewis (1986) and Dai (1989) for 
linear singular systems and the first results for nonlinear 
singular systems in Bajic (1992). 

Through investigation of stability of singular systems, 
many results in the sense of Lyapunov stability have been 
derived. For example, Bajic (1992) and Zhang et al. (1999) 
considered the stability of linear time-varying descriptor 

systems. 
This paper presents, in a unified way, a collection of 

results found in references and focuses on the stability of 
linear continuous systems (LCSS).  

This paper is not a survey in the usual sense. 
The paper does not attempt to be exhaustive of the vast 

resources concerning this problem. The objective is more to 
convince the reader of the practical interest of the approach 
and of the number and simplicity of the results it leads to.  

For each aspect, only one result is generally given in 
detail, the one which is not necessarily the most complete 
or the most recent one, but is the one which seems the most 
representative and illustrative. 

Basic notations 
R – Real vector space 
C  – Complex vector space 
C  – Complex plane 
I  – Unit matrix 
F  – ( ) n n

ijf ×= ∈R , real matrix 
TF  – Transpose of matrix F  

0F >  – Positive definite matrix 
0F ≥  – Positive semi definite matrix 

( )Fℜ  – Range of matrix F  
N  – Nilpotent matrix 
( )FN  – Null space (kernel) of matrix F  

( )Fλ  – Eigenvalue of matrix F  

( ) ( )Fσ – Singular values of matrix F  

{ }Fσ  – Spectrum of matrix F  

F  – Euclidean matrix norm F ( )max
TA Aλ=  

DF  – Drazin inverse of matrix F  

I 
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⇒  – Follows 
a  – Such that 

Stability of linear continuous singular systems 

The stability of linear time invariant continuous singular 
systems 

Generally, the time invariant continuous singular control 
systems can be written as: 

 ( ) ( ) ( ) ( )0 0,E t A t t t= =&x x x x , (1) 

where ( ) nt ∈Rx  is a generalized  state space (co-state, 

semi-state) vector, ( ) lt ∈Ru  is a control vector, n nE ×∈  
is a possibly singular matrix, with rank E r n= < .  

Matrices E  and A  are of the appropriate dimensions 
and are defined over the field of real numbers. System 
given by eq. (1) is operating in a free regime and no 
external forces are applied on it.  

It should be stressed that, in general, the initial 
conditions for an autonomous and system operating in the 
forced regime need not be the same.  

System models of this form have some important 
advantages in comparison with the models in the normal 
form, e.g. when E I=  and an appropriate discussion can be 
found in Bajic (1992) and Debeljkovic et al. (1996. 2005.a, 
2205.b). 

The complex nature of singular systems causes many 
difficulties in analytical and numerical treatment that do 
not appear when systems in the normal form are 
considered.  

In this sense, questions of existence, solvability, 
uniqueness and smoothness are present, which must be 
solved in a satisfactory manner.  

A short and concise, acceptable and understandable 
explanation of all these questions may be found in the 
papers of Debeljkovic (2001, 2002, 2004). 

The survey of updated results for singular systems and a 
broad bibliography can be found in Bajic (1992), Campbell 
(1980, 1982), Lewis (1986, 1987), Debeljkovic et al. (1996, 
2005.a, 2205.b) and in the two special issues of the journal 
Circuits, Systems and Signal Processing (1986, 1989). 
Stability definitions 

Stability plays a central role in the theory of systems and 
control engineering. There are different kinds of stability 
problems that arise in the study of dynamic systems, such 
as Lyapunov stability, finite time stability, practical 
stability, technical stability and BIBO stability. The first 
part of this section is concerned with the asymptotic 
stability of the equilibrium points of linear continuous 
singular systems.  

When linear systems are treated, this is equivalent to the 
study of the stability of the systems.  

The Lyapunov direct method (LDM) is exploited in a 
number of very well known references. Here some different 
and interesting approaches to this problem are presented, 
including the contributions of the authors of this paper. 

Definition 1. System (1) is regular if there exist s∈C   
( )det 0sE A− ≠ , Campbell et al. (1974). 

Definition 2. Eq. (1) is exponentially stable if two 
positive constants ,α β  such that for every solution of Eq. 
(1) can be found, Pandolfi (1980). 

Definition 3. The system given by eq. (1) will be termed 
asymptotically stable if, for all consistent initial conditions 

0x , ( ) 0 ast t→ →∞x , Owens, Debeljkovic (1985). 
Definition 4. The system given by eq. (1) is 

asymptotically stable if all roots of ( )det sE A− , i.e. all 
finite eigenvalues of this matrix pencil, are in the open left - 
half complex plane, and system under consideration is 
impulsive free if there is no 0x  such that ( )tx  exhibits 
discontinuous behaviour in the free regime, Lewis (1986). 

Definition 5. The system given by eq. (1) is called 
asymptotically stable if and only if all finite eigenvalues 

1, 1,...,i i nλ = , of the matrix pencil ( )E Aλ −  have negative 
parts, Muller (1993). 

Definition 6. The equilibrium 0=x  of the system given 
by eq. (1) is said to be stable if for every 0ε > , and for any 

0t T∈ , there exists a ( )0, 0tδ δ ε= > , such that 

( )0 0, ,t t ε<x x  holds for all 0t t≥ , whenever 0 kW∈x  and 

0 δ<x , where T  denotes time interval such that 

[ )0 0, , 0T t t= +∞ ≥ , Chen, Liu (1997). 
Definition 7. The equilibrium 0=x  of a system given 

by eq. (1) is said to be unstable if there exists a 0ε >  and 

0t T∈ , for any 0δ > , such that there exists a 0t t∗ ≥ , for 
which ( )0 0, ,t t ε∗ ≥x x  holds, although 0 kW∈x  and 

0 δ<x , Chen, Liu (1997). 
Definition 8. The equilibrium 0=x  of a system given 

by eq. (1) is said to be attractive if for every 0t T∈ , there 
exists an ( )0 0tη η= > , such that ( )0 0lim , , 0

t
t t

→∞
=x x , 

whenever 0 kW∈x  and 0 η<x , Chen, Liu (1997). 
Definition 9. The equilibrium 0=x  of a singular system 

given by eq. (1) is said to be asymptotically stable if it is 
stable and attractive, Chen, Liu (1997). 

Definition 10. System (1) is asymptotically stable if 
positive numbers ,α β  satisfying 

( ) ( )2 20 , 0tt e tβα −≤ >x x  exist. Yang et al. (2004). 

Definition 5. is equivalent to ( )lim 0
t

t
→+∞

=x  

Lemma 1. The equilibrium 0=x  of a linear singular 
system given by eq. (1) is asymptotically stable if and only 
if it is impulsive-free and ( ),E Aσ −⊂C , Chen, Liu (1997). 

Lemma 2. The equilibrium 0=x  of a system given by 
eq. (1) is asymptotically stable if and only if it is impulsive-
free and ( )lim 0

t
t

→∞
=x , Chen, Liu (1997). 

Due to the system structure and complicated solution, 
the regularity of the systems is the condition to make the 
solution of singular control systems exist and be unique. 
Moreover, if the consistent initial conditions are applied, 
the closed form of solutions can be established.  
If system (1) is regular, it is a restricted system equivalent 
(r.s.e.) to: 

 ( ) ( )1 1 1t A t=&x x  (2.a) 

 ( ) ( )2 2N t t=&x x  (2.b) 

and the system is impulse free when 0N = . 
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Stability theorems 
Theorem 1. Eq. (1), with A I= , I  being the identity 

matrix, is exponentially stable if and only if the eigenvalues 
of E have non positive real parts, Pandolfi (1980). 

Theorem 2. Let IΩ  be the matrix that represents the 
operator on nR  which is the identity on Ω  and the zero 
operator on Λ .  

Eq. (1), with A I= , is stable if an n n×  matrix P  
exists and is the solution of the matrix equation: 

 TE P PE IΩ+ = − > , (3)  

with the following properties: 
TP P= , 

 0,P = ∈Λq q , (4) 

0, 0,T P > ≠ ∈Ωq q q q , 

where: 

 ( )D
kW I EEΩ = =ℵ − , (5.a)  

 ( )DEEΛ =ℵ , (5.b) 

where kW  is the subspace of  consistent  initial conditions, 
Pandolfi (1980). ℵ denotes the kernel or null space of the 
matrix ( ) . 

Theorem 3. The system given by eq. (1) is 
asymptotically stable if and only if: 
A  is invertible a positive-definite, self-adjoint operator P  

on nR   exists, such that: 

 T TA PE E PA Q+ = − , (6) 

where Q  is self-adjoint and positive in the sense that: 

 ( ) ( ) 0T t Q t >x x  for all { }* \ 0
k

W∈x   (7) 

Owens, Debeljkovic (1985). 
Theorem 4. The system given by eq. (1) is 

asymptotically stable if and only if: 
A  is invertible and a positive-definite, self-adjoint operator 
P  exists, such that: 

( )T tx ( )T TA PE E PA+ ( )t =x ( ) ( )T t I t−x x ,  

for all  

 *kW∈x . (8) 

where 
k

W ∗  denotes the subspace of consistent initial 
conditions, Owens, Debeljkovic (1985). 

Theorem 5. Let ( ),E A  be regular and ( ), ,E A C  be 
observable.  

Then ( ),E A  is impulsive free and asymptotically stable 
if and only if a positive definite solution P  to: 

 0T T T TA PE E PA E C CE+ + = , (9) 

exists and if 1P  and 2P  are two such solutions, then 

1 2 ,T TE P E E P E=  Lewis (1986). 

Theorem 6. If there are symmetric matrices P , Q  
satisfying: 

 T TA PE E PA Q+ = − , (10) 

and if: 

 1 10, 0,T TE PE S> ∈ ≠x x x y  (11) 

 0T Q ≥x x , 1 1S∀ =x y , (12) 

then the system described by eq. (1) is asymptotically stable 
if:  

 
1
T

sE A
rank n

S Q
−⎛ ⎞ =⎜ ⎟

⎝ ⎠
, s∀ ∈C , (13) 

and marginally stable if the condition given by eq. (13) 
does not hold, Muller (1993). 

Theorem 7. The equilibrium 0=x  of a system given by 
eq. (1) is asymptotically stable, if an n n×  symmetric 
positive definite matrix P  exists, such that along the 
solutions of the system, given by eq. (1), the derivative of 
function ( ) ( ) ( )TV E E P E=x x x , is a negative definite for  
the variates of Ex , Chen, Liu (1997) 

Theorem 8. If an n n×  symmetric, positive definite 
matrix P  exists, such that along with the solutions of the 
system, given by eq. (1), the derivative of the function 
( ) ( ) ( )TV E E P E=x x x  i.e. ( )V Ex&  is a positive definite for 

all variates of Ex , then the equilibrium 0=x  of the system 
given by eq. (1) is unstable, Chen, Liu (1997). 

Theorem 9. If an n n×  symmetric, positive definite 
matrix P  exists, such that along with the solutions of the 
system, given by eq. (1), the derivative of the function 
( ) ( ) ( )TV E E P E=x x x  i.e. ( )V Ex&  is negative semi 

definite for all variates of Ex , then the equilibrium 0=x  
of the system, given by eq. (1), is stable, Chen, Liu (1997). 

Theorem 10. Let ( ),E A  be regular and ( ), ,E A C  be 
impulse observable and finite dynamics detectable. Then 
( ),E A  is stable and impulse-free if and only if a solution 

( ),P H  to the generalized Lyapunov equations (GLE) 
exists: 

 0T T T
y yA P H A C C+ + = , (14) 

 0T TH E E P= ≥ , (15) 

Takaba et al. (1995). 
Some assumptions and preliminaries are needed for further 
exposures.  

Let forced linear continuous singular systems (LCSS) 
represented by:  

 ( ) ( ) ( ) ( )0 0,E t A t B t t= + =x x u x x& , (16) 

 ( ) ( ) ,t C t=y x  (17) 

be considered. 
Suppose that matrices E  and A  commute and that 

EA AE= .  
Then, a real number λ  exists such that ( ) .E I Aλ − = , 
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otherwise, from the property of regularity, Eqs. (16) and 
(17) may be multiplied by 1( )E Aλ −−  so a system that 
satisfies the above assumption and keeps the stability the 
same as the original system can be obtained.  
It is well known that there always exists linear non-singular 
transformation, with invertible matrix T , such that: 

   ( ) ( ) ( ){ }1 1
1 2 1 2   TET TAT diag E E diag A A− − =  (18) 

where 1E  is of full rank and 2E  is a nilpotent matrix, 
satisfying: 

 1
2 20,   0h hE E +≠ = ,  0h ≥ . (19) 

In addition, it is evident: 

 1 1 1 2 2 2,A E I A E Iλ λ= − = − .  (20) 

The system, given by Eqs. (16) and (17), is (r.s.e.) to:  

 ( ) ( ) ( )1 1 1 1 1E t A t B t= +x x u& ,  (21)  

 ( ) ( ) ( )2 2 2 2 2E t A t B t= +x x u& ,  (22) 

where ( ) ( ) ( )1 2
T T Tt t t⎡ ⎤= ⎣ ⎦x x x .  

Lemma 4. The system, given by Eqs. (16) and (17), is 
asymptotically stable if and only if the "slow" sub-system, 
eq. (16) is asymptotically stable, Zhang et al. (1998.a). 

Lemma 5. 1 0≠x  is equivalent to 1hE + ≠x 0 , Zhang et 
al. (1998.a). 

Lyapunov function is defined as: 

 ( )( ) ( )( ) ( )1 1 1Th T h hV E t t E P E t+ + +=x x x ,  (23)  

where: 0, n nP P ×> ∈R  satisfying: 1( ) 0hV E + >x  if 
1hE + ≠x 0 , when (0) 0V = . 

From Eqs. (16), (17) and (22), bearing in mind that 
EA AE= , can be obtained: 

  ( ) ( ) ( )1 1 1 1T T Th T h h h h hE A PE E PAE E W E+ + + ++ = −  (24) 

where 0, n nW W ×> ∈R .  
Eq. (24) is said to be Lyapunov equation for a system 

given by Eqs. (16) and (17). 
Denoted with 

 ( ) 1deg det sE A rank E r− = = . (25) 

Theorem 11. The system, given by Eqs. (16) and (17), is 
asymptotically stable if and only if for any matrix 0W > , 
eq. (24) has a solution  0P ≥  with a positive external 
exponent r, Zhang  et al. (1998.a).  

Theorem 12. The system, given by Eqs. (16) and (17), is 
asymptotically stable if and only if for any given  0W >  
the Lyapunov eq. (24) has the solution 0P > , Zhang et al 
(1998.a). 

The conclusion is the same as in the case of the very well 
known Lyapunov stability theory if E  is of full rank.  

If matrix E  is singular then there is more than one 
solution.  

It should be noted that the results of the preceding 
theorems are very similar in some way and are derived only 
for regular linear continuous singular systems. 

First, some basic statements which will be used in the 

sequel will be given here, Isihara, Terra (2002). 
System (1) with a n n×  matrix E  is called regular if 
( )det 0sE A− ≠  for some s∈C .  

Regular system (1) is said to be: 
i) stable if all roots of ( )det 0sE A− =  are in the open 

left-half plane; 
ii) impulse free if it exhibits no impulsive behaviour; 
iii) finite-dynamics detectable if (O1) holds; 
iv) finite-dynamics observable if (O2) holds; 
v) impulse observable if (O3) holds; 
vi) S-observable (Following Lewis (1986), it shall be said 

observable) of (O2) and (O3) hold. 
vii) C-observable if (O2) and (O4) hold 
where (O1)-(O4) conditions are given by: 

 ( ) ( )O1 , 0sE Arank n Re sC
−⎛ ⎞ = ≥⎜ ⎟

⎝ ⎠
,  (26) 

 ( )O2 ,sE Arank n for all sC
−⎛ ⎞ = ∈⎜ ⎟

⎝ ⎠
C ,  (27) 

 ( )O3 0
0

E A
rank C n rank E

E

⎛ ⎞
⎜ ⎟ = +
⎜ ⎟
⎝ ⎠

,  (28) 

 ( )O4 Erank nC
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. (29) 

It is immediately seen that C  - observability implies S -
observability. 

Theorem 13. Let , n nE A ×∈R  and p nC ×∈R  be given by 

(a Weierstrass form of some regular system ( ), ,E A C% %% : 

 0
0
qIE ⎛ ⎞= ⎜ ⎟Λ⎝ ⎠

, (30) 

 0
0 n q

JA I −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (31) 

 ( )FC C C∞= , (32) 

where qI  denotes a q q×  identity matrix, J  corresponds 

to the finite zeros of ( )sE A− , Λ  is nilpotent 

( 10, 0k k−Λ = Λ ≠  for some integer 0k > ), and 

( ), ,E A C  is observable.  

Then ( ),E A  is stable and impulse free if and only if a 
positive-definite solution P  to the following Lyapunov 
equation exists: 

 0T T T TA PE E PA E C CE+ + = . (33) 

Moreover, if P  and P′  are two such solutions, then 
T TE P E E PE′ = , Isihara, Terra (2002). 
Theorem 14. Let ( ),E A  be regular and consider the 

following generalized Lyapunov equation (GLE): 

 0T T TA PE E PA E QE+ + = .  (34) 

The following applies: 



  DEBELJKOVIĆ D. etc.: THE STABILITY OF LINEAR CONTINUOUS SINGULAR SYSTEMS IN THE SENSE OF LYAPUNOV: AN OVERVIEW 55 

If there exist matrices 0P ≥  and 0Q >  satisfying the 
GLE (34), then ( ),E A  is impulse free and stable; 

If ( ),E A  is impulse free and stable, then for each 0Q >  
there exist 0P >  solution of GLE (34). Furthermore, 

0TE PE ≥  is unique for each 0Q > , Isihara, Terra (2002).  

Theorem 15. Let , n nE A ×∈R  and p nC ×∈R  be such that 
(O1) and (O3) ((O2) and (O3)) are satisfied. Consider also a 
matrix ( )

0
n n rE × −∈R  of full-column rank such that 

0 0TE E = , where r rank E= .  
The following statements are equivalent: 

i) system ( ),E A  is regular, impulse free and stable; 

ii) there exists a solution ( ), n r nn nP Q − ××∈ ×R R  with 
0P ≥  ( )0>  to the following GLE: 

 0 0 0T T T T T TA PE E PA C C A E Q Q E A+ + + + = , (35) 

iii) there exists a solution ( ), n r nn nP Q − ××∈ ×R R  with 

0TE PE ≥  ( 0TE PE ≥  and ( )Trank E PE rank E= ) to 
GLE (35), Isihara, Terra (2002). 

Theorem 16. Let , n nE A ×∈R  and p nC ×∈R  be such that 
the system ( ),E A  is regular, impulse free and stable, and 
consider the following statements: 
i) The Lyapunov equation: 

 0T T T TA PE E PA E C CE+ + = , (36) 

has a solution P  such that 0TE PE ≥  and 
( )Trank E PE r= ;  

ii) The Lyapunov equation (35) has a solution P  such that 
0TE PE ≥  and  

( )Trank E PE r= . 
iii) The Lyapunov equation:  

 0T T TA PE E PA C C+ + = , (37) 

has a solution P  such that 0TE PE ≥  and 
( )Trank E PE r= ;   

iv) The Lyapunov equation:  

 0,
0,

T T

T T T
E X X E

A X X A C C
= ≥

+ + =
 (38) 

has a solution X  such that 0TE X ≥  and ( )Trank E X r= .  
Then: 
1. ( ), ,E A CE  is observable ((O2) and (O3) hold with C  

replaced by CE ) if and only if i) holds. 
2. ( ), ,E A C  is observable if and only if any one of the 

statements ii)-iv) holds, Isihara, Terra (2002).  

Linear singular continuous irregular singular 
systems 

In order to investigate the stability of irregular singular 
systems, the following results can be used, Bajic at al. 
(1992).  

For this case, the linear continuous singular system is 
used in the suitable canonical form, i.e.: 

 1 1 1 2 2( ) ( ) ( )t A t A t= +x x x& , (39) 

 3 1 4 20 ( ) ( )A t A t= +x x . (40) 

Herewith, the existence of solutions which converge 
toward the origin of the systems phase-space for regular 
and irregular singular linear systems is examined. 

By a suitable non-singular transformation, the original 
system is transformed to a convenient form.   

This form of system equations enables development and 
easy application of Lyapunov's diect method (LDM) for the 
intended existence analysis for a subclass of solutions.  

In the case when the existence of such solutions is 
established, an underestimation of the weak domain of the 
attraction of the origin is obtained based on symmetric 
positive definite solutions of a reduced order matrix 
Lyapunov equation.  

The estimated weak domain of attraction consists of 
points of the phase space, which generates at least one 
solution convergent to the origin. 

Let, as before, the subset of the consistent initial 
conditions of eqs. (39) and (40) be denoted by *kW . 

Also, consider the manifold n n×⊆ RM  determined by 
eq. (40) as m = ( )( )3 4m A A=ℵ . 

For the system governed by Eqs. (39) and (40) the set 
*kW  of the consistent initial values is equal to the manifold 

M , that is *kW =M . 
It is easy to see, that the convergence of the solutions of 

system given by eq. (1) and system, given by Eqs. (39) and 
(40), toward the origin is an equivalent problem, since the 
proposed transformation is nonsingular. 

Thus, for the null solution of Eqs. (39) and (40), the 
weak domain of attraction is going to be estimated.  

The weak domain of attraction of the null solution 
( ) 0t =x  of the system given by Eqs. (39) and (40) is 

defined by: 

  ( ){ }0 0 0 0: , , lim || ( , ) || 0n

t
D t t

∆

→∞
= ∈ ∈ ∃ →x x x x x xR M,   (41) 

The term weak is used because solutions of eq. (39) and 
eq. (40) need not be unique, and thus for every 0 D∈x  
there may also exist solutions which do not converge 
towards the origin.  

In this case *kD W= =M , the weak domain of attraction 
may be thought of as the weak global domain of attraction  
Note that this concept of global domain of attraction used in 
the paper, differs considerably with respect to the global 
attraction concept known for state variable systems, Bajić et 
al. (1992), Debeljković et al. (1996). 

The task is to estimate the set D .  
LDM will be used to obtain the underestimate eD  of the 

set D  (i.e. eD D⊆ ).  
The development will not require the regularity 

condition of the matrix pencil ( )sE A− . 
For the systems in the form of Eqs. (39) and (40) the 

Lyapunov-like function can be selected as: 

 ( )( ) ( ) ( )1 1 , 0T TV t t P t P P= = >x x x& , (42) 
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where P  will be assumed to be a positive definite and real 
matrix.  

The total time derivative of V  along the solutions of 
Eqs. (39) and (40) is then: 

 
( )( ) ( )( ) ( )

( ) ( ) ( ) ( )
1 1 1 1

1 2 2 2 2 1

T T

T T T

V t t A P PA t
t PA t t A P t

= +

+ +

x x x
x x x x

&
, (43) 

A brief consideration of the attraction problem shows 
that if eq. (43) is negative definite, for every 0 ∗∈x

k
W  , 

1( ) 0t →x  as t →∞ .  

Then 2 ( ) 0t →x  as t →∞ , for all those solutions for 
which the following connection between 1( )tx  and 2 ( )tx  
holds: 

 ( ) ( )2 1 ,t L t t= ∀ ∈x x R  (44) 

The main question is if the relation eq. (44) can be 
established so as not to contradict the constraints.  

Since this is not possible for irregular singular linear 
systems, then the task to establish the relation eq. (44) has 
to be reformulated so that it does not pose to many 
additional novel constraints to eq. (40). 

In order to use this fact for the analysis of the attraction 
problem efficiently, the following consideration that also 
proposes a construction of the matrix L is introduced. 

Let eq. (44) hold.  
Assume that the rank condition: 

 ( )3 4 4 2rank A A rank A r= ≤ ≤ n , (45) 

is satisfied.  
Then a matrix L exists, Tseng and Kokotovic (1988), as 

any solution of the matrix equation: 

 3 40 A A L= + , (46) 

where 0 is a null matrix of dimensions the same as 3A . 
Based on eqs. (44), (46) and (40), it becomes evident 

that whenever a solution ( )x t  fulfils eq. (44), then it also 
has to fulfil eq. (40).  

The implications of the introduced equations can be 
investigated in more detail.  

When they hold, then all solutions of the system Eqs. 
(39) and (40), which satisfy eq. (44), are subject to 
algebraic constraints 

 ( ) ( )3 4 0
A A

Fx t x t
L I

⎛ ⎞
= =⎜ ⎟−⎝ ⎠

. (47) 

Assuming that ( )( )V tx&  determined by Eq. (43) is a 
negative definite, the following conclusions are important: 
1. The solution of eqs. (39) and (40) has to belong to the set 

 ( )( ) ( )( )3 4A A L Iℵ ∩ℵ −  . (48) 

2. If rank F n=  then judgement on the domain of attraction 
of the null solution is not possible on the basis of the 
adopted approach, or more precisely, in this case the esti-
mate of the weak domain D  of attraction is a singleton: 

 ( ) [ ]( ) ( ){ }3 4 : 0x t A A x t∈ℵ ≡ . (49) 

3. If rank  

 F n< , (50) 
then the estimates of the weak domain of attraction needs to 
be a singleton and it is estimated as 

 ( ) ( ) ( )( ) [ ]( ){ }3 4:n
eD x t x t A A L I= ∈ ∈ℵ ∩ℵ −R   

 D⊆ .  (51) 

Now eqs. (43) and (44) are employed to obtain: 

 ( )( ) ( ) ( ) ( )( ) ( )1 1 2 1 2 1
TTV t t A A L P P A A L t= + + +x x x& ,  (52)  

which is a negative definite with respect to 1( )tx  if and 
only if: 

 1 2,T P P Q A A LΩ + Ω = − Ω = + , (53) 

where Q  is real a symmetric positive definite matrix.  
The following result can now be stated. 

Theorem 17. Let the rank condition eq. (45) hold and let 
rank F n< , where the matrix F  is defined in eq. (47).  

Then, the underestimate eD  of the weak domain D  of 
the attraction of the null solution of the system given by 
eqs. (39) and (40), is determinate by eq. (51), providing 
( )1 2A A L+  is a Hurwitz matrix.  

If eD  is not a singleton, then there are solutions of Eqs. 
(39) and (40) different from null solution, ( ) 0x t ≡ , which 
converge towards the origin as time t → +∞ , Bajic et al. 
(1992). 

A presentation of other results in chronological order 
follows. The results refer to regular singular systems 
only. 

Theorem 18. A regular system (1) is asymptotically 
stable if 

 ( ),E Aσ −⊂C  (54) 

where  

 ( ){ } ( ), Re 0 , ,s s s E Aσ− −= ∈ < ⊂C C C  (55) 

stands for the field of finite poles, Yang et al. (2004). 
This theorem is the most direct and basic criterion 

according to the singular system stability definition and the 
system response expression.  

The stability problem is changed to an algebraic one 
whether ( ),E Aσ −⊂C  is satisfied. And obviously, the 

system stability depends on the coefficient matrices ( ),E A  
of the system. Therefore, stability is the system 
characteristic and reflects the system structure 
characteristics. Furthermore, this theorem is valuable. 
However, the precise pole calculation is difficult if the 
order of the system (1) is high. 

In applications, the stability criteria obtained by 
Lyapunov direct method is always used.  

The main idea of Lyapunov method consists of 
introducing Lyapunov function ( )( ),V t tx  and its 
derivative along the system and determining the stability by 
using the character of ( )( ),V t tx  and its 

derivative ( )( ), /dV t t dtx . The advantage of this method 
lies in avoiding the difficulties of getting the system state 
response and uses the character of ( )( ),V t tx  and 
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( )( ), /dV t t dtx  to solve the problems directly.  
A series of results is obtained by constructing different 

Lyapunov functions. 
Theorem 19. The system (1) is regular, impulse free and 

asymptotically stable if and only if a matrix V  satisfying 
the following equations exists: 

 T TV A A V Q+ = − , (56.a) 

 0T TE V V E= ≥ , (56.b) 

for any positive definite Q , Zhang et al. (1999.a). 
Theorem 20. The system (1) is regular, impulse free and 

asymptotically stable if and only if a unique positive semi-
definite solution V  to the Lyapunov equation exists: 

 T T TA VE E VA E QE+ = − , (57) 

satisfying 

 ( )Trank E V E rankV r= = , (58) 

Zhang. (1997). 
Theorem 21. The system (1) is regular, impulse free and 

asymptotically stable if and only if the Lyapunov function 

 ( )( ) ( ) ( )T TV E t t E V t=x x x  (59) 

satisfying 

 
( )( )

( ) 0
dV E t

d t
<

x
x

, (60) 

where ( ) 0t ≠x  and V  satisfying 

 ( )0,T TVE E V rank E V rankE+ ≥ = , (61) 

Zhang, Yu (2002). 
Theorem 22. The system (1) is regular, impulse free and 

asymptotically stable if and only if a symmetric solution V  
to the following exists 

 T T TA VE E VA E QE+ = − , (62) 

satisfying: 

 ( )0,T TE V E rank E V E rank E r≥ = = , (63) 

where W  is a symmetric matrix, and satisfying 

 ( )0,T TE QE rank E QE rank E r≥ = = , (64) 

Zhang et al. (1999.d). 
Theorem 23. The system (1) is regular, impulse free and 

asymptotically stable if and only if a matrix V  satisfying 
the following exists: 

 0T TV A A V+ < , (65) 

 0T TE V V E= ≥ , (66) 

Masubuchi et al. (1997). 
Theorems 19 – 23 get the sufficient and necessary 

condition of regular singular systems, impulse free and 
stable by Lyapunov direct method (LDM). 

LDM is different from the normal linear system, so the 
construction of Lyapunov function for (LCSS) is not only a 

trivial generalization.  
Generally, the Lyapunov function candidates for (LCSS) 

depend on ( )tx  in a special way, that is ( )( )V V E t= x .  
Because of the complexity of LDM, there always exists a 
constraint together with the Lyapunov function to the ana-
lyze stability of (LCSS).  

Theorems 19 - 20 and Theorem 22 are analyzed by 
Lyapunov equation, Theorem 21 is analyzed by Lyapunov 
function and Theorem 23 is analyzed by Lyapunov 
inequality.  

Theorems 21 - 23 include a restriction of the matrix 
rank. This kind of restriction is solved easily in low order 
systems and hard to deal with if the order is high, while 
Theorem 19 and Theorem 23 are most useful in these cases. 

It is well known that the geometry method is a useful 
tool to study the problem of the control theory. 

By calculating the series of ranges of a sphere according 
to projective geometry theories, Campbell (1980) gave 
some results, which are useful in the robust control study. 

Theorem 24. The following statements are equivalent: 
(i) The system (1) is stable and impulse free 
(ii) There exists ( )rank LAS n r= −  and a positive definite 

matrix 0X >  satisfying 

 0T T TE X A A XE+ <% % , (67) 

where 

 L S∈Ψ ∧ ∈Φ .  (68) 

(iii) ( ),E Aσ ⊆ Ω , 
where 

 ( ){ }: : 0,n r nL LE rank L rank E n− ×Φ ∈ = + =R , (69)  

 1 10
0
r

n r

IE I
− −

−

⎛ ⎞= ϒ Θ⎜ ⎟−⎝ ⎠
% , (70) 

 ( ){ }: : 0,n n rS E S rank S rank E n× −Ψ ∈ = + =R .(71)  

( ),E Aσ  is a spectrum of a generalized singular system. Ω  
stands for six prims, Zhang, Wang, Cong (2002). 

Impulse free system is considered in Theorems 2 - 7, but 
there always exists an impulse on singular systems.  

Therefore, there are some results analyzing the stability 
of (LCSS) without the consideration of impulse behaviour. 

Theorem 25. A regular system (1) is asymptotically 
stable if and only if a solution 0V ≥  to  

 T T TA VE E VA E QE+ = − , (72) 

exists, satisfying 

 ( ) ( )0, deg detT TE V E rank E V E sE A≥ = − , (73) 

where arbitrary 0Q ≥  satisfies: 

 ( ) ( )0, deg detT TE Q E rank E Q E sE A≥ = − , (74) 

where 

 ,EA AE sE A I= − = . (75) 

Zhang et al (1998.d). 
Theorem 26. The regular system (1) is asymptotically 
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stable if and only if a positive-exponent solution 0V ≥  
satisfying 

 ( ) ( ) ( )1 1 1 1T T Th T h h h h hE A VE E VAE E Q E+ + + ++ = − , (76) 

exists, and where  

 0Q > , ,EA AE sE A I= − = , (77) 

and h  is the nilpotent index of E , Zhang et al.(1998.b) 
Theorem 27. The regular system (1) is asymptotically 

stable if and only if a solution V  to Lyapunov equation 
exists 

 ( )1 1 0
Th T hE V V E+ += ≥ , (78.a) 

 ( ) ( )T TT h T h h TA E V V E A E Q E+ = − , (78.b) 

satisfying 

 ( ) ( ) ( )1 1deg det
Th hrank E V sE A rank E+ += − = . (79) 

There exists a converse matrix T  such that 

 ( )
1

1 1
1

2 2

ˆˆ0 0 0ˆˆ
ˆˆ0 0 0

T E AT E A
T E A

−

−

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
,  (80) 

where 1
ˆ g gE ×∈R , ( ) ( )

2
ˆ n g n gA − × −∈R  are invertible matrices 

and 2Ê  is a nilpotent matrix, Masubuchi, Shimemura 
(1997). 

Theorem 28. The regular system (1) is asymptotically 
stable if 1

1
ˆÊ A−  is stable, where ( ) 1Ê sE A E−= − , 

( ) 1Â sE A A−= −  Yue, Zhang (1998). 
Theorems 9 - 11 are all for impulse systems. They will 

become Theorem 22 when the system is impulse free.  
Though the forms are more complicated in the Theorems 25 
- 27, it is easy to obtain the solution when they are applied. 

Considering the calculation and the numerical stability, 
the less the calculation of the matrix is inverse and the 
lower the matrix order is, the better the calculating method.  

Therefore, there are both freedom and limitation in 
Theorem 28. 

The stability of linear time varying continuous singular 
systems 

Consider the linear continuous singular system 
represented by 

 ( ) ( ) ( )E t A t t=x x& , ( ) ( )0 0t t=x x . (81) 

Theorem 29. Suppose that the system (81) is regular and 
the following conditions are fulfilled at the same time: 
(i) There exist constants 0γ >  and 0℘>  satisfying 

( )A t γ≤  and ( )22A t ≥℘  

(ii) ( )22A t  is invertible for all 0t ≥  

(iii) There exists a positive definite matrix r rP ×∈R  and 
constant 0>l  such that 

 ( ) ( ) ( )( ) ( )
2

1 1 1
T Tt PW t W t P t+ ≤ −x x xl , (82) 

where 

 ( ) ( ) ( ) ( ) ( )1
11 12 22 21W t A t A t A t A t−= − , (83) 

 0
0 0
rIE ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, ( ) ( ) ( )

( ) ( )
11 12

21 22

A t A tA t A t A t
⎛ ⎞= ⎜ ⎟
⎝ ⎠

,  (84) 

 
( ) ( ) ( )

( ) ( )
1 2

1 2

,

,

TT T

r n r

t t t

t t −

⎡ ⎤= ⎣ ⎦
∈ ∈

x x x

x xR R
 (85) 

and ( ),E A t  are continuous functional matrices, then the 
time-varying singular system (81) is stable and impulse 
free, Hu, Sun  (2003). 

Paper Bajic, Milic (1987) is focused on (LDM) with A  
being time varying and E  being constant. 

Results presented throughout Theorems 19 –29 are 
mostly taken from paper, Men et.al (2006). 

Stability robustness considerations 
Consider the singular linear systems (SLS) represented 

by: 

 ( ) ( )E t A t=y y& , , m nE A ×∈R , ( )0 0t =y y , (86) 

where ( ) nt ∈y R  is the phase vector (i.e. generalized state-
space vector).  

The matrix E , when m n= , is possibly singular.  
When this is the case, then rank E p n= < , 

nullityE n p q= − = . If the matrix E  is invertible, then (1) 
can be written in the normal form as: 

 ( ) ( )1t E A t−=y y& ,    ( )0 0t =y y . (87) 

Behaviour of the solution of (87) is well documented in 
contemporary references. However, this is not the situation 
for the system (86), where m n≠  or when m n=  with 
det 0E = . 

In the control and system theory, it is of great interest to 
preserve various system properties under large 
perturbations of the system model. Such perturbations of 
the model may be caused by changes in the manufacturing 
process of the components, variations of constructive 
elements, or due to replacement, change of environmental 
conditions, etc., Bajic (1992). The insensitiveness of the 
system properties is called robustness and it is an important 
field of investigation. The fact is that in many practical 
situations the parameters of system components are not 
known exactly. Usually, there is only some information on 
the intervals to which they belong. Therefore, the 
robustness for any system property is an important 
theoretical and practical question. 

In recent years, considerable attention has been given to 
the design of controllers for multivariable linear systems, so 
that certain system properties are preserved under various 
classes of perturbations occuring in the system. Such 
controllers have been termed robust controllers, and the 
resulting system is said to be robust in some context. 

Patel, Toda (1980) first reported the robustness bounds 
on unstructured pertubations of linear continuous-time 
systems. 

Yedavilli, Liang (1985) improved Patel's result for linear 
perturbations with the known structure and proposed a 
similarity transformation method to reduce robustness 
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bounds conservatism. 
Recently, Kolla, Yedavalli (1989) investigated bounds 

for structured and unstructured perturbations of discrete-
time systems. 

In this paper, the stability robustness of linear continuous 
singular system, in the time domain, is addressed using the 
Lyapunov approach. The bounds of unstructured 
perturbation vector function that maintain the stability of 
the nominal system with attractivity property of a subclass 
of solutions are obtained both for regular and irregular 
singular systems. 

Zhou, Khargonekar (1987) considered the robust 
stability analysis problem by state-space methods.  

They derived some lower bounds on allowable 
perturbations that maintain the stability of a nominally 
stable system with structured uncertainty. It has been shown 
that those bounds are less conservative than the existing 
ones. 

Recently, Chen, Han (1994) using iterativity approach, 
derived new results in the same area of interest for the 
linear system with unstructured time-varying perturbations. 
In comparison with some existing methods, less 
conservative results have been obtained. 

Consider an (SLS) given by (86).  
By introducing a suitable non-singular transformation as: 

 ( ) ( )T t t=x y , n nT ×∈C  (88) 

a broad class of SLS (86) can be transformed to the 
following form: 

 ( ) ( ) ( )1 1 1 2 2t A t A t= +x x x& , (89.a) 

 ( ) ( )3 1 4 20 A t A t= +x x , (89.b) 

 0
0 0
IET ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 1 2

3 4

A AAT A A
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (89.c) 

where ( ) ( ) ( )1 2
T T T nt t t⎡ ⎤= ∈⎣ ⎦x x x R  is a decomposed 

vector, with 1
1

n∈x R , 2
2

n∈x R , and 1 2n n n= + . The 
matrices iA , 1,..., 4i = , are of appropriate dimensions. 
Comparing (89) with (86), it is obvious that if m n=  the 
case when det 0E =  is considered.  

This conclusion stems from the fact that 
( )det det det 0ET E T= = , and that det 0T ≠ .  

When the matrix pencil ( )sE A−  is regular, i.e. when: 

 ( )det 0sE A− ≠ , (90) 

then solutions of (86) exist, unique for the so-called 
consistent initial values 0x  of ( )tx , and moreover, the 
closed form of these solutions is known. 

The regularity condition (90) for the system (54) reduces 
to following: 

 
( ) ( )( )

( )( )
1

1 4 3 1 2

1
4 1 2 4 3

det det

det det 0

sI A A A sI A A

A sI A A A A

−

−

− − − − =

= − − ≠
. (91) 

It follows from (91) that the regularity condition for (89) 
requires the invertibility of the matrix 4A .  

It was proven in Campbell (1980) that 0x  is consistent 
initial value that generates smooth solution if 

( ) 0
ˆ ˆ 0DI EE− =x , where ˆ DE  is the so-called Drazin 

inverse of Ê , and where Ê  is defined by 
( ) 1Ê E A Eλ −= − . 

Let the following equation hold: 

 ( ) ( )2 1t L t=x x , t∀ ∈R . (92) 

Lemma 6. Let (92) hold.  
Assume that the rank condition: 

 ( )3 4 4 2rank A A rank A r n= = ≤ , (93) 

is satisfied.  
There exists a matrix L  Tseng and Kokotovic (1988), 

being a solution of the matrix equation: 

 3 40 A A L= + , (94) 

where 0 is a null matrix of the same dimensions as 3A .  
For robustness considerations, the generalized state 

space systems described by the mixture of differential and 
algebraic equations of the form: 

 ( ) ( ) ( )( )pE t A t t= +y y f y& , (95) 

are considered, with ( )( )p tf y  as a perturbation factor. 
Using the same non-singular linear transformation (88), 

the relation (95) is reduced to: 

 ( ) ( ) ( ) ( )1 1 1 2 2 1t A t A t= + +x x x f x& , (96.a) 

 ( ) ( ) ( )3 1 4 2 20 A t A t= + +x x f x ,  (96.b) 

with: 

 ( )( ) ( )( ) ( )( ) ( )( )
( )( )

1

2
p p

t
t T t t

t
⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

f x
f y f x f x

f x
. (97) 

Assumption 1. Vector function ( )( )tf x  satisfies the 
following condition: 

 ( )( )2 0t ≡f x , ( )( ) ( )( )( )1
TT Tt t=f x f x 0 , (98) 

so it can be written: 

 ( )( ) ( )
( )

( )
( ) ( )( )1 1

1 1 1 1
2 1

t tt tt L t
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

x xf x f f xx x
 (99) 

Djurovic et al., (1988). 
The following result can be stated. 
Theorem 30. Suppose Assumption 1 and Lemma 6 hold 

and let rank F n< , where the matrix F  is defined by 

 3 4 0A AF L I
⎛ ⎞= =⎜ ⎟−⎝ ⎠

x . (100) 

Then the solutions of (96), different from the null 
solution ( ) 0t ≡x , converge toward the origin of the phase 
space as time t → +∞ , if 

 
( )( )
( )

( )
( )

min
1

max

t Q
Pt

σ
µ

σ
≤ ≡

f x
x

, (101) 

where P  is unique, real, symmetric positive definite 
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solution of the Lyapunov matrix equation 

 ( ) ( )1 2 1 2 2
T

A A L P P A A L Q+ + + = − , (102) 

where Q  is a real, symmetric positive definite matrix and 

( )minσ ⋅  and ( )maxσ ⋅  are singular values of matrix ( )⋅ , 
Debeljkovic et al., (1993). 

To analyze the robustness of attraction property of the 
phase space origin, let the perturbed system (86) which for 
this purpose can be represented in the following form 

 ( ) ( ) ( )( ) ( ) ( )p pE t A t t A t G t= + = +y y f y y y& ,  (103) 

be considered where the factor ( )p tf  represents the model 
perturbation and matrix pG  is of appropriate dimension. 

To simplify the formulation of the stability robustness 
results (68) is first transformed to 

 ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1t A t A t G t t= + +x x x x& , (104.a) 

 ( ) ( ) ( )3 1 4 2 20 A t A t G t= + +x x x , (104.b) 

as it has been done with (86) to (89).  
1G  and 2G  are matrices of dimension ( )1 1 2n n n× +  and 

( )2 1 2n n n× + , respectively, determined by the following 
expression 

 
( ) ( )1 11 12 2 21 22

11 12

21 22

, ,

.p

G G G G G G
G GG T G G

= =
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (105) 

Then, the following assumption can be introduced. 
Assumption 2. Let L  be a matrix which satisfies Lemma 

6 and let 2 0G ≡ , so that: 

 
( ) ( )

( )
( ) ( ) ( )

111 12 11 12

21 22 2

11 12 1 1

0 0

0 0
L

tG G G GtG G t
G G L t G t

⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
+⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

xx x
x x

, (106) 

Djurovic et al., (1988). 
Now the results on robustness stability can be stated as 

follows. 
Theorem 31. Let the rank condition (93) and Assumption 

2 hold. Then, the underestimate uS  of the potential domain 
of the attraction of the system (104) is given by: 

 ( ) ( ) ( )( ){ }2:u nS t t L I S= ∈ ∈ℵ − ⊆x xR , (107) 

if one of the following conditions is fulfilled: 

1a) , b) , c) / ,ijL L LSG G g nµ µ µ< < <   (108) 

where ijLg  is the ( ),i j -element of matrix G , and 

 ( )
( )

min

max

Q
P

σ
µ

σ
= , (109) 

and where 0TP P= > , is symmetric, positive definite, real 
matrix, being the unique solution of Lyapunov matrix 
equation 

 ( ) ( )1 2 1 2 2
T

A A L P P A A L Q+ + + = − , (110) 

for any real, symmetric, positive definite matrix Q .  
The set uS  contains more than one element. ( )⋅  and 

( ) S⋅  denote Euclidean and spectral norm of matrix ( )⋅  

respectively, and ( ) ( )σ ⋅ ⋅  the corresponding singular value. 
Theorem 32. Let the rank condition (93) and Assumption 

2 hold. Then the underestimate uS  of the potential domain 
of attraction of the system (104) is given by (107), if the 
following condition is fulfilled: 

 ( )max

1
ijL

S

g
P U

ε η
σ

= < ≡ , (111) 

where P  satisfies the Lyapunov matrix equation given by: 

 ( ) ( )1 2 1 2 2
T

A A L P P A A L I+ + + = − , (112) 

I  being 1 1n n×  identity matrix with U  being 1 1n n×  
matrix whose entries are a unity. ( )( )S⋅  means the 

symmetric part of matrix ( )⋅ , Djurovic et al., (1988). 
Theorem 33. Let the rank condition (93) and Assumption 

2 hold. Moreover, let the matrix LG  be defined in the 
following manner: 

 
1

m

L i Li
i

G k G
=

=∑ , (113) 

where LiG  are constant matrices and ik  are uncertain 
parameters varying in some intervals around zero, i.e. 

[ ],i i ik ε ε∈ − + .  
Then the underestimate uS  of the potential domain of 

attraction of the system (104) is given by (107), when P  
satisfies the Lyapunov matrix equation (112), and if one of 
the following conditions is fulfilled 

   a) 
( )

2
2
max1

1
m

i
ei

k
Pσ=

<∑ , (114) 

or: 

   b) ( )max
1

1
m

i i
i

k Pσ
=

<∑ , (115) 

or: 

   c) 

max
1

1 , 1, 2,..., .j m

i
i

k j m
Pσ

=

< =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑

 (116) 

where iP  and eP  are given by 

 ( ) ( )1
2

T
i Li Li Li SP G P PG PG= + = , (117) 

and 

 ( )1 2 ...e mP P P P= . (118) 

Moreover, uS  contains more than one element, Djurovic 
et al., (1988). 

In order to illustrate the presented results, some suitable 
examples are given in the continuation. 

Example 1. Consider a singular system given by 
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( ) ( )

( )

0 1 0 0 1 2 0 1
0 0 0 1 1 2 1 4
0 0 0 0 1 1 0 1
0 0 0 0 3 5 2 3
2 6 3 6
1 0 0 1
0 0 0 0
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Since ( )det 0cE A− ≠  this is a regular singular system. 
Let the behaviour of this system according to the results 

obtained be examined.  
Using the transformation matrix 

2 1 0 1
1 0 0 0
0 0 1 0
0 1 0 0

T

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

which is non-singular since det 1T = , the system (E.1) can 
be transformed to 

 
( ) ( ) ( )

( )

1 1 2
4 2 0 1

0 3 1 1
2 4 3 2 ,1 2 0 1

t t t

k k k k t

− − −⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
− −⎛ ⎞
⎜ ⎟
⎝ ⎠

x x x

x

&

  

 ( ) ( )1 2
1 2 0 10 1 0 2 3t t⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x x .  

Since the rank condition (93) is satisfied, it can be found 

 1 3
1 2L ⎛ ⎞= ⎜ ⎟−⎝ ⎠

,   

from (94), and then 

 ( ) ( )4 1 2 1 0: 1 2 0 1uS t t

S

−⎧ ⎫⎛ ⎞⎛ ⎞= ∈ ∈ℵ⎨ ⎬⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎩ ⎭
⊆

x xR ,  

if conditions of Theorems 31 - 33 are satisfied. 
This can be shown.  
Since 

 211 12 0
1 1

0 0L GG G G L k=
−⎛ ⎞= + = ⎜ ⎟
⎝ ⎠

,   

Assumption 2 is satisfied. 
For Q I= , from (104) it follows 

 1/ 3 0 00 1/ 2
TP P⎛ ⎞= = >⎜ ⎟

⎝ ⎠
,  

so that 
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Q
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The Theorem 32 gives a better result.  
Namely 

1.19Lijg < , 

since: 
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0.8416S

P U
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. 

To apply Theorem 33, the following data has to be 
obtained 

1
1 1

0 0L LG k kG−⎛ ⎞= =⎜ ⎟
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e

k k
Pσ

< ⇒ < . 

Figures 1 and 2 represent system trajectories for possible 
values of an uncertain parameter k . 

In the first case, Fig.1, the parameter k  is chosen in such 
a way that the condition of the Theorem 32 is satisfied, so 
the stability robustness of attraction property of origin is 
proven. It can be shown that quantitative measures obtained 
by Theorem 32 are less conservative than the other two,  
Zhou, Khargonekar, (1987).  

The second case, Fig.2, shows that the required property 
is not achieved, since the choice of parameter k  was not 
adequate. 

 

 

Figure 1. [ ]( )110 20 0
5 42.45; , , 13 1 nk x x x L−⎡ ⎤ ⎡ ⎤= = = ∈ℵ −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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Figure 2. [ ]( )210 20 0
5 193.5; , , 18 11 nk x x x L−⎡ ⎤ ⎡ ⎤= − = = ∈ℵ −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

Example 2. Consider a singular system given by 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 11 1 3t t t G t= − + − − +x x x x& ,  

( ) ( )1 2
1 1 10 1 1 1t t−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

x x .  

Since ( )det 0cE A− ≡  for any c , this is an irregular 
singular system and solutions are not unique. 

The following results can easily be obtained: 

1 1 1 1 1 1 21 1 1 1 1rank rank−⎛ ⎞ ⎛ ⎞= = ≤⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠
, 

2, , 01
aL a Ga

⎛ ⎞= ∈ ≡⎜ ⎟−⎝ ⎠
R . 

From (103), it can be obtained: 

1 , 44P aa= − <
−

,  

in order to have 0TP P= > .  
So 
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Q
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P
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x xR
 

Two different values of the parameter a  have been 
chosen and corresponding system responses have been 

depicted in Fig.3. 

 

a) [ ]( )205, 8,L na G x L I= − = ∈ℵ −  

 

b) [ ]( )205, 10,L na G x L I= − = ∈ −  

Figure 3. 

In the first case, Fig.3a, condition given by (E.2) is 
satisfied and system has the required property.  

In the second case, Fig.3b LG  is chosen to contradict 
(P.2) and system response diverges.  

Conclusion 
This survey paper is devoted to the stability of linear 

descriptor systems (LDS). Considering both regular and 
irregular continuous linear singular systems, a number of 
results concerning stability properties in the sense of 
Lyapunov were presented and relationship between them 
analyzed. To enssure asymptotical stability for linear 
continuous singular systems, it is not  enough to have the 
eigenvalues of the matrix pair ( ),E A  in the left half 
complex plane, but also to provide an impulse-free motion 
of the system under consideration.  

Different approaches have been shown in order to 
construct Lyapunov stability theory for a particular class of 
linear continuous singular systems operating in free and 
forced regimes.  

The same results have been used to test system stabilty 
robustness.  

Some examples have been given to show the 
applicability of the results derived. 
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Stabilnost linearnih vremenski kontinualnih singularnih  
sistema u smislu Lyapunova: Pregled rezultata 

U ovom radu dat je hronološki prikaz rezultata na polju ljapunovske stabilnosti posebne klase linearnih kontinualni 
singularnih sistema. Predmetna tematika izložena je kroz brojne definicije i odgovarajuće teoreme.  
Prezentovani koncepti prošireni su na robusnost stabilnosti sistema i potkrepljeni eklatantnim primerima. 

Ključne reči: kontinualni sistem, singularni sistem, linearni sistem, stabilnost sistema, stabilnost Ljapunova, 
asimptotska stabilnost. 

Ustoj~ivostx linejnwh vremennwh neprerwvnwh singul}rnwh 
sistem v napravlenii L}punova: Obzor i analiz rezulxtatov 

V nasto}|ej rabote priveden hronologi~eskij obzor rezulxtatov v oblasti ustoj~ivosti L}punova 
osobogo klassa linejnwh neprerwvnwh singul}rnwh sistem. Tematika o kotoroj idet re~x rastolkovana 
~erez mnogo~islennwe opredeleni} i sootvetstvuy|ie teoremw. Pokazannwe koncepcii rasprostranenw 
na krepkostx ustoj~ivosti sistemw i ukreplenw o~evidnwmi ~islennwmi primerami. 
Kly~evwe slova: neprerwvna} sistema, singul}rna} sistema, linejna} sistema, ustoj~ivostx sistemw, 
ustoj~ivostx L}punova, asimptoti~eska} ustoj~ivostx. 
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La stabilité des systèmes linéaires continus singuliers dans le sens de 
Lyapunov: présentation des résultats 

Dans ce papier on présente chronologiquement les résultats obtenus dans le domaine de la stabilité de Lyapunov chez 
la classe particulière des systèmes linéaires continus singuliers. Le sujet traité est exposé au moyen de nombreuses 
définitions et par les théorèmes correspondantes. Les concepts présentés incluent aussi la robustesse de la stabilité du 
système et sont illustrés par les exemples éclatants. 

Mots clés: système continu, système singulier, système linéaire, stabilité du système, stabilité de Lyapunov, stabilité 
asymptotique. 
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